1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License, Version 1.0 only
   6  * (the "License").  You may not use this file except in compliance
   7  * with the License.
   8  *
   9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
  10  * or http://www.opensolaris.org/os/licensing.
  11  * See the License for the specific language governing permissions
  12  * and limitations under the License.
  13  *
  14  * When distributing Covered Code, include this CDDL HEADER in each
  15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  16  * If applicable, add the following below this CDDL HEADER, with the
  17  * fields enclosed by brackets "[]" replaced with your own identifying
  18  * information: Portions Copyright [yyyy] [name of copyright owner]
  19  *
  20  * CDDL HEADER END
  21  */
  22 /*
  23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  24  * Use is subject to license terms.
  25  */
  26 
  27 /*
  28  * Kernel Physical Mapping (kpm) segment driver (segkpm).
  29  *
  30  * This driver delivers along with the hat_kpm* interfaces an alternative
  31  * mechanism for kernel mappings within the 64-bit Solaris operating system,
  32  * which allows the mapping of all physical memory into the kernel address
  33  * space at once. This is feasible in 64 bit kernels, e.g. for Ultrasparc II
  34  * and beyond processors, since the available VA range is much larger than
  35  * possible physical memory. Momentarily all physical memory is supported,
  36  * that is represented by the list of memory segments (memsegs).
  37  *
  38  * Segkpm mappings have also very low overhead and large pages are used
  39  * (when possible) to minimize the TLB and TSB footprint. It is also
  40  * extentable for other than Sparc architectures (e.g. AMD64). Main
  41  * advantage is the avoidance of the TLB-shootdown X-calls, which are
  42  * normally needed when a kernel (global) mapping has to be removed.
  43  *
  44  * First example of a kernel facility that uses the segkpm mapping scheme
  45  * is seg_map, where it is used as an alternative to hat_memload().
  46  * See also hat layer for more information about the hat_kpm* routines.
  47  * The kpm facilty can be turned off at boot time (e.g. /etc/system).
  48  */
  49 
  50 #include <sys/types.h>
  51 #include <sys/param.h>
  52 #include <sys/sysmacros.h>
  53 #include <sys/systm.h>
  54 #include <sys/vnode.h>
  55 #include <sys/cmn_err.h>
  56 #include <sys/debug.h>
  57 #include <sys/thread.h>
  58 #include <sys/cpuvar.h>
  59 #include <sys/bitmap.h>
  60 #include <sys/atomic.h>
  61 #include <sys/lgrp.h>
  62 
  63 #include <vm/seg_kmem.h>
  64 #include <vm/seg_kpm.h>
  65 #include <vm/hat.h>
  66 #include <vm/as.h>
  67 #include <vm/seg.h>
  68 #include <vm/page.h>
  69 
  70 /*
  71  * Global kpm controls.
  72  * See also platform and mmu specific controls.
  73  *
  74  * kpm_enable -- global on/off switch for segkpm.
  75  * . Set by default on 64bit platforms that have kpm support.
  76  * . Will be disabled from platform layer if not supported.
  77  * . Can be disabled via /etc/system.
  78  *
  79  * kpm_smallpages -- use only regular/system pagesize for kpm mappings.
  80  * . Can be useful for critical debugging of kpm clients.
  81  * . Set to zero by default for platforms that support kpm large pages.
  82  *   The use of kpm large pages reduces the footprint of kpm meta data
  83  *   and has all the other advantages of using large pages (e.g TLB
  84  *   miss reduction).
  85  * . Set by default for platforms that don't support kpm large pages or
  86  *   where large pages cannot be used for other reasons (e.g. there are
  87  *   only few full associative TLB entries available for large pages).
  88  *
  89  * segmap_kpm -- separate on/off switch for segmap using segkpm:
  90  * . Set by default.
  91  * . Will be disabled when kpm_enable is zero.
  92  * . Will be disabled when MAXBSIZE != PAGESIZE.
  93  * . Can be disabled via /etc/system.
  94  *
  95  */
  96 int kpm_enable = 1;
  97 int kpm_smallpages = 0;
  98 int segmap_kpm = 1;
  99 
 100 /*
 101  * Private seg op routines.
 102  */
 103 faultcode_t segkpm_fault(struct hat *hat, struct seg *seg, caddr_t addr,
 104                         size_t len, enum fault_type type, enum seg_rw rw);
 105 static void     segkpm_dump(struct seg *);
 106 static void     segkpm_badop(void);
 107 static int      segkpm_notsup(void);
 108 static int      segkpm_capable(struct seg *, segcapability_t);
 109 
 110 #define SEGKPM_BADOP(t) (t(*)())segkpm_badop
 111 #define SEGKPM_NOTSUP   (int(*)())segkpm_notsup
 112 
 113 static struct seg_ops segkpm_ops = {
 114         SEGKPM_BADOP(int),      /* dup */
 115         SEGKPM_BADOP(int),      /* unmap */
 116         SEGKPM_BADOP(void),     /* free */
 117         segkpm_fault,
 118         SEGKPM_BADOP(int),      /* faulta */
 119         SEGKPM_BADOP(int),      /* setprot */
 120         SEGKPM_BADOP(int),      /* checkprot */
 121         SEGKPM_BADOP(int),      /* kluster */
 122         SEGKPM_BADOP(int),      /* sync */
 123         SEGKPM_BADOP(size_t),   /* incore */
 124         SEGKPM_BADOP(int),      /* lockop */
 125         SEGKPM_BADOP(int),      /* getprot */
 126         SEGKPM_BADOP(u_offset_t), /* getoffset */
 127         SEGKPM_BADOP(int),      /* gettype */
 128         SEGKPM_BADOP(int),      /* getvp */
 129         SEGKPM_BADOP(int),      /* advise */
 130         segkpm_dump,            /* dump */
 131         SEGKPM_NOTSUP,          /* pagelock */
 132         SEGKPM_BADOP(int),      /* setpgsz */
 133         SEGKPM_BADOP(int),      /* getmemid */
 134         SEGKPM_BADOP(lgrp_mem_policy_info_t *), /* getpolicy */
 135         segkpm_capable,         /* capable */
 136 };
 137 
 138 /*
 139  * kpm_pgsz and kpm_pgshft are set by platform layer.
 140  */
 141 size_t          kpm_pgsz;       /* kpm page size */
 142 uint_t          kpm_pgshft;     /* kpm page shift */
 143 u_offset_t      kpm_pgoff;      /* kpm page offset mask */
 144 uint_t          kpmp2pshft;     /* kpm page to page shift */
 145 pgcnt_t         kpmpnpgs;       /* how many pages per kpm page */
 146 
 147 
 148 #ifdef  SEGKPM_SUPPORT
 149 
 150 int
 151 segkpm_create(struct seg *seg, void *argsp)
 152 {
 153         struct segkpm_data *skd;
 154         struct segkpm_crargs *b = (struct segkpm_crargs *)argsp;
 155         ushort_t *p;
 156         int i, j;
 157 
 158         ASSERT(seg->s_as && RW_WRITE_HELD(&seg->s_as->a_lock));
 159         ASSERT(btokpmp(seg->s_size) >= 1 &&
 160             kpmpageoff((uintptr_t)seg->s_base) == 0 &&
 161             kpmpageoff((uintptr_t)seg->s_base + seg->s_size) == 0);
 162 
 163         skd = kmem_zalloc(sizeof (struct segkpm_data), KM_SLEEP);
 164 
 165         seg->s_data = (void *)skd;
 166         seg->s_ops = &segkpm_ops;
 167         skd->skd_prot = b->prot;
 168 
 169         /*
 170          * (1) Segkpm virtual addresses are based on physical adresses.
 171          * From this and in opposite to other segment drivers it is
 172          * often required to allocate a page first to be able to
 173          * calculate the final segkpm virtual address.
 174          * (2) Page  allocation is done by calling page_create_va(),
 175          * one important input argument is a virtual address (also
 176          * expressed by the "va" in the function name). This function
 177          * is highly optimized to select the right page for an optimal
 178          * processor and platform support (e.g. virtual addressed
 179          * caches (VAC), physical addressed caches, NUMA).
 180          *
 181          * Because of (1) the approach is to generate a faked virtual
 182          * address for calling page_create_va(). In order to exploit
 183          * the abilities of (2), especially to utilize the cache
 184          * hierarchy (3) and to avoid VAC alias conflicts (4) the
 185          * selection has to be done carefully. For each virtual color
 186          * a separate counter is provided (4). The count values are
 187          * used for the utilization of all cache lines (3) and are
 188          * corresponding to the cache bins.
 189          */
 190         skd->skd_nvcolors = b->nvcolors;
 191 
 192         p = skd->skd_va_select =
 193             kmem_zalloc(NCPU * b->nvcolors * sizeof (ushort_t), KM_SLEEP);
 194 
 195         for (i = 0; i < NCPU; i++)
 196                 for (j = 0; j < b->nvcolors; j++, p++)
 197                         *p = j;
 198 
 199         return (0);
 200 }
 201 
 202 /*
 203  * This routine is called via a machine specific fault handling
 204  * routine.
 205  */
 206 /* ARGSUSED */
 207 faultcode_t
 208 segkpm_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t len,
 209         enum fault_type type, enum seg_rw rw)
 210 {
 211         ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
 212 
 213         switch (type) {
 214         case F_INVAL:
 215                 return (hat_kpm_fault(hat, addr));
 216         case F_SOFTLOCK:
 217         case F_SOFTUNLOCK:
 218                 return (0);
 219         default:
 220                 return (FC_NOSUPPORT);
 221         }
 222         /*NOTREACHED*/
 223 }
 224 
 225 #define addr_to_vcolor(addr, vcolors) \
 226         ((int)(((uintptr_t)(addr) & ((vcolors << PAGESHIFT) - 1)) >> PAGESHIFT))
 227 
 228 /*
 229  * Create a virtual address that can be used for invocations of
 230  * page_create_va. Goal is to utilize the cache hierarchy (round
 231  * robin bins) and to select the right color for virtual indexed
 232  * caches. It isn't exact since we also increment the bin counter
 233  * when the caller uses VOP_GETPAGE and gets a hit in the page
 234  * cache, but we keep the bins turning for cache distribution
 235  * (see also segkpm_create block comment).
 236  */
 237 caddr_t
 238 segkpm_create_va(u_offset_t off)
 239 {
 240         int vcolor;
 241         ushort_t *p;
 242         struct segkpm_data *skd = (struct segkpm_data *)segkpm->s_data;
 243         int nvcolors = skd->skd_nvcolors;
 244         caddr_t va;
 245 
 246         vcolor = (nvcolors > 1) ? addr_to_vcolor(off, nvcolors) : 0;
 247         p = &skd->skd_va_select[(CPU->cpu_id * nvcolors) + vcolor];
 248         va = (caddr_t)ptob(*p);
 249 
 250         atomic_add_16(p, nvcolors);
 251 
 252         return (va);
 253 }
 254 
 255 /*
 256  * Unload mapping if the instance has an active kpm mapping.
 257  */
 258 void
 259 segkpm_mapout_validkpme(struct kpme *kpme)
 260 {
 261         caddr_t vaddr;
 262         page_t *pp;
 263 
 264 retry:
 265         if ((pp = kpme->kpe_page) == NULL) {
 266                 return;
 267         }
 268 
 269         if (page_lock(pp, SE_SHARED, (kmutex_t *)NULL, P_RECLAIM) == 0)
 270                 goto retry;
 271 
 272         /*
 273          * Check if segkpm mapping is not unloaded in the meantime
 274          */
 275         if (kpme->kpe_page == NULL) {
 276                 page_unlock(pp);
 277                 return;
 278         }
 279 
 280         vaddr = hat_kpm_page2va(pp, 1);
 281         hat_kpm_mapout(pp, kpme, vaddr);
 282         page_unlock(pp);
 283 }
 284 
 285 static void
 286 segkpm_badop()
 287 {
 288         panic("segkpm_badop");
 289 }
 290 
 291 #else   /* SEGKPM_SUPPORT */
 292 
 293 /* segkpm stubs */
 294 
 295 /*ARGSUSED*/
 296 int segkpm_create(struct seg *seg, void *argsp) { return (0); }
 297 
 298 /* ARGSUSED */
 299 faultcode_t
 300 segkpm_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t len,
 301         enum fault_type type, enum seg_rw rw)
 302 {
 303         return ((faultcode_t)0);
 304 }
 305 
 306 /* ARGSUSED */
 307 caddr_t segkpm_create_va(u_offset_t off) { return (NULL); }
 308 
 309 /* ARGSUSED */
 310 void segkpm_mapout_validkpme(struct kpme *kpme) {}
 311 
 312 static void
 313 segkpm_badop() {}
 314 
 315 #endif  /* SEGKPM_SUPPORT */
 316 
 317 static int
 318 segkpm_notsup()
 319 {
 320         return (ENOTSUP);
 321 }
 322 
 323 /*
 324  * segkpm pages are not dumped, so we just return
 325  */
 326 /*ARGSUSED*/
 327 static void
 328 segkpm_dump(struct seg *seg)
 329 {}
 330 
 331 /*
 332  * We claim to have no special capabilities.
 333  */
 334 /*ARGSUSED*/
 335 static int
 336 segkpm_capable(struct seg *seg, segcapability_t capability)
 337 {
 338         return (0);
 339 }