6583 remove whole-process swapping
1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 2012 by Delphix. All rights reserved. 29 */ 30 31 #include <sys/thread.h> 32 #include <sys/proc.h> 33 #include <sys/debug.h> 34 #include <sys/cmn_err.h> 35 #include <sys/systm.h> 36 #include <sys/sobject.h> 37 #include <sys/sleepq.h> 38 #include <sys/cpuvar.h> 39 #include <sys/condvar.h> 40 #include <sys/condvar_impl.h> 41 #include <sys/schedctl.h> 42 #include <sys/procfs.h> 43 #include <sys/sdt.h> 44 #include <sys/callo.h> 45 46 /* 47 * CV_MAX_WAITERS is the maximum number of waiters we track; once 48 * the number becomes higher than that, we look at the sleepq to 49 * see whether there are *really* any waiters. 50 */ 51 #define CV_MAX_WAITERS 1024 /* must be power of 2 */ 52 #define CV_WAITERS_MASK (CV_MAX_WAITERS - 1) 53 54 /* 55 * Threads don't "own" condition variables. 56 */ 57 /* ARGSUSED */ 58 static kthread_t * 59 cv_owner(void *cvp) 60 { 61 return (NULL); 62 } 63 64 /* 65 * Unsleep a thread that's blocked on a condition variable. 66 */ 67 static void 68 cv_unsleep(kthread_t *t) 69 { 70 condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan; 71 sleepq_head_t *sqh = SQHASH(cvp); 72 73 ASSERT(THREAD_LOCK_HELD(t)); 74 75 if (cvp == NULL) 76 panic("cv_unsleep: thread %p not on sleepq %p", 77 (void *)t, (void *)sqh); 78 DTRACE_SCHED1(wakeup, kthread_t *, t); 79 sleepq_unsleep(t); 80 if (cvp->cv_waiters != CV_MAX_WAITERS) 81 cvp->cv_waiters--; 82 disp_lock_exit_high(&sqh->sq_lock); 83 CL_SETRUN(t); 84 } 85 86 /* 87 * Change the priority of a thread that's blocked on a condition variable. 88 */ 89 static void 90 cv_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip) 91 { 92 condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan; 93 sleepq_t *sqp = t->t_sleepq; 94 95 ASSERT(THREAD_LOCK_HELD(t)); 96 ASSERT(&SQHASH(cvp)->sq_queue == sqp); 97 98 if (cvp == NULL) 99 panic("cv_change_pri: %p not on sleep queue", (void *)t); 100 sleepq_dequeue(t); 101 *t_prip = pri; 102 sleepq_insert(sqp, t); 103 } 104 105 /* 106 * The sobj_ops vector exports a set of functions needed when a thread 107 * is asleep on a synchronization object of this type. 108 */ 109 static sobj_ops_t cv_sobj_ops = { 110 SOBJ_CV, cv_owner, cv_unsleep, cv_change_pri 111 }; 112 113 /* ARGSUSED */ 114 void 115 cv_init(kcondvar_t *cvp, char *name, kcv_type_t type, void *arg) 116 { 117 ((condvar_impl_t *)cvp)->cv_waiters = 0; 118 } 119 120 /* 121 * cv_destroy is not currently needed, but is part of the DDI. 122 * This is in case cv_init ever needs to allocate something for a cv. 123 */ 124 /* ARGSUSED */ 125 void 126 cv_destroy(kcondvar_t *cvp) 127 { 128 ASSERT((((condvar_impl_t *)cvp)->cv_waiters & CV_WAITERS_MASK) == 0); 129 } 130 131 /* 132 * The cv_block() function blocks a thread on a condition variable 133 * by putting it in a hashed sleep queue associated with the 134 * synchronization object. 135 * 136 * Threads are taken off the hashed sleep queues via calls to 137 * cv_signal(), cv_broadcast(), or cv_unsleep(). 138 */ 139 static void 140 cv_block(condvar_impl_t *cvp) 141 { 142 kthread_t *t = curthread; 143 klwp_t *lwp = ttolwp(t); 144 sleepq_head_t *sqh; 145 146 ASSERT(THREAD_LOCK_HELD(t)); 147 ASSERT(t != CPU->cpu_idle_thread); 148 ASSERT(CPU_ON_INTR(CPU) == 0); 149 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 150 ASSERT(t->t_state == TS_ONPROC); 151 152 t->t_schedflag &= ~TS_SIGNALLED; 153 CL_SLEEP(t); /* assign kernel priority */ 154 t->t_wchan = (caddr_t)cvp; 155 t->t_sobj_ops = &cv_sobj_ops; 156 DTRACE_SCHED(sleep); 157 158 /* 159 * The check for t_intr is to avoid doing the 160 * account for an interrupt thread on the still-pinned 161 * lwp's statistics. 162 */ 163 if (lwp != NULL && t->t_intr == NULL) { 164 lwp->lwp_ru.nvcsw++; 165 (void) new_mstate(t, LMS_SLEEP); 166 } 167 168 sqh = SQHASH(cvp); 169 disp_lock_enter_high(&sqh->sq_lock); 170 if (cvp->cv_waiters < CV_MAX_WAITERS) 171 cvp->cv_waiters++; 172 ASSERT(cvp->cv_waiters <= CV_MAX_WAITERS); 173 THREAD_SLEEP(t, &sqh->sq_lock); 174 sleepq_insert(&sqh->sq_queue, t); 175 /* 176 * THREAD_SLEEP() moves curthread->t_lockp to point to the 177 * lock sqh->sq_lock. This lock is later released by the caller 178 * when it calls thread_unlock() on curthread. 179 */ 180 } 181 182 #define cv_block_sig(t, cvp) \ 183 { (t)->t_flag |= T_WAKEABLE; cv_block(cvp); } 184 185 /* 186 * Block on the indicated condition variable and release the 187 * associated kmutex while blocked. 188 */ 189 void 190 cv_wait(kcondvar_t *cvp, kmutex_t *mp) 191 { 192 if (panicstr) 193 return; 194 ASSERT(!quiesce_active); 195 196 thread_lock(curthread); /* lock the thread */ 197 cv_block((condvar_impl_t *)cvp); 198 thread_unlock_nopreempt(curthread); /* unlock the waiters field */ 199 mutex_exit(mp); 200 swtch(); 201 mutex_enter(mp); 202 } 203 204 static void 205 cv_wakeup(void *arg) 206 { 207 kthread_t *t = arg; 208 209 /* 210 * This mutex is acquired and released in order to make sure that 211 * the wakeup does not happen before the block itself happens. 212 */ 213 mutex_enter(&t->t_wait_mutex); 214 mutex_exit(&t->t_wait_mutex); 215 setrun(t); 216 } 217 218 /* 219 * Same as cv_wait except the thread will unblock at 'tim' 220 * (an absolute time) if it hasn't already unblocked. 221 * 222 * Returns the amount of time left from the original 'tim' value 223 * when it was unblocked. 224 */ 225 clock_t 226 cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim) 227 { 228 hrtime_t hrtim; 229 clock_t now = ddi_get_lbolt(); 230 231 if (tim <= now) 232 return (-1); 233 234 hrtim = TICK_TO_NSEC(tim - now); 235 return (cv_timedwait_hires(cvp, mp, hrtim, nsec_per_tick, 0)); 236 } 237 238 /* 239 * Same as cv_timedwait() except that the third argument is a relative 240 * timeout value, as opposed to an absolute one. There is also a fourth 241 * argument that specifies how accurately the timeout must be implemented. 242 */ 243 clock_t 244 cv_reltimedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t delta, time_res_t res) 245 { 246 hrtime_t exp; 247 248 ASSERT(TIME_RES_VALID(res)); 249 250 if (delta <= 0) 251 return (-1); 252 253 if ((exp = TICK_TO_NSEC(delta)) < 0) 254 exp = CY_INFINITY; 255 256 return (cv_timedwait_hires(cvp, mp, exp, time_res[res], 0)); 257 } 258 259 clock_t 260 cv_timedwait_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim, 261 hrtime_t res, int flag) 262 { 263 kthread_t *t = curthread; 264 callout_id_t id; 265 clock_t timeleft; 266 hrtime_t limit; 267 int signalled; 268 269 if (panicstr) 270 return (-1); 271 ASSERT(!quiesce_active); 272 273 limit = (flag & CALLOUT_FLAG_ABSOLUTE) ? gethrtime() : 0; 274 if (tim <= limit) 275 return (-1); 276 mutex_enter(&t->t_wait_mutex); 277 id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t, 278 tim, res, flag); 279 thread_lock(t); /* lock the thread */ 280 cv_block((condvar_impl_t *)cvp); 281 thread_unlock_nopreempt(t); 282 mutex_exit(&t->t_wait_mutex); 283 mutex_exit(mp); 284 swtch(); 285 signalled = (t->t_schedflag & TS_SIGNALLED); 286 /* 287 * Get the time left. untimeout() returns -1 if the timeout has 288 * occured or the time remaining. If the time remaining is zero, 289 * the timeout has occured between when we were awoken and 290 * we called untimeout. We will treat this as if the timeout 291 * has occured and set timeleft to -1. 292 */ 293 timeleft = untimeout_default(id, 0); 294 mutex_enter(mp); 295 if (timeleft <= 0) { 296 timeleft = -1; 297 if (signalled) /* avoid consuming the cv_signal() */ 298 cv_signal(cvp); 299 } 300 return (timeleft); 301 } 302 303 int 304 cv_wait_sig(kcondvar_t *cvp, kmutex_t *mp) 305 { 306 kthread_t *t = curthread; 307 proc_t *p = ttoproc(t); 308 klwp_t *lwp = ttolwp(t); 309 int cancel_pending; 310 int rval = 1; 311 int signalled = 0; 312 313 if (panicstr) 314 return (rval); 315 ASSERT(!quiesce_active); 316 317 /* 318 * Threads in system processes don't process signals. This is 319 * true both for standard threads of system processes and for 320 * interrupt threads which have borrowed their pinned thread's LWP. 321 */ 322 if (lwp == NULL || (p->p_flag & SSYS)) { 323 cv_wait(cvp, mp); 324 return (rval); 325 } 326 ASSERT(t->t_intr == NULL); 327 328 cancel_pending = schedctl_cancel_pending(); 329 lwp->lwp_asleep = 1; 330 lwp->lwp_sysabort = 0; 331 thread_lock(t); 332 cv_block_sig(t, (condvar_impl_t *)cvp); 333 thread_unlock_nopreempt(t); 334 mutex_exit(mp); 335 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 336 setrun(t); 337 /* ASSERT(no locks are held) */ 338 swtch(); 339 signalled = (t->t_schedflag & TS_SIGNALLED); 340 t->t_flag &= ~T_WAKEABLE; 341 mutex_enter(mp); 342 if (ISSIG_PENDING(t, lwp, p)) { 343 mutex_exit(mp); 344 if (issig(FORREAL)) 345 rval = 0; 346 mutex_enter(mp); 347 } 348 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 349 rval = 0; 350 if (rval != 0 && cancel_pending) { 351 schedctl_cancel_eintr(); 352 rval = 0; 353 } 354 lwp->lwp_asleep = 0; 355 lwp->lwp_sysabort = 0; 356 if (rval == 0 && signalled) /* avoid consuming the cv_signal() */ 357 cv_signal(cvp); 358 return (rval); 359 } 360 361 static clock_t 362 cv_timedwait_sig_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim, 363 hrtime_t res, int flag) 364 { 365 kthread_t *t = curthread; 366 proc_t *p = ttoproc(t); 367 klwp_t *lwp = ttolwp(t); 368 int cancel_pending = 0; 369 callout_id_t id; 370 clock_t rval = 1; 371 hrtime_t limit; 372 int signalled = 0; 373 374 if (panicstr) 375 return (rval); 376 ASSERT(!quiesce_active); 377 378 /* 379 * Threads in system processes don't process signals. This is 380 * true both for standard threads of system processes and for 381 * interrupt threads which have borrowed their pinned thread's LWP. 382 */ 383 if (lwp == NULL || (p->p_flag & SSYS)) 384 return (cv_timedwait_hires(cvp, mp, tim, res, flag)); 385 ASSERT(t->t_intr == NULL); 386 387 /* 388 * If tim is less than or equal to current hrtime, then the timeout 389 * has already occured. So just check to see if there is a signal 390 * pending. If so return 0 indicating that there is a signal pending. 391 * Else return -1 indicating that the timeout occured. No need to 392 * wait on anything. 393 */ 394 limit = (flag & CALLOUT_FLAG_ABSOLUTE) ? gethrtime() : 0; 395 if (tim <= limit) { 396 lwp->lwp_asleep = 1; 397 lwp->lwp_sysabort = 0; 398 rval = -1; 399 goto out; 400 } 401 402 /* 403 * Set the timeout and wait. 404 */ 405 cancel_pending = schedctl_cancel_pending(); 406 mutex_enter(&t->t_wait_mutex); 407 id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t, 408 tim, res, flag); 409 lwp->lwp_asleep = 1; 410 lwp->lwp_sysabort = 0; 411 thread_lock(t); 412 cv_block_sig(t, (condvar_impl_t *)cvp); 413 thread_unlock_nopreempt(t); 414 mutex_exit(&t->t_wait_mutex); 415 mutex_exit(mp); 416 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 417 setrun(t); 418 /* ASSERT(no locks are held) */ 419 swtch(); 420 signalled = (t->t_schedflag & TS_SIGNALLED); 421 t->t_flag &= ~T_WAKEABLE; 422 423 /* 424 * Untimeout the thread. untimeout() returns -1 if the timeout has 425 * occured or the time remaining. If the time remaining is zero, 426 * the timeout has occured between when we were awoken and 427 * we called untimeout. We will treat this as if the timeout 428 * has occured and set rval to -1. 429 */ 430 rval = untimeout_default(id, 0); 431 mutex_enter(mp); 432 if (rval <= 0) 433 rval = -1; 434 435 /* 436 * Check to see if a signal is pending. If so, regardless of whether 437 * or not we were awoken due to the signal, the signal is now pending 438 * and a return of 0 has the highest priority. 439 */ 440 out: 441 if (ISSIG_PENDING(t, lwp, p)) { 442 mutex_exit(mp); 443 if (issig(FORREAL)) 444 rval = 0; 445 mutex_enter(mp); 446 } 447 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 448 rval = 0; 449 if (rval != 0 && cancel_pending) { 450 schedctl_cancel_eintr(); 451 rval = 0; 452 } 453 lwp->lwp_asleep = 0; 454 lwp->lwp_sysabort = 0; 455 if (rval <= 0 && signalled) /* avoid consuming the cv_signal() */ 456 cv_signal(cvp); 457 return (rval); 458 } 459 460 /* 461 * Returns: 462 * Function result in order of precedence: 463 * 0 if a signal was received 464 * -1 if timeout occured 465 * >0 if awakened via cv_signal() or cv_broadcast(). 466 * (returns time remaining) 467 * 468 * cv_timedwait_sig() is now part of the DDI. 469 * 470 * This function is now just a wrapper for cv_timedwait_sig_hires(). 471 */ 472 clock_t 473 cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t tim) 474 { 475 hrtime_t hrtim; 476 477 hrtim = TICK_TO_NSEC(tim - ddi_get_lbolt()); 478 return (cv_timedwait_sig_hires(cvp, mp, hrtim, nsec_per_tick, 0)); 479 } 480 481 /* 482 * Wait until the specified time. 483 * If tim == -1, waits without timeout using cv_wait_sig_swap(). 484 */ 485 int 486 cv_timedwait_sig_hrtime(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim) 487 { 488 if (tim == -1) { 489 return (cv_wait_sig_swap(cvp, mp)); 490 } else { 491 return (cv_timedwait_sig_hires(cvp, mp, tim, 1, 492 CALLOUT_FLAG_ABSOLUTE | CALLOUT_FLAG_ROUNDUP)); 493 } 494 } 495 496 /* 497 * Same as cv_timedwait_sig() except that the third argument is a relative 498 * timeout value, as opposed to an absolute one. There is also a fourth 499 * argument that specifies how accurately the timeout must be implemented. 500 */ 501 clock_t 502 cv_reltimedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t delta, 503 time_res_t res) 504 { 505 hrtime_t exp = 0; 506 507 ASSERT(TIME_RES_VALID(res)); 508 509 if (delta > 0) { 510 if ((exp = TICK_TO_NSEC(delta)) < 0) 511 exp = CY_INFINITY; 512 } 513 514 return (cv_timedwait_sig_hires(cvp, mp, exp, time_res[res], 0)); 515 } 516 517 /* 518 * Like cv_wait_sig_swap but allows the caller to indicate (with a 519 * non-NULL sigret) that they will take care of signalling the cv 520 * after wakeup, if necessary. This is a vile hack that should only 521 * be used when no other option is available; almost all callers 522 * should just use cv_wait_sig_swap (which takes care of the cv_signal 523 * stuff automatically) instead. 524 */ 525 int 526 cv_wait_sig_swap_core(kcondvar_t *cvp, kmutex_t *mp, int *sigret) 527 { 528 kthread_t *t = curthread; 529 proc_t *p = ttoproc(t); 530 klwp_t *lwp = ttolwp(t); 531 int cancel_pending; 532 int rval = 1; 533 int signalled = 0; 534 535 if (panicstr) 536 return (rval); 537 538 /* 539 * Threads in system processes don't process signals. This is 540 * true both for standard threads of system processes and for 541 * interrupt threads which have borrowed their pinned thread's LWP. 542 */ 543 if (lwp == NULL || (p->p_flag & SSYS)) { 544 cv_wait(cvp, mp); 545 return (rval); 546 } 547 ASSERT(t->t_intr == NULL); 548 549 cancel_pending = schedctl_cancel_pending(); 550 lwp->lwp_asleep = 1; 551 lwp->lwp_sysabort = 0; 552 thread_lock(t); 553 t->t_kpri_req = 0; /* don't need kernel priority */ 554 cv_block_sig(t, (condvar_impl_t *)cvp); 555 thread_unlock_nopreempt(t); 556 mutex_exit(mp); 557 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 558 setrun(t); 559 /* ASSERT(no locks are held) */ 560 swtch(); 561 signalled = (t->t_schedflag & TS_SIGNALLED); 562 t->t_flag &= ~T_WAKEABLE; 563 mutex_enter(mp); 564 if (ISSIG_PENDING(t, lwp, p)) { 565 mutex_exit(mp); 566 if (issig(FORREAL)) 567 rval = 0; 568 mutex_enter(mp); 569 } 570 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 571 rval = 0; 572 if (rval != 0 && cancel_pending) { 573 schedctl_cancel_eintr(); 574 rval = 0; 575 } 576 lwp->lwp_asleep = 0; 577 lwp->lwp_sysabort = 0; 578 if (rval == 0) { 579 if (sigret != NULL) 580 *sigret = signalled; /* just tell the caller */ 581 else if (signalled) 582 cv_signal(cvp); /* avoid consuming the cv_signal() */ 583 } 584 return (rval); 585 } 586 587 /* 588 * Same as cv_wait_sig but the thread can be swapped out while waiting. 589 * This should only be used when we know we aren't holding any locks. 590 */ 591 int 592 cv_wait_sig_swap(kcondvar_t *cvp, kmutex_t *mp) 593 { 594 return (cv_wait_sig_swap_core(cvp, mp, NULL)); 595 } 596 597 void 598 cv_signal(kcondvar_t *cvp) 599 { 600 condvar_impl_t *cp = (condvar_impl_t *)cvp; 601 602 /* make sure the cv_waiters field looks sane */ 603 ASSERT(cp->cv_waiters <= CV_MAX_WAITERS); 604 if (cp->cv_waiters > 0) { 605 sleepq_head_t *sqh = SQHASH(cp); 606 disp_lock_enter(&sqh->sq_lock); 607 ASSERT(CPU_ON_INTR(CPU) == 0); 608 if (cp->cv_waiters & CV_WAITERS_MASK) { 609 kthread_t *t; 610 cp->cv_waiters--; 611 t = sleepq_wakeone_chan(&sqh->sq_queue, cp); 612 /* 613 * If cv_waiters is non-zero (and less than 614 * CV_MAX_WAITERS) there should be a thread 615 * in the queue. 616 */ 617 ASSERT(t != NULL); 618 } else if (sleepq_wakeone_chan(&sqh->sq_queue, cp) == NULL) { 619 cp->cv_waiters = 0; 620 } 621 disp_lock_exit(&sqh->sq_lock); 622 } 623 } 624 625 void 626 cv_broadcast(kcondvar_t *cvp) 627 { 628 condvar_impl_t *cp = (condvar_impl_t *)cvp; 629 630 /* make sure the cv_waiters field looks sane */ 631 ASSERT(cp->cv_waiters <= CV_MAX_WAITERS); 632 if (cp->cv_waiters > 0) { 633 sleepq_head_t *sqh = SQHASH(cp); 634 disp_lock_enter(&sqh->sq_lock); 635 ASSERT(CPU_ON_INTR(CPU) == 0); 636 sleepq_wakeall_chan(&sqh->sq_queue, cp); 637 cp->cv_waiters = 0; 638 disp_lock_exit(&sqh->sq_lock); 639 } 640 } 641 642 /* 643 * Same as cv_wait(), but wakes up (after wakeup_time milliseconds) to check 644 * for requests to stop, like cv_wait_sig() but without dealing with signals. 645 * This is a horrible kludge. It is evil. It is vile. It is swill. 646 * If your code has to call this function then your code is the same. 647 */ 648 void 649 cv_wait_stop(kcondvar_t *cvp, kmutex_t *mp, int wakeup_time) 650 { 651 kthread_t *t = curthread; 652 klwp_t *lwp = ttolwp(t); 653 proc_t *p = ttoproc(t); 654 callout_id_t id; 655 clock_t tim; 656 657 if (panicstr) 658 return; 659 660 /* 661 * Threads in system processes don't process signals. This is 662 * true both for standard threads of system processes and for 663 * interrupt threads which have borrowed their pinned thread's LWP. 664 */ 665 if (lwp == NULL || (p->p_flag & SSYS)) { 666 cv_wait(cvp, mp); 667 return; 668 } 669 ASSERT(t->t_intr == NULL); 670 671 /* 672 * Wakeup in wakeup_time milliseconds, i.e., human time. 673 */ 674 tim = ddi_get_lbolt() + MSEC_TO_TICK(wakeup_time); 675 mutex_enter(&t->t_wait_mutex); 676 id = realtime_timeout_default((void (*)(void *))cv_wakeup, t, 677 tim - ddi_get_lbolt()); 678 thread_lock(t); /* lock the thread */ 679 cv_block((condvar_impl_t *)cvp); 680 thread_unlock_nopreempt(t); 681 mutex_exit(&t->t_wait_mutex); 682 mutex_exit(mp); 683 /* ASSERT(no locks are held); */ 684 swtch(); 685 (void) untimeout_default(id, 0); 686 687 /* 688 * Check for reasons to stop, if lwp_nostop is not true. 689 * See issig_forreal() for explanations of the various stops. 690 */ 691 mutex_enter(&p->p_lock); 692 while (lwp->lwp_nostop == 0 && !(p->p_flag & SEXITLWPS)) { 693 /* 694 * Hold the lwp here for watchpoint manipulation. 695 */ 696 if (t->t_proc_flag & TP_PAUSE) { 697 stop(PR_SUSPENDED, SUSPEND_PAUSE); 698 continue; 699 } 700 /* 701 * System checkpoint. 702 */ 703 if (t->t_proc_flag & TP_CHKPT) { 704 stop(PR_CHECKPOINT, 0); 705 continue; 706 } 707 /* 708 * Honor fork1(), watchpoint activity (remapping a page), 709 * and lwp_suspend() requests. 710 */ 711 if ((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) || 712 (t->t_proc_flag & TP_HOLDLWP)) { 713 stop(PR_SUSPENDED, SUSPEND_NORMAL); 714 continue; 715 } 716 /* 717 * Honor /proc requested stop. 718 */ 719 if (t->t_proc_flag & TP_PRSTOP) { 720 stop(PR_REQUESTED, 0); 721 } 722 /* 723 * If some lwp in the process has already stopped 724 * showing PR_JOBCONTROL, stop in sympathy with it. 725 */ 726 if (p->p_stopsig && t != p->p_agenttp) { 727 stop(PR_JOBCONTROL, p->p_stopsig); 728 continue; 729 } 730 break; 731 } 732 mutex_exit(&p->p_lock); 733 mutex_enter(mp); 734 } 735 736 /* 737 * Like cv_timedwait_sig(), but takes an absolute hires future time 738 * rather than a future time in clock ticks. Will not return showing 739 * that a timeout occurred until the future time is passed. 740 * If 'when' is a NULL pointer, no timeout will occur. 741 * Returns: 742 * Function result in order of precedence: 743 * 0 if a signal was received 744 * -1 if timeout occured 745 * >0 if awakened via cv_signal() or cv_broadcast() 746 * or by a spurious wakeup. 747 * (might return time remaining) 748 * As a special test, if someone abruptly resets the system time 749 * (but not through adjtime(2); drifting of the clock is allowed and 750 * expected [see timespectohz_adj()]), then we force a return of -1 751 * so the caller can return a premature timeout to the calling process 752 * so it can reevaluate the situation in light of the new system time. 753 * (The system clock has been reset if timecheck != timechanged.) 754 * 755 * Generally, cv_timedwait_sig_hrtime() should be used instead of this 756 * routine. It waits based on hrtime rather than wall-clock time and therefore 757 * does not need to deal with the time changing. 758 */ 759 int 760 cv_waituntil_sig(kcondvar_t *cvp, kmutex_t *mp, 761 timestruc_t *when, int timecheck) 762 { 763 timestruc_t now; 764 timestruc_t delta; 765 hrtime_t interval; 766 int rval; 767 768 if (when == NULL) 769 return (cv_wait_sig_swap(cvp, mp)); 770 771 gethrestime(&now); 772 delta = *when; 773 timespecsub(&delta, &now); 774 if (delta.tv_sec < 0 || (delta.tv_sec == 0 && delta.tv_nsec == 0)) { 775 /* 776 * We have already reached the absolute future time. 777 * Call cv_timedwait_sig() just to check for signals. 778 * We will return immediately with either 0 or -1. 779 */ 780 rval = cv_timedwait_sig_hires(cvp, mp, 0, 1, 0); 781 } else { 782 if (timecheck == timechanged) { 783 /* 784 * Make sure that the interval is atleast one tick. 785 * This is to prevent a user from flooding the system 786 * with very small, high resolution timers. 787 */ 788 interval = ts2hrt(&delta); 789 if (interval < nsec_per_tick) 790 interval = nsec_per_tick; 791 rval = cv_timedwait_sig_hires(cvp, mp, interval, 1, 792 CALLOUT_FLAG_HRESTIME); 793 } else { 794 /* 795 * Someone reset the system time; 796 * just force an immediate timeout. 797 */ 798 rval = -1; 799 } 800 if (rval == -1 && timecheck == timechanged) { 801 /* 802 * Even though cv_timedwait_sig() returned showing a 803 * timeout, the future time may not have passed yet. 804 * If not, change rval to indicate a normal wakeup. 805 */ 806 gethrestime(&now); 807 delta = *when; 808 timespecsub(&delta, &now); 809 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 810 delta.tv_nsec > 0)) 811 rval = 1; 812 } 813 } 814 return (rval); 815 } --- EOF ---