1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Kernel Physical Mapping (kpm) segment driver (segkpm). 29 * 30 * This driver delivers along with the hat_kpm* interfaces an alternative 31 * mechanism for kernel mappings within the 64-bit Solaris operating system, 32 * which allows the mapping of all physical memory into the kernel address 33 * space at once. This is feasible in 64 bit kernels, e.g. for Ultrasparc II 34 * and beyond processors, since the available VA range is much larger than 35 * possible physical memory. Momentarily all physical memory is supported, 36 * that is represented by the list of memory segments (memsegs). 37 * 38 * Segkpm mappings have also very low overhead and large pages are used 39 * (when possible) to minimize the TLB and TSB footprint. It is also 40 * extentable for other than Sparc architectures (e.g. AMD64). Main 41 * advantage is the avoidance of the TLB-shootdown X-calls, which are 42 * normally needed when a kernel (global) mapping has to be removed. 43 * 44 * First example of a kernel facility that uses the segkpm mapping scheme 45 * is seg_map, where it is used as an alternative to hat_memload(). 46 * See also hat layer for more information about the hat_kpm* routines. 47 * The kpm facilty can be turned off at boot time (e.g. /etc/system). 48 */ 49 50 #include <sys/types.h> 51 #include <sys/param.h> 52 #include <sys/sysmacros.h> 53 #include <sys/systm.h> 54 #include <sys/vnode.h> 55 #include <sys/cmn_err.h> 56 #include <sys/debug.h> 57 #include <sys/thread.h> 58 #include <sys/cpuvar.h> 59 #include <sys/bitmap.h> 60 #include <sys/atomic.h> 61 #include <sys/lgrp.h> 62 63 #include <vm/seg_kmem.h> 64 #include <vm/seg_kpm.h> 65 #include <vm/hat.h> 66 #include <vm/as.h> 67 #include <vm/seg.h> 68 #include <vm/page.h> 69 70 /* 71 * Global kpm controls. 72 * See also platform and mmu specific controls. 73 * 74 * kpm_enable -- global on/off switch for segkpm. 75 * . Set by default on 64bit platforms that have kpm support. 76 * . Will be disabled from platform layer if not supported. 77 * . Can be disabled via /etc/system. 78 * 79 * kpm_smallpages -- use only regular/system pagesize for kpm mappings. 80 * . Can be useful for critical debugging of kpm clients. 81 * . Set to zero by default for platforms that support kpm large pages. 82 * The use of kpm large pages reduces the footprint of kpm meta data 83 * and has all the other advantages of using large pages (e.g TLB 84 * miss reduction). 85 * . Set by default for platforms that don't support kpm large pages or 86 * where large pages cannot be used for other reasons (e.g. there are 87 * only few full associative TLB entries available for large pages). 88 * 89 * segmap_kpm -- separate on/off switch for segmap using segkpm: 90 * . Set by default. 91 * . Will be disabled when kpm_enable is zero. 92 * . Will be disabled when MAXBSIZE != PAGESIZE. 93 * . Can be disabled via /etc/system. 94 * 95 */ 96 int kpm_enable = 1; 97 int kpm_smallpages = 0; 98 int segmap_kpm = 1; 99 100 /* 101 * Private seg op routines. 102 */ 103 faultcode_t segkpm_fault(struct hat *hat, struct seg *seg, caddr_t addr, 104 size_t len, enum fault_type type, enum seg_rw rw); 105 static void segkpm_dump(struct seg *); 106 static void segkpm_badop(void); 107 static int segkpm_notsup(void); 108 static int segkpm_capable(struct seg *, segcapability_t); 109 110 #define SEGKPM_BADOP(t) (t(*)())segkpm_badop 111 #define SEGKPM_NOTSUP (int(*)())segkpm_notsup 112 113 static struct seg_ops segkpm_ops = { 114 SEGKPM_BADOP(int), /* dup */ 115 SEGKPM_BADOP(int), /* unmap */ 116 SEGKPM_BADOP(void), /* free */ 117 segkpm_fault, 118 SEGKPM_BADOP(int), /* faulta */ 119 SEGKPM_BADOP(int), /* setprot */ 120 SEGKPM_BADOP(int), /* checkprot */ 121 SEGKPM_BADOP(int), /* kluster */ 122 SEGKPM_BADOP(int), /* sync */ 123 SEGKPM_BADOP(size_t), /* incore */ 124 SEGKPM_BADOP(int), /* lockop */ 125 SEGKPM_BADOP(int), /* getprot */ 126 SEGKPM_BADOP(u_offset_t), /* getoffset */ 127 SEGKPM_BADOP(int), /* gettype */ 128 SEGKPM_BADOP(int), /* getvp */ 129 SEGKPM_BADOP(int), /* advise */ 130 segkpm_dump, /* dump */ 131 SEGKPM_NOTSUP, /* pagelock */ 132 SEGKPM_BADOP(int), /* setpgsz */ 133 SEGKPM_BADOP(int), /* getmemid */ 134 SEGKPM_BADOP(lgrp_mem_policy_info_t *), /* getpolicy */ 135 segkpm_capable, /* capable */ 136 seg_inherit_notsup /* inherit */ 137 }; 138 139 /* 140 * kpm_pgsz and kpm_pgshft are set by platform layer. 141 */ 142 size_t kpm_pgsz; /* kpm page size */ 143 uint_t kpm_pgshft; /* kpm page shift */ 144 u_offset_t kpm_pgoff; /* kpm page offset mask */ 145 uint_t kpmp2pshft; /* kpm page to page shift */ 146 pgcnt_t kpmpnpgs; /* how many pages per kpm page */ 147 148 149 #ifdef SEGKPM_SUPPORT 150 151 int 152 segkpm_create(struct seg *seg, void *argsp) 153 { 154 struct segkpm_data *skd; 155 struct segkpm_crargs *b = (struct segkpm_crargs *)argsp; 156 ushort_t *p; 157 int i, j; 158 159 ASSERT(seg->s_as && RW_WRITE_HELD(&seg->s_as->a_lock)); 160 ASSERT(btokpmp(seg->s_size) >= 1 && 161 kpmpageoff((uintptr_t)seg->s_base) == 0 && 162 kpmpageoff((uintptr_t)seg->s_base + seg->s_size) == 0); 163 164 skd = kmem_zalloc(sizeof (struct segkpm_data), KM_SLEEP); 165 166 seg->s_data = (void *)skd; 167 seg->s_ops = &segkpm_ops; 168 skd->skd_prot = b->prot; 169 170 /* 171 * (1) Segkpm virtual addresses are based on physical adresses. 172 * From this and in opposite to other segment drivers it is 173 * often required to allocate a page first to be able to 174 * calculate the final segkpm virtual address. 175 * (2) Page allocation is done by calling page_create_va(), 176 * one important input argument is a virtual address (also 177 * expressed by the "va" in the function name). This function 178 * is highly optimized to select the right page for an optimal 179 * processor and platform support (e.g. virtual addressed 180 * caches (VAC), physical addressed caches, NUMA). 181 * 182 * Because of (1) the approach is to generate a faked virtual 183 * address for calling page_create_va(). In order to exploit 184 * the abilities of (2), especially to utilize the cache 185 * hierarchy (3) and to avoid VAC alias conflicts (4) the 186 * selection has to be done carefully. For each virtual color 187 * a separate counter is provided (4). The count values are 188 * used for the utilization of all cache lines (3) and are 189 * corresponding to the cache bins. 190 */ 191 skd->skd_nvcolors = b->nvcolors; 192 193 p = skd->skd_va_select = 194 kmem_zalloc(NCPU * b->nvcolors * sizeof (ushort_t), KM_SLEEP); 195 196 for (i = 0; i < NCPU; i++) 197 for (j = 0; j < b->nvcolors; j++, p++) 198 *p = j; 199 200 return (0); 201 } 202 203 /* 204 * This routine is called via a machine specific fault handling 205 * routine. 206 */ 207 /* ARGSUSED */ 208 faultcode_t 209 segkpm_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t len, 210 enum fault_type type, enum seg_rw rw) 211 { 212 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as)); 213 214 switch (type) { 215 case F_INVAL: 216 return (hat_kpm_fault(hat, addr)); 217 case F_SOFTLOCK: 218 case F_SOFTUNLOCK: 219 return (0); 220 default: 221 return (FC_NOSUPPORT); 222 } 223 /*NOTREACHED*/ 224 } 225 226 #define addr_to_vcolor(addr, vcolors) \ 227 ((int)(((uintptr_t)(addr) & ((vcolors << PAGESHIFT) - 1)) >> PAGESHIFT)) 228 229 /* 230 * Create a virtual address that can be used for invocations of 231 * page_create_va. Goal is to utilize the cache hierarchy (round 232 * robin bins) and to select the right color for virtual indexed 233 * caches. It isn't exact since we also increment the bin counter 234 * when the caller uses VOP_GETPAGE and gets a hit in the page 235 * cache, but we keep the bins turning for cache distribution 236 * (see also segkpm_create block comment). 237 */ 238 caddr_t 239 segkpm_create_va(u_offset_t off) 240 { 241 int vcolor; 242 ushort_t *p; 243 struct segkpm_data *skd = (struct segkpm_data *)segkpm->s_data; 244 int nvcolors = skd->skd_nvcolors; 245 caddr_t va; 246 247 vcolor = (nvcolors > 1) ? addr_to_vcolor(off, nvcolors) : 0; 248 p = &skd->skd_va_select[(CPU->cpu_id * nvcolors) + vcolor]; 249 va = (caddr_t)ptob(*p); 250 251 atomic_add_16(p, nvcolors); 252 253 return (va); 254 } 255 256 /* 257 * Unload mapping if the instance has an active kpm mapping. 258 */ 259 void 260 segkpm_mapout_validkpme(struct kpme *kpme) 261 { 262 caddr_t vaddr; 263 page_t *pp; 264 265 retry: 266 if ((pp = kpme->kpe_page) == NULL) { 267 return; 268 } 269 270 if (page_lock(pp, SE_SHARED, (kmutex_t *)NULL, P_RECLAIM) == 0) 271 goto retry; 272 273 /* 274 * Check if segkpm mapping is not unloaded in the meantime 275 */ 276 if (kpme->kpe_page == NULL) { 277 page_unlock(pp); 278 return; 279 } 280 281 vaddr = hat_kpm_page2va(pp, 1); 282 hat_kpm_mapout(pp, kpme, vaddr); 283 page_unlock(pp); 284 } 285 286 static void 287 segkpm_badop() 288 { 289 panic("segkpm_badop"); 290 } 291 292 #else /* SEGKPM_SUPPORT */ 293 294 /* segkpm stubs */ 295 296 /*ARGSUSED*/ 297 int segkpm_create(struct seg *seg, void *argsp) { return (0); } 298 299 /* ARGSUSED */ 300 faultcode_t 301 segkpm_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t len, 302 enum fault_type type, enum seg_rw rw) 303 { 304 return ((faultcode_t)0); 305 } 306 307 /* ARGSUSED */ 308 caddr_t segkpm_create_va(u_offset_t off) { return (NULL); } 309 310 /* ARGSUSED */ 311 void segkpm_mapout_validkpme(struct kpme *kpme) {} 312 313 static void 314 segkpm_badop() {} 315 316 #endif /* SEGKPM_SUPPORT */ 317 318 static int 319 segkpm_notsup() 320 { 321 return (ENOTSUP); 322 } 323 324 /* 325 * segkpm pages are not dumped, so we just return 326 */ 327 /*ARGSUSED*/ 328 static void 329 segkpm_dump(struct seg *seg) 330 {} 331 332 /* 333 * We claim to have no special capabilities. 334 */ 335 /*ARGSUSED*/ 336 static int 337 segkpm_capable(struct seg *seg, segcapability_t capability) 338 { 339 return (0); 340 }