1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
  24  * Use is subject to license terms.
  25  */
  26 
  27 #include <sys/fm/protocol.h>
  28 #include <limits.h>
  29 
  30 #include <fmd_alloc.h>
  31 #include <fmd_subr.h>
  32 #include <fmd_event.h>
  33 #include <fmd_string.h>
  34 #include <fmd_module.h>
  35 #include <fmd_case.h>
  36 #include <fmd_log.h>
  37 #include <fmd_time.h>
  38 #include <fmd_topo.h>
  39 #include <fmd_ctl.h>
  40 
  41 #include <fmd.h>
  42 
  43 static void
  44 fmd_event_nvwrap(fmd_event_impl_t *ep)
  45 {
  46         (void) nvlist_remove_all(ep->ev_nvl, FMD_EVN_TTL);
  47         (void) nvlist_remove_all(ep->ev_nvl, FMD_EVN_TOD);
  48 
  49         (void) nvlist_add_uint8(ep->ev_nvl,
  50             FMD_EVN_TTL, ep->ev_ttl);
  51         (void) nvlist_add_uint64_array(ep->ev_nvl,
  52             FMD_EVN_TOD, (uint64_t *)&ep->ev_time, 2);
  53 }
  54 
  55 static void
  56 fmd_event_nvunwrap(fmd_event_impl_t *ep, const fmd_timeval_t *tp)
  57 {
  58         uint64_t *tod;
  59         uint_t n;
  60 
  61         if (nvlist_lookup_uint8(ep->ev_nvl, FMD_EVN_TTL, &ep->ev_ttl) != 0) {
  62                 ep->ev_flags |= FMD_EVF_LOCAL;
  63                 ep->ev_ttl = (uint8_t)fmd.d_xprt_ttl;
  64         }
  65 
  66         if (tp != NULL)
  67                 ep->ev_time = *tp;
  68         else if (nvlist_lookup_uint64_array(ep->ev_nvl,
  69             FMD_EVN_TOD, &tod, &n) == 0 && n >= 2)
  70                 ep->ev_time = *(const fmd_timeval_t *)tod;
  71         else
  72                 fmd_time_sync(&ep->ev_time, &ep->ev_hrt, 1);
  73 }
  74 
  75 fmd_event_t *
  76 fmd_event_recreate(uint_t type, const fmd_timeval_t *tp,
  77     nvlist_t *nvl, void *data, fmd_log_t *lp, off64_t off, size_t len)
  78 {
  79         fmd_event_impl_t *ep = fmd_alloc(sizeof (fmd_event_impl_t), FMD_SLEEP);
  80 
  81         fmd_timeval_t tod;
  82         hrtime_t hr0;
  83 
  84         (void) pthread_mutex_init(&ep->ev_lock, NULL);
  85         ep->ev_refs = 0;
  86         ASSERT(type < FMD_EVT_NTYPES);
  87         ep->ev_type = (uint8_t)type;
  88         ep->ev_state = FMD_EVS_RECEIVED;
  89         ep->ev_flags = FMD_EVF_REPLAY;
  90         ep->ev_nvl = nvl;
  91         ep->ev_data = data;
  92         ep->ev_log = lp;
  93         ep->ev_off = off;
  94         ep->ev_len = len;
  95 
  96         fmd_event_nvunwrap(ep, tp);
  97 
  98         /*
  99          * If we're not restoring from a log, the event is marked volatile.  If
 100          * we are restoring from a log, then hold the log pointer and increment
 101          * the pending count.  If we're using a log but no offset and data len
 102          * are specified, it's a checkpoint event: don't replay or set pending.
 103          */
 104         if (lp == NULL)
 105                 ep->ev_flags |= FMD_EVF_VOLATILE;
 106         else if (off != 0 && len != 0)
 107                 fmd_log_hold_pending(lp);
 108         else {
 109                 ep->ev_flags &= ~FMD_EVF_REPLAY;
 110                 fmd_log_hold(lp);
 111         }
 112 
 113         /*
 114          * Sample a (TOD, hrtime) pair from the current system clocks and then
 115          * compute ev_hrt by taking the delta between this TOD and ev_time.
 116          */
 117         fmd_time_sync(&tod, &hr0, 1);
 118         fmd_time_tod2hrt(hr0, &tod, &ep->ev_time, &ep->ev_hrt);
 119 
 120         fmd_event_nvwrap(ep);
 121         return ((fmd_event_t *)ep);
 122 }
 123 
 124 fmd_event_t *
 125 fmd_event_create(uint_t type, hrtime_t hrt, nvlist_t *nvl, void *data)
 126 {
 127         fmd_event_impl_t *ep = fmd_alloc(sizeof (fmd_event_impl_t), FMD_SLEEP);
 128 
 129         fmd_timeval_t tod;
 130         hrtime_t hr0;
 131         const char *p;
 132         uint64_t ena;
 133 
 134         (void) pthread_mutex_init(&ep->ev_lock, NULL);
 135         ep->ev_refs = 0;
 136         ASSERT(type < FMD_EVT_NTYPES);
 137         ep->ev_type = (uint8_t)type;
 138         ep->ev_state = FMD_EVS_RECEIVED;
 139         ep->ev_flags = FMD_EVF_VOLATILE | FMD_EVF_REPLAY | FMD_EVF_LOCAL;
 140         ep->ev_ttl = (uint8_t)fmd.d_xprt_ttl;
 141         ep->ev_nvl = nvl;
 142         ep->ev_data = data;
 143         ep->ev_log = NULL;
 144         ep->ev_off = 0;
 145         ep->ev_len = 0;
 146 
 147         /*
 148          * Sample TOD and then set ev_time to the earlier TOD corresponding to
 149          * the input hrtime value.  This needs to be improved later: hrestime
 150          * should be sampled by the transport and passed as an input parameter.
 151          */
 152         fmd_time_sync(&tod, &hr0, 1);
 153 
 154         if (hrt == FMD_HRT_NOW)
 155                 hrt = hr0; /* use hrtime sampled by fmd_time_sync() */
 156 
 157         /*
 158          * If this is an FMA protocol event of class "ereport.*" that contains
 159          * valid ENA, we can compute a more precise bound on the event time.
 160          */
 161         if (type == FMD_EVT_PROTOCOL && (p = strchr(data, '.')) != NULL &&
 162             strncmp(data, FM_EREPORT_CLASS, (size_t)(p - (char *)data)) == 0 &&
 163             nvlist_lookup_uint64(nvl, FM_EREPORT_ENA, &ena) == 0 &&
 164             fmd.d_clockops == &fmd_timeops_native)
 165                 hrt = fmd_time_ena2hrt(hrt, ena);
 166 
 167         fmd_time_hrt2tod(hr0, &tod, hrt, &ep->ev_time);
 168         ep->ev_hrt = hrt;
 169 
 170         fmd_event_nvwrap(ep);
 171         return ((fmd_event_t *)ep);
 172 }
 173 
 174 void
 175 fmd_event_destroy(fmd_event_t *e)
 176 {
 177         fmd_event_impl_t *ep = (fmd_event_impl_t *)e;
 178 
 179         ASSERT(MUTEX_HELD(&ep->ev_lock));
 180         ASSERT(ep->ev_refs == 0);
 181 
 182         /*
 183          * If the current state is RECEIVED (i.e. no module has accepted the
 184          * event) and the event was logged, then change the state to DISCARDED.
 185          */
 186         if (ep->ev_state == FMD_EVS_RECEIVED)
 187                 ep->ev_state = FMD_EVS_DISCARDED;
 188 
 189         /*
 190          * If the current state is DISCARDED, ACCEPTED, or DIAGNOSED and the
 191          * event has not yet been commited, then attempt to commit it now.
 192          */
 193         if (ep->ev_state != FMD_EVS_RECEIVED && (ep->ev_flags & (
 194             FMD_EVF_VOLATILE | FMD_EVF_REPLAY)) == FMD_EVF_REPLAY)
 195                 fmd_log_commit(ep->ev_log, e);
 196 
 197         if (ep->ev_log != NULL) {
 198                 if (ep->ev_flags & FMD_EVF_REPLAY)
 199                         fmd_log_decommit(ep->ev_log, e);
 200                 fmd_log_rele(ep->ev_log);
 201         }
 202 
 203         /*
 204          * Perform any event type-specific cleanup activities, and then free
 205          * the name-value pair list and underlying event data structure.
 206          */
 207         switch (ep->ev_type) {
 208         case FMD_EVT_TIMEOUT:
 209                 fmd_free(ep->ev_data, sizeof (fmd_modtimer_t));
 210                 break;
 211         case FMD_EVT_CLOSE:
 212         case FMD_EVT_PUBLISH:
 213                 fmd_case_rele(ep->ev_data);
 214                 break;
 215         case FMD_EVT_CTL:
 216                 fmd_ctl_fini(ep->ev_data);
 217                 break;
 218         case FMD_EVT_TOPO:
 219                 fmd_topo_rele(ep->ev_data);
 220                 break;
 221         }
 222 
 223         nvlist_free(ep->ev_nvl);
 224 
 225         fmd_free(ep, sizeof (fmd_event_impl_t));
 226 }
 227 
 228 void
 229 fmd_event_hold(fmd_event_t *e)
 230 {
 231         fmd_event_impl_t *ep = (fmd_event_impl_t *)e;
 232 
 233         (void) pthread_mutex_lock(&ep->ev_lock);
 234         ep->ev_refs++;
 235         ASSERT(ep->ev_refs != 0);
 236         (void) pthread_mutex_unlock(&ep->ev_lock);
 237 
 238         if (ep->ev_type == FMD_EVT_CTL)
 239                 fmd_ctl_hold(ep->ev_data);
 240 }
 241 
 242 void
 243 fmd_event_rele(fmd_event_t *e)
 244 {
 245         fmd_event_impl_t *ep = (fmd_event_impl_t *)e;
 246 
 247         if (ep->ev_type == FMD_EVT_CTL)
 248                 fmd_ctl_rele(ep->ev_data);
 249 
 250         (void) pthread_mutex_lock(&ep->ev_lock);
 251         ASSERT(ep->ev_refs != 0);
 252 
 253         if (--ep->ev_refs == 0)
 254                 fmd_event_destroy(e);
 255         else
 256                 (void) pthread_mutex_unlock(&ep->ev_lock);
 257 }
 258 
 259 /*
 260  * Transition event from its current state to the specified state.  The states
 261  * for events are defined in fmd_event.h and work according to the diagram:
 262  *
 263  *  -------------     -------------     State      Description
 264  * ( RECEIVED =1 )-->( ACCEPTED =2 )    ---------- ---------------------------
 265  *  -----+-------\    ------+------     DISCARDED  No active references in fmd
 266  *       |        \         |           RECEIVED   Active refs in fmd, no case
 267  *  -----v-------  \  ------v------     ACCEPTED   Active refs, case assigned
 268  * ( DISCARDED=0 )  v( DIAGNOSED=3 )    DIAGNOSED  Active refs, case solved
 269  *  -------------     -------------
 270  *
 271  * Since events are reference counted on behalf of multiple subscribers, any
 272  * attempt to transition an event to an "earlier" or "equal" state (as defined
 273  * by the numeric state values shown in the diagram) is silently ignored.
 274  * An event begins life in the RECEIVED state, so the RECEIVED -> DISCARDED
 275  * transition is handled by fmd_event_destroy() when no references remain.
 276  */
 277 void
 278 fmd_event_transition(fmd_event_t *e, uint_t state)
 279 {
 280         fmd_event_impl_t *ep = (fmd_event_impl_t *)e;
 281 
 282         (void) pthread_mutex_lock(&ep->ev_lock);
 283 
 284         TRACE((FMD_DBG_EVT, "event %p transition %u -> %u",
 285             (void *)ep, ep->ev_state, state));
 286 
 287         if (state <= ep->ev_state) {
 288                 (void) pthread_mutex_unlock(&ep->ev_lock);
 289                 return; /* no state change necessary */
 290         }
 291 
 292         if (ep->ev_state < FMD_EVS_RECEIVED || ep->ev_state > FMD_EVS_DIAGNOSED)
 293                 fmd_panic("illegal transition %u -> %u\n", ep->ev_state, state);
 294 
 295         ep->ev_state = state;
 296         (void) pthread_mutex_unlock(&ep->ev_lock);
 297 }
 298 
 299 /*
 300  * If the specified event is DISCARDED, ACCEPTED, OR DIAGNOSED and it has been
 301  * written to a log but is still marked for replay, attempt to commit it to the
 302  * log so that it will not be replayed.  If fmd_log_commit() is successful, it
 303  * will clear the FMD_EVF_REPLAY flag on the event for us.
 304  */
 305 void
 306 fmd_event_commit(fmd_event_t *e)
 307 {
 308         fmd_event_impl_t *ep = (fmd_event_impl_t *)e;
 309 
 310         (void) pthread_mutex_lock(&ep->ev_lock);
 311 
 312         if (ep->ev_state != FMD_EVS_RECEIVED && (ep->ev_flags & (
 313             FMD_EVF_VOLATILE | FMD_EVF_REPLAY)) == FMD_EVF_REPLAY)
 314                 fmd_log_commit(ep->ev_log, e);
 315 
 316         (void) pthread_mutex_unlock(&ep->ev_lock);
 317 }
 318 
 319 /*
 320  * Compute the delta between events in nanoseconds.  To account for very old
 321  * events which are replayed, we must handle the case where ev_hrt is negative.
 322  * We convert the hrtime_t's to unsigned 64-bit integers and then handle the
 323  * case where 'old' is greater than 'new' (i.e. high-res time has wrapped).
 324  */
 325 hrtime_t
 326 fmd_event_delta(fmd_event_t *e1, fmd_event_t *e2)
 327 {
 328         uint64_t old = ((fmd_event_impl_t *)e1)->ev_hrt;
 329         uint64_t new = ((fmd_event_impl_t *)e2)->ev_hrt;
 330 
 331         return (new >= old ? new - old : (UINT64_MAX - old) + new + 1);
 332 }
 333 
 334 hrtime_t
 335 fmd_event_hrtime(fmd_event_t *ep)
 336 {
 337         return (((fmd_event_impl_t *)ep)->ev_hrt);
 338 }
 339 
 340 int
 341 fmd_event_match(fmd_event_t *e, uint_t type, const void *data)
 342 {
 343         fmd_event_impl_t *ep = (fmd_event_impl_t *)e;
 344 
 345         if (ep->ev_type != type)
 346                 return (0);
 347 
 348         if (type == FMD_EVT_PROTOCOL)
 349                 return (fmd_strmatch(ep->ev_data, data));
 350         else if (type == FMD_EVT_TIMEOUT)
 351                 return ((id_t)data == ((fmd_modtimer_t *)ep->ev_data)->mt_id);
 352         else
 353                 return (ep->ev_data == data);
 354 }
 355 
 356 int
 357 fmd_event_equal(fmd_event_t *e1, fmd_event_t *e2)
 358 {
 359         fmd_event_impl_t *ep1 = (fmd_event_impl_t *)e1;
 360         fmd_event_impl_t *ep2 = (fmd_event_impl_t *)e2;
 361 
 362         return (ep1->ev_log != NULL &&
 363             ep1->ev_log == ep2->ev_log && ep1->ev_off == ep2->ev_off);
 364 }