1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
  24  */
  25 
  26 #include <sys/stropts.h>
  27 #include <sys/debug.h>
  28 #include <sys/isa_defs.h>
  29 #include <sys/int_limits.h>
  30 #include <sys/nvpair.h>
  31 #include <sys/nvpair_impl.h>
  32 #include <rpc/types.h>
  33 #include <rpc/xdr.h>
  34 
  35 #if defined(_KERNEL) && !defined(_BOOT)
  36 #include <sys/varargs.h>
  37 #include <sys/ddi.h>
  38 #include <sys/sunddi.h>
  39 #else
  40 #include <stdarg.h>
  41 #include <stdlib.h>
  42 #include <string.h>
  43 #include <strings.h>
  44 #endif
  45 
  46 #ifndef offsetof
  47 #define offsetof(s, m)          ((size_t)(&(((s *)0)->m)))
  48 #endif
  49 #define skip_whitespace(p)      while ((*(p) == ' ') || (*(p) == '\t')) p++
  50 
  51 /*
  52  * nvpair.c - Provides kernel & userland interfaces for manipulating
  53  *      name-value pairs.
  54  *
  55  * Overview Diagram
  56  *
  57  *  +--------------+
  58  *  |  nvlist_t    |
  59  *  |--------------|
  60  *  | nvl_version  |
  61  *  | nvl_nvflag   |
  62  *  | nvl_priv    -+-+
  63  *  | nvl_flag     | |
  64  *  | nvl_pad      | |
  65  *  +--------------+ |
  66  *                   V
  67  *      +--------------+      last i_nvp in list
  68  *      | nvpriv_t     |  +--------------------->
  69  *      |--------------|  |
  70  *   +--+- nvp_list    |  |   +------------+
  71  *   |  |  nvp_last   -+--+   + nv_alloc_t |
  72  *   |  |  nvp_curr    |      |------------|
  73  *   |  |  nvp_nva    -+----> | nva_ops    |
  74  *   |  |  nvp_stat    |      | nva_arg    |
  75  *   |  +--------------+      +------------+
  76  *   |
  77  *   +-------+
  78  *           V
  79  *   +---------------------+      +-------------------+
  80  *   |  i_nvp_t            |  +-->|  i_nvp_t          |  +-->
  81  *   |---------------------|  |   |-------------------|  |
  82  *   | nvi_next           -+--+   | nvi_next         -+--+
  83  *   | nvi_prev (NULL)     | <----+ nvi_prev          |
  84  *   | . . . . . . . . . . |      | . . . . . . . . . |
  85  *   | nvp (nvpair_t)      |      | nvp (nvpair_t)    |
  86  *   |  - nvp_size         |      |  - nvp_size       |
  87  *   |  - nvp_name_sz      |      |  - nvp_name_sz    |
  88  *   |  - nvp_value_elem   |      |  - nvp_value_elem |
  89  *   |  - nvp_type         |      |  - nvp_type       |
  90  *   |  - data ...         |      |  - data ...       |
  91  *   +---------------------+      +-------------------+
  92  *
  93  *
  94  *
  95  *   +---------------------+              +---------------------+
  96  *   |  i_nvp_t            |  +-->    +-->|  i_nvp_t (last)     |
  97  *   |---------------------|  |       |   |---------------------|
  98  *   |  nvi_next          -+--+ ... --+   | nvi_next (NULL)     |
  99  * <-+- nvi_prev           |<-- ...  <----+ nvi_prev            |
 100  *   | . . . . . . . . .   |              | . . . . . . . . .   |
 101  *   | nvp (nvpair_t)      |              | nvp (nvpair_t)      |
 102  *   |  - nvp_size         |              |  - nvp_size         |
 103  *   |  - nvp_name_sz      |              |  - nvp_name_sz      |
 104  *   |  - nvp_value_elem   |              |  - nvp_value_elem   |
 105  *   |  - DATA_TYPE_NVLIST |              |  - nvp_type         |
 106  *   |  - data (embedded)  |              |  - data ...         |
 107  *   |    nvlist name      |              +---------------------+
 108  *   |  +--------------+   |
 109  *   |  |  nvlist_t    |   |
 110  *   |  |--------------|   |
 111  *   |  | nvl_version  |   |
 112  *   |  | nvl_nvflag   |   |
 113  *   |  | nvl_priv   --+---+---->
 114  *   |  | nvl_flag     |   |
 115  *   |  | nvl_pad      |   |
 116  *   |  +--------------+   |
 117  *   +---------------------+
 118  *
 119  *
 120  * N.B. nvpair_t may be aligned on 4 byte boundary, so +4 will
 121  * allow value to be aligned on 8 byte boundary
 122  *
 123  * name_len is the length of the name string including the null terminator
 124  * so it must be >= 1
 125  */
 126 #define NVP_SIZE_CALC(name_len, data_len) \
 127         (NV_ALIGN((sizeof (nvpair_t)) + name_len) + NV_ALIGN(data_len))
 128 
 129 static int i_get_value_size(data_type_t type, const void *data, uint_t nelem);
 130 static int nvlist_add_common(nvlist_t *nvl, const char *name, data_type_t type,
 131     uint_t nelem, const void *data);
 132 
 133 #define NV_STAT_EMBEDDED        0x1
 134 #define EMBEDDED_NVL(nvp)       ((nvlist_t *)(void *)NVP_VALUE(nvp))
 135 #define EMBEDDED_NVL_ARRAY(nvp) ((nvlist_t **)(void *)NVP_VALUE(nvp))
 136 
 137 #define NVP_VALOFF(nvp) (NV_ALIGN(sizeof (nvpair_t) + (nvp)->nvp_name_sz))
 138 #define NVPAIR2I_NVP(nvp) \
 139         ((i_nvp_t *)((size_t)(nvp) - offsetof(i_nvp_t, nvi_nvp)))
 140 
 141 
 142 int
 143 nv_alloc_init(nv_alloc_t *nva, const nv_alloc_ops_t *nvo, /* args */ ...)
 144 {
 145         va_list valist;
 146         int err = 0;
 147 
 148         nva->nva_ops = nvo;
 149         nva->nva_arg = NULL;
 150 
 151         va_start(valist, nvo);
 152         if (nva->nva_ops->nv_ao_init != NULL)
 153                 err = nva->nva_ops->nv_ao_init(nva, valist);
 154         va_end(valist);
 155 
 156         return (err);
 157 }
 158 
 159 void
 160 nv_alloc_reset(nv_alloc_t *nva)
 161 {
 162         if (nva->nva_ops->nv_ao_reset != NULL)
 163                 nva->nva_ops->nv_ao_reset(nva);
 164 }
 165 
 166 void
 167 nv_alloc_fini(nv_alloc_t *nva)
 168 {
 169         if (nva->nva_ops->nv_ao_fini != NULL)
 170                 nva->nva_ops->nv_ao_fini(nva);
 171 }
 172 
 173 nv_alloc_t *
 174 nvlist_lookup_nv_alloc(nvlist_t *nvl)
 175 {
 176         nvpriv_t *priv;
 177 
 178         if (nvl == NULL ||
 179             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
 180                 return (NULL);
 181 
 182         return (priv->nvp_nva);
 183 }
 184 
 185 static void *
 186 nv_mem_zalloc(nvpriv_t *nvp, size_t size)
 187 {
 188         nv_alloc_t *nva = nvp->nvp_nva;
 189         void *buf;
 190 
 191         if ((buf = nva->nva_ops->nv_ao_alloc(nva, size)) != NULL)
 192                 bzero(buf, size);
 193 
 194         return (buf);
 195 }
 196 
 197 static void
 198 nv_mem_free(nvpriv_t *nvp, void *buf, size_t size)
 199 {
 200         nv_alloc_t *nva = nvp->nvp_nva;
 201 
 202         nva->nva_ops->nv_ao_free(nva, buf, size);
 203 }
 204 
 205 static void
 206 nv_priv_init(nvpriv_t *priv, nv_alloc_t *nva, uint32_t stat)
 207 {
 208         bzero(priv, sizeof (nvpriv_t));
 209 
 210         priv->nvp_nva = nva;
 211         priv->nvp_stat = stat;
 212 }
 213 
 214 static nvpriv_t *
 215 nv_priv_alloc(nv_alloc_t *nva)
 216 {
 217         nvpriv_t *priv;
 218 
 219         /*
 220          * nv_mem_alloc() cannot called here because it needs the priv
 221          * argument.
 222          */
 223         if ((priv = nva->nva_ops->nv_ao_alloc(nva, sizeof (nvpriv_t))) == NULL)
 224                 return (NULL);
 225 
 226         nv_priv_init(priv, nva, 0);
 227 
 228         return (priv);
 229 }
 230 
 231 /*
 232  * Embedded lists need their own nvpriv_t's.  We create a new
 233  * nvpriv_t using the parameters and allocator from the parent
 234  * list's nvpriv_t.
 235  */
 236 static nvpriv_t *
 237 nv_priv_alloc_embedded(nvpriv_t *priv)
 238 {
 239         nvpriv_t *emb_priv;
 240 
 241         if ((emb_priv = nv_mem_zalloc(priv, sizeof (nvpriv_t))) == NULL)
 242                 return (NULL);
 243 
 244         nv_priv_init(emb_priv, priv->nvp_nva, NV_STAT_EMBEDDED);
 245 
 246         return (emb_priv);
 247 }
 248 
 249 static void
 250 nvlist_init(nvlist_t *nvl, uint32_t nvflag, nvpriv_t *priv)
 251 {
 252         nvl->nvl_version = NV_VERSION;
 253         nvl->nvl_nvflag = nvflag & (NV_UNIQUE_NAME|NV_UNIQUE_NAME_TYPE);
 254         nvl->nvl_priv = (uint64_t)(uintptr_t)priv;
 255         nvl->nvl_flag = 0;
 256         nvl->nvl_pad = 0;
 257 }
 258 
 259 uint_t
 260 nvlist_nvflag(nvlist_t *nvl)
 261 {
 262         return (nvl->nvl_nvflag);
 263 }
 264 
 265 /*
 266  * nvlist_alloc - Allocate nvlist.
 267  */
 268 /*ARGSUSED1*/
 269 int
 270 nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int kmflag)
 271 {
 272 #if defined(_KERNEL) && !defined(_BOOT)
 273         return (nvlist_xalloc(nvlp, nvflag,
 274             (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
 275 #else
 276         return (nvlist_xalloc(nvlp, nvflag, nv_alloc_nosleep));
 277 #endif
 278 }
 279 
 280 int
 281 nvlist_xalloc(nvlist_t **nvlp, uint_t nvflag, nv_alloc_t *nva)
 282 {
 283         nvpriv_t *priv;
 284 
 285         if (nvlp == NULL || nva == NULL)
 286                 return (EINVAL);
 287 
 288         if ((priv = nv_priv_alloc(nva)) == NULL)
 289                 return (ENOMEM);
 290 
 291         if ((*nvlp = nv_mem_zalloc(priv,
 292             NV_ALIGN(sizeof (nvlist_t)))) == NULL) {
 293                 nv_mem_free(priv, priv, sizeof (nvpriv_t));
 294                 return (ENOMEM);
 295         }
 296 
 297         nvlist_init(*nvlp, nvflag, priv);
 298 
 299         return (0);
 300 }
 301 
 302 /*
 303  * nvp_buf_alloc - Allocate i_nvp_t for storing a new nv pair.
 304  */
 305 static nvpair_t *
 306 nvp_buf_alloc(nvlist_t *nvl, size_t len)
 307 {
 308         nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
 309         i_nvp_t *buf;
 310         nvpair_t *nvp;
 311         size_t nvsize;
 312 
 313         /*
 314          * Allocate the buffer
 315          */
 316         nvsize = len + offsetof(i_nvp_t, nvi_nvp);
 317 
 318         if ((buf = nv_mem_zalloc(priv, nvsize)) == NULL)
 319                 return (NULL);
 320 
 321         nvp = &buf->nvi_nvp;
 322         nvp->nvp_size = len;
 323 
 324         return (nvp);
 325 }
 326 
 327 /*
 328  * nvp_buf_free - de-Allocate an i_nvp_t.
 329  */
 330 static void
 331 nvp_buf_free(nvlist_t *nvl, nvpair_t *nvp)
 332 {
 333         nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
 334         size_t nvsize = nvp->nvp_size + offsetof(i_nvp_t, nvi_nvp);
 335 
 336         nv_mem_free(priv, NVPAIR2I_NVP(nvp), nvsize);
 337 }
 338 
 339 /*
 340  * nvp_buf_link - link a new nv pair into the nvlist.
 341  */
 342 static void
 343 nvp_buf_link(nvlist_t *nvl, nvpair_t *nvp)
 344 {
 345         nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
 346         i_nvp_t *curr = NVPAIR2I_NVP(nvp);
 347 
 348         /* Put element at end of nvlist */
 349         if (priv->nvp_list == NULL) {
 350                 priv->nvp_list = priv->nvp_last = curr;
 351         } else {
 352                 curr->nvi_prev = priv->nvp_last;
 353                 priv->nvp_last->nvi_next = curr;
 354                 priv->nvp_last = curr;
 355         }
 356 }
 357 
 358 /*
 359  * nvp_buf_unlink - unlink an removed nvpair out of the nvlist.
 360  */
 361 static void
 362 nvp_buf_unlink(nvlist_t *nvl, nvpair_t *nvp)
 363 {
 364         nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
 365         i_nvp_t *curr = NVPAIR2I_NVP(nvp);
 366 
 367         /*
 368          * protect nvlist_next_nvpair() against walking on freed memory.
 369          */
 370         if (priv->nvp_curr == curr)
 371                 priv->nvp_curr = curr->nvi_next;
 372 
 373         if (curr == priv->nvp_list)
 374                 priv->nvp_list = curr->nvi_next;
 375         else
 376                 curr->nvi_prev->nvi_next = curr->nvi_next;
 377 
 378         if (curr == priv->nvp_last)
 379                 priv->nvp_last = curr->nvi_prev;
 380         else
 381                 curr->nvi_next->nvi_prev = curr->nvi_prev;
 382 }
 383 
 384 /*
 385  * take a nvpair type and number of elements and make sure the are valid
 386  */
 387 static int
 388 i_validate_type_nelem(data_type_t type, uint_t nelem)
 389 {
 390         switch (type) {
 391         case DATA_TYPE_BOOLEAN:
 392                 if (nelem != 0)
 393                         return (EINVAL);
 394                 break;
 395         case DATA_TYPE_BOOLEAN_VALUE:
 396         case DATA_TYPE_BYTE:
 397         case DATA_TYPE_INT8:
 398         case DATA_TYPE_UINT8:
 399         case DATA_TYPE_INT16:
 400         case DATA_TYPE_UINT16:
 401         case DATA_TYPE_INT32:
 402         case DATA_TYPE_UINT32:
 403         case DATA_TYPE_INT64:
 404         case DATA_TYPE_UINT64:
 405         case DATA_TYPE_STRING:
 406         case DATA_TYPE_HRTIME:
 407         case DATA_TYPE_NVLIST:
 408 #if !defined(_KERNEL)
 409         case DATA_TYPE_DOUBLE:
 410 #endif
 411                 if (nelem != 1)
 412                         return (EINVAL);
 413                 break;
 414         case DATA_TYPE_BOOLEAN_ARRAY:
 415         case DATA_TYPE_BYTE_ARRAY:
 416         case DATA_TYPE_INT8_ARRAY:
 417         case DATA_TYPE_UINT8_ARRAY:
 418         case DATA_TYPE_INT16_ARRAY:
 419         case DATA_TYPE_UINT16_ARRAY:
 420         case DATA_TYPE_INT32_ARRAY:
 421         case DATA_TYPE_UINT32_ARRAY:
 422         case DATA_TYPE_INT64_ARRAY:
 423         case DATA_TYPE_UINT64_ARRAY:
 424         case DATA_TYPE_STRING_ARRAY:
 425         case DATA_TYPE_NVLIST_ARRAY:
 426                 /* we allow arrays with 0 elements */
 427                 break;
 428         default:
 429                 return (EINVAL);
 430         }
 431         return (0);
 432 }
 433 
 434 /*
 435  * Verify nvp_name_sz and check the name string length.
 436  */
 437 static int
 438 i_validate_nvpair_name(nvpair_t *nvp)
 439 {
 440         if ((nvp->nvp_name_sz <= 0) ||
 441             (nvp->nvp_size < NVP_SIZE_CALC(nvp->nvp_name_sz, 0)))
 442                 return (EFAULT);
 443 
 444         /* verify the name string, make sure its terminated */
 445         if (NVP_NAME(nvp)[nvp->nvp_name_sz - 1] != '\0')
 446                 return (EFAULT);
 447 
 448         return (strlen(NVP_NAME(nvp)) == nvp->nvp_name_sz - 1 ? 0 : EFAULT);
 449 }
 450 
 451 static int
 452 i_validate_nvpair_value(data_type_t type, uint_t nelem, const void *data)
 453 {
 454         switch (type) {
 455         case DATA_TYPE_BOOLEAN_VALUE:
 456                 if (*(boolean_t *)data != B_TRUE &&
 457                     *(boolean_t *)data != B_FALSE)
 458                         return (EINVAL);
 459                 break;
 460         case DATA_TYPE_BOOLEAN_ARRAY: {
 461                 int i;
 462 
 463                 for (i = 0; i < nelem; i++)
 464                         if (((boolean_t *)data)[i] != B_TRUE &&
 465                             ((boolean_t *)data)[i] != B_FALSE)
 466                                 return (EINVAL);
 467                 break;
 468         }
 469         default:
 470                 break;
 471         }
 472 
 473         return (0);
 474 }
 475 
 476 /*
 477  * This function takes a pointer to what should be a nvpair and it's size
 478  * and then verifies that all the nvpair fields make sense and can be
 479  * trusted.  This function is used when decoding packed nvpairs.
 480  */
 481 static int
 482 i_validate_nvpair(nvpair_t *nvp)
 483 {
 484         data_type_t type = NVP_TYPE(nvp);
 485         int size1, size2;
 486 
 487         /* verify nvp_name_sz, check the name string length */
 488         if (i_validate_nvpair_name(nvp) != 0)
 489                 return (EFAULT);
 490 
 491         if (i_validate_nvpair_value(type, NVP_NELEM(nvp), NVP_VALUE(nvp)) != 0)
 492                 return (EFAULT);
 493 
 494         /*
 495          * verify nvp_type, nvp_value_elem, and also possibly
 496          * verify string values and get the value size.
 497          */
 498         size2 = i_get_value_size(type, NVP_VALUE(nvp), NVP_NELEM(nvp));
 499         size1 = nvp->nvp_size - NVP_VALOFF(nvp);
 500         if (size2 < 0 || size1 != NV_ALIGN(size2))
 501                 return (EFAULT);
 502 
 503         return (0);
 504 }
 505 
 506 static int
 507 nvlist_copy_pairs(nvlist_t *snvl, nvlist_t *dnvl)
 508 {
 509         nvpriv_t *priv;
 510         i_nvp_t *curr;
 511 
 512         if ((priv = (nvpriv_t *)(uintptr_t)snvl->nvl_priv) == NULL)
 513                 return (EINVAL);
 514 
 515         for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
 516                 nvpair_t *nvp = &curr->nvi_nvp;
 517                 int err;
 518 
 519                 if ((err = nvlist_add_common(dnvl, NVP_NAME(nvp), NVP_TYPE(nvp),
 520                     NVP_NELEM(nvp), NVP_VALUE(nvp))) != 0)
 521                         return (err);
 522         }
 523 
 524         return (0);
 525 }
 526 
 527 /*
 528  * Frees all memory allocated for an nvpair (like embedded lists) with
 529  * the exception of the nvpair buffer itself.
 530  */
 531 static void
 532 nvpair_free(nvpair_t *nvp)
 533 {
 534         switch (NVP_TYPE(nvp)) {
 535         case DATA_TYPE_NVLIST:
 536                 nvlist_free(EMBEDDED_NVL(nvp));
 537                 break;
 538         case DATA_TYPE_NVLIST_ARRAY: {
 539                 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
 540                 int i;
 541 
 542                 for (i = 0; i < NVP_NELEM(nvp); i++)
 543                         if (nvlp[i] != NULL)
 544                                 nvlist_free(nvlp[i]);
 545                 break;
 546         }
 547         default:
 548                 break;
 549         }
 550 }
 551 
 552 /*
 553  * nvlist_free - free an unpacked nvlist
 554  */
 555 void
 556 nvlist_free(nvlist_t *nvl)
 557 {
 558         nvpriv_t *priv;
 559         i_nvp_t *curr;
 560 
 561         if (nvl == NULL ||
 562             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
 563                 return;
 564 
 565         /*
 566          * Unpacked nvlist are linked through i_nvp_t
 567          */
 568         curr = priv->nvp_list;
 569         while (curr != NULL) {
 570                 nvpair_t *nvp = &curr->nvi_nvp;
 571                 curr = curr->nvi_next;
 572 
 573                 nvpair_free(nvp);
 574                 nvp_buf_free(nvl, nvp);
 575         }
 576 
 577         if (!(priv->nvp_stat & NV_STAT_EMBEDDED))
 578                 nv_mem_free(priv, nvl, NV_ALIGN(sizeof (nvlist_t)));
 579         else
 580                 nvl->nvl_priv = 0;
 581 
 582         nv_mem_free(priv, priv, sizeof (nvpriv_t));
 583 }
 584 
 585 static int
 586 nvlist_contains_nvp(nvlist_t *nvl, nvpair_t *nvp)
 587 {
 588         nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
 589         i_nvp_t *curr;
 590 
 591         if (nvp == NULL)
 592                 return (0);
 593 
 594         for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
 595                 if (&curr->nvi_nvp == nvp)
 596                         return (1);
 597 
 598         return (0);
 599 }
 600 
 601 /*
 602  * Make a copy of nvlist
 603  */
 604 /*ARGSUSED1*/
 605 int
 606 nvlist_dup(nvlist_t *nvl, nvlist_t **nvlp, int kmflag)
 607 {
 608 #if defined(_KERNEL) && !defined(_BOOT)
 609         return (nvlist_xdup(nvl, nvlp,
 610             (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
 611 #else
 612         return (nvlist_xdup(nvl, nvlp, nv_alloc_nosleep));
 613 #endif
 614 }
 615 
 616 int
 617 nvlist_xdup(nvlist_t *nvl, nvlist_t **nvlp, nv_alloc_t *nva)
 618 {
 619         int err;
 620         nvlist_t *ret;
 621 
 622         if (nvl == NULL || nvlp == NULL)
 623                 return (EINVAL);
 624 
 625         if ((err = nvlist_xalloc(&ret, nvl->nvl_nvflag, nva)) != 0)
 626                 return (err);
 627 
 628         if ((err = nvlist_copy_pairs(nvl, ret)) != 0)
 629                 nvlist_free(ret);
 630         else
 631                 *nvlp = ret;
 632 
 633         return (err);
 634 }
 635 
 636 /*
 637  * Remove all with matching name
 638  */
 639 int
 640 nvlist_remove_all(nvlist_t *nvl, const char *name)
 641 {
 642         nvpriv_t *priv;
 643         i_nvp_t *curr;
 644         int error = ENOENT;
 645 
 646         if (nvl == NULL || name == NULL ||
 647             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
 648                 return (EINVAL);
 649 
 650         curr = priv->nvp_list;
 651         while (curr != NULL) {
 652                 nvpair_t *nvp = &curr->nvi_nvp;
 653 
 654                 curr = curr->nvi_next;
 655                 if (strcmp(name, NVP_NAME(nvp)) != 0)
 656                         continue;
 657 
 658                 nvp_buf_unlink(nvl, nvp);
 659                 nvpair_free(nvp);
 660                 nvp_buf_free(nvl, nvp);
 661 
 662                 error = 0;
 663         }
 664 
 665         return (error);
 666 }
 667 
 668 /*
 669  * Remove first one with matching name and type
 670  */
 671 int
 672 nvlist_remove(nvlist_t *nvl, const char *name, data_type_t type)
 673 {
 674         nvpriv_t *priv;
 675         i_nvp_t *curr;
 676 
 677         if (nvl == NULL || name == NULL ||
 678             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
 679                 return (EINVAL);
 680 
 681         curr = priv->nvp_list;
 682         while (curr != NULL) {
 683                 nvpair_t *nvp = &curr->nvi_nvp;
 684 
 685                 if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type) {
 686                         nvp_buf_unlink(nvl, nvp);
 687                         nvpair_free(nvp);
 688                         nvp_buf_free(nvl, nvp);
 689 
 690                         return (0);
 691                 }
 692                 curr = curr->nvi_next;
 693         }
 694 
 695         return (ENOENT);
 696 }
 697 
 698 int
 699 nvlist_remove_nvpair(nvlist_t *nvl, nvpair_t *nvp)
 700 {
 701         if (nvl == NULL || nvp == NULL)
 702                 return (EINVAL);
 703 
 704         nvp_buf_unlink(nvl, nvp);
 705         nvpair_free(nvp);
 706         nvp_buf_free(nvl, nvp);
 707         return (0);
 708 }
 709 
 710 /*
 711  * This function calculates the size of an nvpair value.
 712  *
 713  * The data argument controls the behavior in case of the data types
 714  *      DATA_TYPE_STRING        and
 715  *      DATA_TYPE_STRING_ARRAY
 716  * Is data == NULL then the size of the string(s) is excluded.
 717  */
 718 static int
 719 i_get_value_size(data_type_t type, const void *data, uint_t nelem)
 720 {
 721         uint64_t value_sz;
 722 
 723         if (i_validate_type_nelem(type, nelem) != 0)
 724                 return (-1);
 725 
 726         /* Calculate required size for holding value */
 727         switch (type) {
 728         case DATA_TYPE_BOOLEAN:
 729                 value_sz = 0;
 730                 break;
 731         case DATA_TYPE_BOOLEAN_VALUE:
 732                 value_sz = sizeof (boolean_t);
 733                 break;
 734         case DATA_TYPE_BYTE:
 735                 value_sz = sizeof (uchar_t);
 736                 break;
 737         case DATA_TYPE_INT8:
 738                 value_sz = sizeof (int8_t);
 739                 break;
 740         case DATA_TYPE_UINT8:
 741                 value_sz = sizeof (uint8_t);
 742                 break;
 743         case DATA_TYPE_INT16:
 744                 value_sz = sizeof (int16_t);
 745                 break;
 746         case DATA_TYPE_UINT16:
 747                 value_sz = sizeof (uint16_t);
 748                 break;
 749         case DATA_TYPE_INT32:
 750                 value_sz = sizeof (int32_t);
 751                 break;
 752         case DATA_TYPE_UINT32:
 753                 value_sz = sizeof (uint32_t);
 754                 break;
 755         case DATA_TYPE_INT64:
 756                 value_sz = sizeof (int64_t);
 757                 break;
 758         case DATA_TYPE_UINT64:
 759                 value_sz = sizeof (uint64_t);
 760                 break;
 761 #if !defined(_KERNEL)
 762         case DATA_TYPE_DOUBLE:
 763                 value_sz = sizeof (double);
 764                 break;
 765 #endif
 766         case DATA_TYPE_STRING:
 767                 if (data == NULL)
 768                         value_sz = 0;
 769                 else
 770                         value_sz = strlen(data) + 1;
 771                 break;
 772         case DATA_TYPE_BOOLEAN_ARRAY:
 773                 value_sz = (uint64_t)nelem * sizeof (boolean_t);
 774                 break;
 775         case DATA_TYPE_BYTE_ARRAY:
 776                 value_sz = (uint64_t)nelem * sizeof (uchar_t);
 777                 break;
 778         case DATA_TYPE_INT8_ARRAY:
 779                 value_sz = (uint64_t)nelem * sizeof (int8_t);
 780                 break;
 781         case DATA_TYPE_UINT8_ARRAY:
 782                 value_sz = (uint64_t)nelem * sizeof (uint8_t);
 783                 break;
 784         case DATA_TYPE_INT16_ARRAY:
 785                 value_sz = (uint64_t)nelem * sizeof (int16_t);
 786                 break;
 787         case DATA_TYPE_UINT16_ARRAY:
 788                 value_sz = (uint64_t)nelem * sizeof (uint16_t);
 789                 break;
 790         case DATA_TYPE_INT32_ARRAY:
 791                 value_sz = (uint64_t)nelem * sizeof (int32_t);
 792                 break;
 793         case DATA_TYPE_UINT32_ARRAY:
 794                 value_sz = (uint64_t)nelem * sizeof (uint32_t);
 795                 break;
 796         case DATA_TYPE_INT64_ARRAY:
 797                 value_sz = (uint64_t)nelem * sizeof (int64_t);
 798                 break;
 799         case DATA_TYPE_UINT64_ARRAY:
 800                 value_sz = (uint64_t)nelem * sizeof (uint64_t);
 801                 break;
 802         case DATA_TYPE_STRING_ARRAY:
 803                 value_sz = (uint64_t)nelem * sizeof (uint64_t);
 804 
 805                 if (data != NULL) {
 806                         char *const *strs = data;
 807                         uint_t i;
 808 
 809                         /* no alignment requirement for strings */
 810                         for (i = 0; i < nelem; i++) {
 811                                 if (strs[i] == NULL)
 812                                         return (-1);
 813                                 value_sz += strlen(strs[i]) + 1;
 814                         }
 815                 }
 816                 break;
 817         case DATA_TYPE_HRTIME:
 818                 value_sz = sizeof (hrtime_t);
 819                 break;
 820         case DATA_TYPE_NVLIST:
 821                 value_sz = NV_ALIGN(sizeof (nvlist_t));
 822                 break;
 823         case DATA_TYPE_NVLIST_ARRAY:
 824                 value_sz = (uint64_t)nelem * sizeof (uint64_t) +
 825                     (uint64_t)nelem * NV_ALIGN(sizeof (nvlist_t));
 826                 break;
 827         default:
 828                 return (-1);
 829         }
 830 
 831         return (value_sz > INT32_MAX ? -1 : (int)value_sz);
 832 }
 833 
 834 static int
 835 nvlist_copy_embedded(nvlist_t *nvl, nvlist_t *onvl, nvlist_t *emb_nvl)
 836 {
 837         nvpriv_t *priv;
 838         int err;
 839 
 840         if ((priv = nv_priv_alloc_embedded((nvpriv_t *)(uintptr_t)
 841             nvl->nvl_priv)) == NULL)
 842                 return (ENOMEM);
 843 
 844         nvlist_init(emb_nvl, onvl->nvl_nvflag, priv);
 845 
 846         if ((err = nvlist_copy_pairs(onvl, emb_nvl)) != 0) {
 847                 nvlist_free(emb_nvl);
 848                 emb_nvl->nvl_priv = 0;
 849         }
 850 
 851         return (err);
 852 }
 853 
 854 /*
 855  * nvlist_add_common - Add new <name,value> pair to nvlist
 856  */
 857 static int
 858 nvlist_add_common(nvlist_t *nvl, const char *name,
 859     data_type_t type, uint_t nelem, const void *data)
 860 {
 861         nvpair_t *nvp;
 862         uint_t i;
 863 
 864         int nvp_sz, name_sz, value_sz;
 865         int err = 0;
 866 
 867         if (name == NULL || nvl == NULL || nvl->nvl_priv == 0)
 868                 return (EINVAL);
 869 
 870         if (nelem != 0 && data == NULL)
 871                 return (EINVAL);
 872 
 873         /*
 874          * Verify type and nelem and get the value size.
 875          * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
 876          * is the size of the string(s) included.
 877          */
 878         if ((value_sz = i_get_value_size(type, data, nelem)) < 0)
 879                 return (EINVAL);
 880 
 881         if (i_validate_nvpair_value(type, nelem, data) != 0)
 882                 return (EINVAL);
 883 
 884         /*
 885          * If we're adding an nvlist or nvlist array, ensure that we are not
 886          * adding the input nvlist to itself, which would cause recursion,
 887          * and ensure that no NULL nvlist pointers are present.
 888          */
 889         switch (type) {
 890         case DATA_TYPE_NVLIST:
 891                 if (data == nvl || data == NULL)
 892                         return (EINVAL);
 893                 break;
 894         case DATA_TYPE_NVLIST_ARRAY: {
 895                 nvlist_t **onvlp = (nvlist_t **)data;
 896                 for (i = 0; i < nelem; i++) {
 897                         if (onvlp[i] == nvl || onvlp[i] == NULL)
 898                                 return (EINVAL);
 899                 }
 900                 break;
 901         }
 902         default:
 903                 break;
 904         }
 905 
 906         /* calculate sizes of the nvpair elements and the nvpair itself */
 907         name_sz = strlen(name) + 1;
 908 
 909         nvp_sz = NVP_SIZE_CALC(name_sz, value_sz);
 910 
 911         if ((nvp = nvp_buf_alloc(nvl, nvp_sz)) == NULL)
 912                 return (ENOMEM);
 913 
 914         ASSERT(nvp->nvp_size == nvp_sz);
 915         nvp->nvp_name_sz = name_sz;
 916         nvp->nvp_value_elem = nelem;
 917         nvp->nvp_type = type;
 918         bcopy(name, NVP_NAME(nvp), name_sz);
 919 
 920         switch (type) {
 921         case DATA_TYPE_BOOLEAN:
 922                 break;
 923         case DATA_TYPE_STRING_ARRAY: {
 924                 char *const *strs = data;
 925                 char *buf = NVP_VALUE(nvp);
 926                 char **cstrs = (void *)buf;
 927 
 928                 /* skip pre-allocated space for pointer array */
 929                 buf += nelem * sizeof (uint64_t);
 930                 for (i = 0; i < nelem; i++) {
 931                         int slen = strlen(strs[i]) + 1;
 932                         bcopy(strs[i], buf, slen);
 933                         cstrs[i] = buf;
 934                         buf += slen;
 935                 }
 936                 break;
 937         }
 938         case DATA_TYPE_NVLIST: {
 939                 nvlist_t *nnvl = EMBEDDED_NVL(nvp);
 940                 nvlist_t *onvl = (nvlist_t *)data;
 941 
 942                 if ((err = nvlist_copy_embedded(nvl, onvl, nnvl)) != 0) {
 943                         nvp_buf_free(nvl, nvp);
 944                         return (err);
 945                 }
 946                 break;
 947         }
 948         case DATA_TYPE_NVLIST_ARRAY: {
 949                 nvlist_t **onvlp = (nvlist_t **)data;
 950                 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
 951                 nvlist_t *embedded = (nvlist_t *)
 952                     ((uintptr_t)nvlp + nelem * sizeof (uint64_t));
 953 
 954                 for (i = 0; i < nelem; i++) {
 955                         if ((err = nvlist_copy_embedded(nvl,
 956                             onvlp[i], embedded)) != 0) {
 957                                 /*
 958                                  * Free any successfully created lists
 959                                  */
 960                                 nvpair_free(nvp);
 961                                 nvp_buf_free(nvl, nvp);
 962                                 return (err);
 963                         }
 964 
 965                         nvlp[i] = embedded++;
 966                 }
 967                 break;
 968         }
 969         default:
 970                 bcopy(data, NVP_VALUE(nvp), value_sz);
 971         }
 972 
 973         /* if unique name, remove before add */
 974         if (nvl->nvl_nvflag & NV_UNIQUE_NAME)
 975                 (void) nvlist_remove_all(nvl, name);
 976         else if (nvl->nvl_nvflag & NV_UNIQUE_NAME_TYPE)
 977                 (void) nvlist_remove(nvl, name, type);
 978 
 979         nvp_buf_link(nvl, nvp);
 980 
 981         return (0);
 982 }
 983 
 984 int
 985 nvlist_add_boolean(nvlist_t *nvl, const char *name)
 986 {
 987         return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN, 0, NULL));
 988 }
 989 
 990 int
 991 nvlist_add_boolean_value(nvlist_t *nvl, const char *name, boolean_t val)
 992 {
 993         return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_VALUE, 1, &val));
 994 }
 995 
 996 int
 997 nvlist_add_byte(nvlist_t *nvl, const char *name, uchar_t val)
 998 {
 999         return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE, 1, &val));
1000 }
1001 
1002 int
1003 nvlist_add_int8(nvlist_t *nvl, const char *name, int8_t val)
1004 {
1005         return (nvlist_add_common(nvl, name, DATA_TYPE_INT8, 1, &val));
1006 }
1007 
1008 int
1009 nvlist_add_uint8(nvlist_t *nvl, const char *name, uint8_t val)
1010 {
1011         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8, 1, &val));
1012 }
1013 
1014 int
1015 nvlist_add_int16(nvlist_t *nvl, const char *name, int16_t val)
1016 {
1017         return (nvlist_add_common(nvl, name, DATA_TYPE_INT16, 1, &val));
1018 }
1019 
1020 int
1021 nvlist_add_uint16(nvlist_t *nvl, const char *name, uint16_t val)
1022 {
1023         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16, 1, &val));
1024 }
1025 
1026 int
1027 nvlist_add_int32(nvlist_t *nvl, const char *name, int32_t val)
1028 {
1029         return (nvlist_add_common(nvl, name, DATA_TYPE_INT32, 1, &val));
1030 }
1031 
1032 int
1033 nvlist_add_uint32(nvlist_t *nvl, const char *name, uint32_t val)
1034 {
1035         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32, 1, &val));
1036 }
1037 
1038 int
1039 nvlist_add_int64(nvlist_t *nvl, const char *name, int64_t val)
1040 {
1041         return (nvlist_add_common(nvl, name, DATA_TYPE_INT64, 1, &val));
1042 }
1043 
1044 int
1045 nvlist_add_uint64(nvlist_t *nvl, const char *name, uint64_t val)
1046 {
1047         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64, 1, &val));
1048 }
1049 
1050 #if !defined(_KERNEL)
1051 int
1052 nvlist_add_double(nvlist_t *nvl, const char *name, double val)
1053 {
1054         return (nvlist_add_common(nvl, name, DATA_TYPE_DOUBLE, 1, &val));
1055 }
1056 #endif
1057 
1058 int
1059 nvlist_add_string(nvlist_t *nvl, const char *name, const char *val)
1060 {
1061         return (nvlist_add_common(nvl, name, DATA_TYPE_STRING, 1, (void *)val));
1062 }
1063 
1064 int
1065 nvlist_add_boolean_array(nvlist_t *nvl, const char *name,
1066     boolean_t *a, uint_t n)
1067 {
1068         return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_ARRAY, n, a));
1069 }
1070 
1071 int
1072 nvlist_add_byte_array(nvlist_t *nvl, const char *name, uchar_t *a, uint_t n)
1073 {
1074         return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
1075 }
1076 
1077 int
1078 nvlist_add_int8_array(nvlist_t *nvl, const char *name, int8_t *a, uint_t n)
1079 {
1080         return (nvlist_add_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
1081 }
1082 
1083 int
1084 nvlist_add_uint8_array(nvlist_t *nvl, const char *name, uint8_t *a, uint_t n)
1085 {
1086         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
1087 }
1088 
1089 int
1090 nvlist_add_int16_array(nvlist_t *nvl, const char *name, int16_t *a, uint_t n)
1091 {
1092         return (nvlist_add_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
1093 }
1094 
1095 int
1096 nvlist_add_uint16_array(nvlist_t *nvl, const char *name, uint16_t *a, uint_t n)
1097 {
1098         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
1099 }
1100 
1101 int
1102 nvlist_add_int32_array(nvlist_t *nvl, const char *name, int32_t *a, uint_t n)
1103 {
1104         return (nvlist_add_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
1105 }
1106 
1107 int
1108 nvlist_add_uint32_array(nvlist_t *nvl, const char *name, uint32_t *a, uint_t n)
1109 {
1110         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
1111 }
1112 
1113 int
1114 nvlist_add_int64_array(nvlist_t *nvl, const char *name, int64_t *a, uint_t n)
1115 {
1116         return (nvlist_add_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
1117 }
1118 
1119 int
1120 nvlist_add_uint64_array(nvlist_t *nvl, const char *name, uint64_t *a, uint_t n)
1121 {
1122         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
1123 }
1124 
1125 int
1126 nvlist_add_string_array(nvlist_t *nvl, const char *name,
1127     char *const *a, uint_t n)
1128 {
1129         return (nvlist_add_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
1130 }
1131 
1132 int
1133 nvlist_add_hrtime(nvlist_t *nvl, const char *name, hrtime_t val)
1134 {
1135         return (nvlist_add_common(nvl, name, DATA_TYPE_HRTIME, 1, &val));
1136 }
1137 
1138 int
1139 nvlist_add_nvlist(nvlist_t *nvl, const char *name, nvlist_t *val)
1140 {
1141         return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST, 1, val));
1142 }
1143 
1144 int
1145 nvlist_add_nvlist_array(nvlist_t *nvl, const char *name, nvlist_t **a, uint_t n)
1146 {
1147         return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
1148 }
1149 
1150 /* reading name-value pairs */
1151 nvpair_t *
1152 nvlist_next_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1153 {
1154         nvpriv_t *priv;
1155         i_nvp_t *curr;
1156 
1157         if (nvl == NULL ||
1158             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1159                 return (NULL);
1160 
1161         curr = NVPAIR2I_NVP(nvp);
1162 
1163         /*
1164          * Ensure that nvp is a valid nvpair on this nvlist.
1165          * NB: nvp_curr is used only as a hint so that we don't always
1166          * have to walk the list to determine if nvp is still on the list.
1167          */
1168         if (nvp == NULL)
1169                 curr = priv->nvp_list;
1170         else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
1171                 curr = curr->nvi_next;
1172         else
1173                 curr = NULL;
1174 
1175         priv->nvp_curr = curr;
1176 
1177         return (curr != NULL ? &curr->nvi_nvp : NULL);
1178 }
1179 
1180 nvpair_t *
1181 nvlist_prev_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1182 {
1183         nvpriv_t *priv;
1184         i_nvp_t *curr;
1185 
1186         if (nvl == NULL ||
1187             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1188                 return (NULL);
1189 
1190         curr = NVPAIR2I_NVP(nvp);
1191 
1192         if (nvp == NULL)
1193                 curr = priv->nvp_last;
1194         else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
1195                 curr = curr->nvi_prev;
1196         else
1197                 curr = NULL;
1198 
1199         priv->nvp_curr = curr;
1200 
1201         return (curr != NULL ? &curr->nvi_nvp : NULL);
1202 }
1203 
1204 boolean_t
1205 nvlist_empty(nvlist_t *nvl)
1206 {
1207         nvpriv_t *priv;
1208 
1209         if (nvl == NULL ||
1210             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1211                 return (B_TRUE);
1212 
1213         return (priv->nvp_list == NULL);
1214 }
1215 
1216 char *
1217 nvpair_name(nvpair_t *nvp)
1218 {
1219         return (NVP_NAME(nvp));
1220 }
1221 
1222 data_type_t
1223 nvpair_type(nvpair_t *nvp)
1224 {
1225         return (NVP_TYPE(nvp));
1226 }
1227 
1228 int
1229 nvpair_type_is_array(nvpair_t *nvp)
1230 {
1231         data_type_t type = NVP_TYPE(nvp);
1232 
1233         if ((type == DATA_TYPE_BYTE_ARRAY) ||
1234             (type == DATA_TYPE_UINT8_ARRAY) ||
1235             (type == DATA_TYPE_INT16_ARRAY) ||
1236             (type == DATA_TYPE_UINT16_ARRAY) ||
1237             (type == DATA_TYPE_INT32_ARRAY) ||
1238             (type == DATA_TYPE_UINT32_ARRAY) ||
1239             (type == DATA_TYPE_INT64_ARRAY) ||
1240             (type == DATA_TYPE_UINT64_ARRAY) ||
1241             (type == DATA_TYPE_BOOLEAN_ARRAY) ||
1242             (type == DATA_TYPE_STRING_ARRAY) ||
1243             (type == DATA_TYPE_NVLIST_ARRAY))
1244                 return (1);
1245         return (0);
1246 
1247 }
1248 
1249 static int
1250 nvpair_value_common(nvpair_t *nvp, data_type_t type, uint_t *nelem, void *data)
1251 {
1252         if (nvp == NULL || nvpair_type(nvp) != type)
1253                 return (EINVAL);
1254 
1255         /*
1256          * For non-array types, we copy the data.
1257          * For array types (including string), we set a pointer.
1258          */
1259         switch (type) {
1260         case DATA_TYPE_BOOLEAN:
1261                 if (nelem != NULL)
1262                         *nelem = 0;
1263                 break;
1264 
1265         case DATA_TYPE_BOOLEAN_VALUE:
1266         case DATA_TYPE_BYTE:
1267         case DATA_TYPE_INT8:
1268         case DATA_TYPE_UINT8:
1269         case DATA_TYPE_INT16:
1270         case DATA_TYPE_UINT16:
1271         case DATA_TYPE_INT32:
1272         case DATA_TYPE_UINT32:
1273         case DATA_TYPE_INT64:
1274         case DATA_TYPE_UINT64:
1275         case DATA_TYPE_HRTIME:
1276 #if !defined(_KERNEL)
1277         case DATA_TYPE_DOUBLE:
1278 #endif
1279                 if (data == NULL)
1280                         return (EINVAL);
1281                 bcopy(NVP_VALUE(nvp), data,
1282                     (size_t)i_get_value_size(type, NULL, 1));
1283                 if (nelem != NULL)
1284                         *nelem = 1;
1285                 break;
1286 
1287         case DATA_TYPE_NVLIST:
1288         case DATA_TYPE_STRING:
1289                 if (data == NULL)
1290                         return (EINVAL);
1291                 *(void **)data = (void *)NVP_VALUE(nvp);
1292                 if (nelem != NULL)
1293                         *nelem = 1;
1294                 break;
1295 
1296         case DATA_TYPE_BOOLEAN_ARRAY:
1297         case DATA_TYPE_BYTE_ARRAY:
1298         case DATA_TYPE_INT8_ARRAY:
1299         case DATA_TYPE_UINT8_ARRAY:
1300         case DATA_TYPE_INT16_ARRAY:
1301         case DATA_TYPE_UINT16_ARRAY:
1302         case DATA_TYPE_INT32_ARRAY:
1303         case DATA_TYPE_UINT32_ARRAY:
1304         case DATA_TYPE_INT64_ARRAY:
1305         case DATA_TYPE_UINT64_ARRAY:
1306         case DATA_TYPE_STRING_ARRAY:
1307         case DATA_TYPE_NVLIST_ARRAY:
1308                 if (nelem == NULL || data == NULL)
1309                         return (EINVAL);
1310                 if ((*nelem = NVP_NELEM(nvp)) != 0)
1311                         *(void **)data = (void *)NVP_VALUE(nvp);
1312                 else
1313                         *(void **)data = NULL;
1314                 break;
1315 
1316         default:
1317                 return (ENOTSUP);
1318         }
1319 
1320         return (0);
1321 }
1322 
1323 static int
1324 nvlist_lookup_common(nvlist_t *nvl, const char *name, data_type_t type,
1325     uint_t *nelem, void *data)
1326 {
1327         nvpriv_t *priv;
1328         nvpair_t *nvp;
1329         i_nvp_t *curr;
1330 
1331         if (name == NULL || nvl == NULL ||
1332             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1333                 return (EINVAL);
1334 
1335         if (!(nvl->nvl_nvflag & (NV_UNIQUE_NAME | NV_UNIQUE_NAME_TYPE)))
1336                 return (ENOTSUP);
1337 
1338         for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
1339                 nvp = &curr->nvi_nvp;
1340 
1341                 if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type)
1342                         return (nvpair_value_common(nvp, type, nelem, data));
1343         }
1344 
1345         return (ENOENT);
1346 }
1347 
1348 int
1349 nvlist_lookup_boolean(nvlist_t *nvl, const char *name)
1350 {
1351         return (nvlist_lookup_common(nvl, name, DATA_TYPE_BOOLEAN, NULL, NULL));
1352 }
1353 
1354 int
1355 nvlist_lookup_boolean_value(nvlist_t *nvl, const char *name, boolean_t *val)
1356 {
1357         return (nvlist_lookup_common(nvl, name,
1358             DATA_TYPE_BOOLEAN_VALUE, NULL, val));
1359 }
1360 
1361 int
1362 nvlist_lookup_byte(nvlist_t *nvl, const char *name, uchar_t *val)
1363 {
1364         return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE, NULL, val));
1365 }
1366 
1367 int
1368 nvlist_lookup_int8(nvlist_t *nvl, const char *name, int8_t *val)
1369 {
1370         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8, NULL, val));
1371 }
1372 
1373 int
1374 nvlist_lookup_uint8(nvlist_t *nvl, const char *name, uint8_t *val)
1375 {
1376         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8, NULL, val));
1377 }
1378 
1379 int
1380 nvlist_lookup_int16(nvlist_t *nvl, const char *name, int16_t *val)
1381 {
1382         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16, NULL, val));
1383 }
1384 
1385 int
1386 nvlist_lookup_uint16(nvlist_t *nvl, const char *name, uint16_t *val)
1387 {
1388         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16, NULL, val));
1389 }
1390 
1391 int
1392 nvlist_lookup_int32(nvlist_t *nvl, const char *name, int32_t *val)
1393 {
1394         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32, NULL, val));
1395 }
1396 
1397 int
1398 nvlist_lookup_uint32(nvlist_t *nvl, const char *name, uint32_t *val)
1399 {
1400         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32, NULL, val));
1401 }
1402 
1403 int
1404 nvlist_lookup_int64(nvlist_t *nvl, const char *name, int64_t *val)
1405 {
1406         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64, NULL, val));
1407 }
1408 
1409 int
1410 nvlist_lookup_uint64(nvlist_t *nvl, const char *name, uint64_t *val)
1411 {
1412         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64, NULL, val));
1413 }
1414 
1415 #if !defined(_KERNEL)
1416 int
1417 nvlist_lookup_double(nvlist_t *nvl, const char *name, double *val)
1418 {
1419         return (nvlist_lookup_common(nvl, name, DATA_TYPE_DOUBLE, NULL, val));
1420 }
1421 #endif
1422 
1423 int
1424 nvlist_lookup_string(nvlist_t *nvl, const char *name, char **val)
1425 {
1426         return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING, NULL, val));
1427 }
1428 
1429 int
1430 nvlist_lookup_nvlist(nvlist_t *nvl, const char *name, nvlist_t **val)
1431 {
1432         return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST, NULL, val));
1433 }
1434 
1435 int
1436 nvlist_lookup_boolean_array(nvlist_t *nvl, const char *name,
1437     boolean_t **a, uint_t *n)
1438 {
1439         return (nvlist_lookup_common(nvl, name,
1440             DATA_TYPE_BOOLEAN_ARRAY, n, a));
1441 }
1442 
1443 int
1444 nvlist_lookup_byte_array(nvlist_t *nvl, const char *name,
1445     uchar_t **a, uint_t *n)
1446 {
1447         return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
1448 }
1449 
1450 int
1451 nvlist_lookup_int8_array(nvlist_t *nvl, const char *name, int8_t **a, uint_t *n)
1452 {
1453         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
1454 }
1455 
1456 int
1457 nvlist_lookup_uint8_array(nvlist_t *nvl, const char *name,
1458     uint8_t **a, uint_t *n)
1459 {
1460         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
1461 }
1462 
1463 int
1464 nvlist_lookup_int16_array(nvlist_t *nvl, const char *name,
1465     int16_t **a, uint_t *n)
1466 {
1467         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
1468 }
1469 
1470 int
1471 nvlist_lookup_uint16_array(nvlist_t *nvl, const char *name,
1472     uint16_t **a, uint_t *n)
1473 {
1474         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
1475 }
1476 
1477 int
1478 nvlist_lookup_int32_array(nvlist_t *nvl, const char *name,
1479     int32_t **a, uint_t *n)
1480 {
1481         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
1482 }
1483 
1484 int
1485 nvlist_lookup_uint32_array(nvlist_t *nvl, const char *name,
1486     uint32_t **a, uint_t *n)
1487 {
1488         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
1489 }
1490 
1491 int
1492 nvlist_lookup_int64_array(nvlist_t *nvl, const char *name,
1493     int64_t **a, uint_t *n)
1494 {
1495         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
1496 }
1497 
1498 int
1499 nvlist_lookup_uint64_array(nvlist_t *nvl, const char *name,
1500     uint64_t **a, uint_t *n)
1501 {
1502         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
1503 }
1504 
1505 int
1506 nvlist_lookup_string_array(nvlist_t *nvl, const char *name,
1507     char ***a, uint_t *n)
1508 {
1509         return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
1510 }
1511 
1512 int
1513 nvlist_lookup_nvlist_array(nvlist_t *nvl, const char *name,
1514     nvlist_t ***a, uint_t *n)
1515 {
1516         return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
1517 }
1518 
1519 int
1520 nvlist_lookup_hrtime(nvlist_t *nvl, const char *name, hrtime_t *val)
1521 {
1522         return (nvlist_lookup_common(nvl, name, DATA_TYPE_HRTIME, NULL, val));
1523 }
1524 
1525 int
1526 nvlist_lookup_pairs(nvlist_t *nvl, int flag, ...)
1527 {
1528         va_list ap;
1529         char *name;
1530         int noentok = (flag & NV_FLAG_NOENTOK ? 1 : 0);
1531         int ret = 0;
1532 
1533         va_start(ap, flag);
1534         while (ret == 0 && (name = va_arg(ap, char *)) != NULL) {
1535                 data_type_t type;
1536                 void *val;
1537                 uint_t *nelem;
1538 
1539                 switch (type = va_arg(ap, data_type_t)) {
1540                 case DATA_TYPE_BOOLEAN:
1541                         ret = nvlist_lookup_common(nvl, name, type, NULL, NULL);
1542                         break;
1543 
1544                 case DATA_TYPE_BOOLEAN_VALUE:
1545                 case DATA_TYPE_BYTE:
1546                 case DATA_TYPE_INT8:
1547                 case DATA_TYPE_UINT8:
1548                 case DATA_TYPE_INT16:
1549                 case DATA_TYPE_UINT16:
1550                 case DATA_TYPE_INT32:
1551                 case DATA_TYPE_UINT32:
1552                 case DATA_TYPE_INT64:
1553                 case DATA_TYPE_UINT64:
1554                 case DATA_TYPE_HRTIME:
1555                 case DATA_TYPE_STRING:
1556                 case DATA_TYPE_NVLIST:
1557 #if !defined(_KERNEL)
1558                 case DATA_TYPE_DOUBLE:
1559 #endif
1560                         val = va_arg(ap, void *);
1561                         ret = nvlist_lookup_common(nvl, name, type, NULL, val);
1562                         break;
1563 
1564                 case DATA_TYPE_BYTE_ARRAY:
1565                 case DATA_TYPE_BOOLEAN_ARRAY:
1566                 case DATA_TYPE_INT8_ARRAY:
1567                 case DATA_TYPE_UINT8_ARRAY:
1568                 case DATA_TYPE_INT16_ARRAY:
1569                 case DATA_TYPE_UINT16_ARRAY:
1570                 case DATA_TYPE_INT32_ARRAY:
1571                 case DATA_TYPE_UINT32_ARRAY:
1572                 case DATA_TYPE_INT64_ARRAY:
1573                 case DATA_TYPE_UINT64_ARRAY:
1574                 case DATA_TYPE_STRING_ARRAY:
1575                 case DATA_TYPE_NVLIST_ARRAY:
1576                         val = va_arg(ap, void *);
1577                         nelem = va_arg(ap, uint_t *);
1578                         ret = nvlist_lookup_common(nvl, name, type, nelem, val);
1579                         break;
1580 
1581                 default:
1582                         ret = EINVAL;
1583                 }
1584 
1585                 if (ret == ENOENT && noentok)
1586                         ret = 0;
1587         }
1588         va_end(ap);
1589 
1590         return (ret);
1591 }
1592 
1593 /*
1594  * Find the 'name'ed nvpair in the nvlist 'nvl'. If 'name' found, the function
1595  * returns zero and a pointer to the matching nvpair is returned in '*ret'
1596  * (given 'ret' is non-NULL). If 'sep' is specified then 'name' will penitrate
1597  * multiple levels of embedded nvlists, with 'sep' as the separator. As an
1598  * example, if sep is '.', name might look like: "a" or "a.b" or "a.c[3]" or
1599  * "a.d[3].e[1]".  This matches the C syntax for array embed (for convience,
1600  * code also supports "a.d[3]e[1]" syntax).
1601  *
1602  * If 'ip' is non-NULL and the last name component is an array, return the
1603  * value of the "...[index]" array index in *ip. For an array reference that
1604  * is not indexed, *ip will be returned as -1. If there is a syntax error in
1605  * 'name', and 'ep' is non-NULL then *ep will be set to point to the location
1606  * inside the 'name' string where the syntax error was detected.
1607  */
1608 static int
1609 nvlist_lookup_nvpair_ei_sep(nvlist_t *nvl, const char *name, const char sep,
1610     nvpair_t **ret, int *ip, char **ep)
1611 {
1612         nvpair_t        *nvp;
1613         const char      *np;
1614         char            *sepp;
1615         char            *idxp, *idxep;
1616         nvlist_t        **nva;
1617         long            idx;
1618         int             n;
1619 
1620         if (ip)
1621                 *ip = -1;                       /* not indexed */
1622         if (ep)
1623                 *ep = NULL;
1624 
1625         if ((nvl == NULL) || (name == NULL))
1626                 return (EINVAL);
1627 
1628         /* step through components of name */
1629         for (np = name; np && *np; np = sepp) {
1630                 /* ensure unique names */
1631                 if (!(nvl->nvl_nvflag & NV_UNIQUE_NAME))
1632                         return (ENOTSUP);
1633 
1634                 /* skip white space */
1635                 skip_whitespace(np);
1636                 if (*np == 0)
1637                         break;
1638 
1639                 /* set 'sepp' to end of current component 'np' */
1640                 if (sep)
1641                         sepp = strchr(np, sep);
1642                 else
1643                         sepp = NULL;
1644 
1645                 /* find start of next "[ index ]..." */
1646                 idxp = strchr(np, '[');
1647 
1648                 /* if sepp comes first, set idxp to NULL */
1649                 if (sepp && idxp && (sepp < idxp))
1650                         idxp = NULL;
1651 
1652                 /*
1653                  * At this point 'idxp' is set if there is an index
1654                  * expected for the current component.
1655                  */
1656                 if (idxp) {
1657                         /* set 'n' to length of current 'np' name component */
1658                         n = idxp++ - np;
1659 
1660                         /* keep sepp up to date for *ep use as we advance */
1661                         skip_whitespace(idxp);
1662                         sepp = idxp;
1663 
1664                         /* determine the index value */
1665 #if defined(_KERNEL) && !defined(_BOOT)
1666                         if (ddi_strtol(idxp, &idxep, 0, &idx))
1667                                 goto fail;
1668 #else
1669                         idx = strtol(idxp, &idxep, 0);
1670 #endif
1671                         if (idxep == idxp)
1672                                 goto fail;
1673 
1674                         /* keep sepp up to date for *ep use as we advance */
1675                         sepp = idxep;
1676 
1677                         /* skip white space index value and check for ']' */
1678                         skip_whitespace(sepp);
1679                         if (*sepp++ != ']')
1680                                 goto fail;
1681 
1682                         /* for embedded arrays, support C syntax: "a[1].b" */
1683                         skip_whitespace(sepp);
1684                         if (sep && (*sepp == sep))
1685                                 sepp++;
1686                 } else if (sepp) {
1687                         n = sepp++ - np;
1688                 } else {
1689                         n = strlen(np);
1690                 }
1691 
1692                 /* trim trailing whitespace by reducing length of 'np' */
1693                 if (n == 0)
1694                         goto fail;
1695                 for (n--; (np[n] == ' ') || (np[n] == '\t'); n--)
1696                         ;
1697                 n++;
1698 
1699                 /* skip whitespace, and set sepp to NULL if complete */
1700                 if (sepp) {
1701                         skip_whitespace(sepp);
1702                         if (*sepp == 0)
1703                                 sepp = NULL;
1704                 }
1705 
1706                 /*
1707                  * At this point:
1708                  * o  'n' is the length of current 'np' component.
1709                  * o  'idxp' is set if there was an index, and value 'idx'.
1710                  * o  'sepp' is set to the beginning of the next component,
1711                  *    and set to NULL if we have no more components.
1712                  *
1713                  * Search for nvpair with matching component name.
1714                  */
1715                 for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
1716                     nvp = nvlist_next_nvpair(nvl, nvp)) {
1717 
1718                         /* continue if no match on name */
1719                         if (strncmp(np, nvpair_name(nvp), n) ||
1720                             (strlen(nvpair_name(nvp)) != n))
1721                                 continue;
1722 
1723                         /* if indexed, verify type is array oriented */
1724                         if (idxp && !nvpair_type_is_array(nvp))
1725                                 goto fail;
1726 
1727                         /*
1728                          * Full match found, return nvp and idx if this
1729                          * was the last component.
1730                          */
1731                         if (sepp == NULL) {
1732                                 if (ret)
1733                                         *ret = nvp;
1734                                 if (ip && idxp)
1735                                         *ip = (int)idx; /* return index */
1736                                 return (0);             /* found */
1737                         }
1738 
1739                         /*
1740                          * More components: current match must be
1741                          * of DATA_TYPE_NVLIST or DATA_TYPE_NVLIST_ARRAY
1742                          * to support going deeper.
1743                          */
1744                         if (nvpair_type(nvp) == DATA_TYPE_NVLIST) {
1745                                 nvl = EMBEDDED_NVL(nvp);
1746                                 break;
1747                         } else if (nvpair_type(nvp) == DATA_TYPE_NVLIST_ARRAY) {
1748                                 (void) nvpair_value_nvlist_array(nvp,
1749                                     &nva, (uint_t *)&n);
1750                                 if ((n < 0) || (idx >= n))
1751                                         goto fail;
1752                                 nvl = nva[idx];
1753                                 break;
1754                         }
1755 
1756                         /* type does not support more levels */
1757                         goto fail;
1758                 }
1759                 if (nvp == NULL)
1760                         goto fail;              /* 'name' not found */
1761 
1762                 /* search for match of next component in embedded 'nvl' list */
1763         }
1764 
1765 fail:   if (ep && sepp)
1766                 *ep = sepp;
1767         return (EINVAL);
1768 }
1769 
1770 /*
1771  * Return pointer to nvpair with specified 'name'.
1772  */
1773 int
1774 nvlist_lookup_nvpair(nvlist_t *nvl, const char *name, nvpair_t **ret)
1775 {
1776         return (nvlist_lookup_nvpair_ei_sep(nvl, name, 0, ret, NULL, NULL));
1777 }
1778 
1779 /*
1780  * Determine if named nvpair exists in nvlist (use embedded separator of '.'
1781  * and return array index).  See nvlist_lookup_nvpair_ei_sep for more detailed
1782  * description.
1783  */
1784 int nvlist_lookup_nvpair_embedded_index(nvlist_t *nvl,
1785     const char *name, nvpair_t **ret, int *ip, char **ep)
1786 {
1787         return (nvlist_lookup_nvpair_ei_sep(nvl, name, '.', ret, ip, ep));
1788 }
1789 
1790 boolean_t
1791 nvlist_exists(nvlist_t *nvl, const char *name)
1792 {
1793         nvpriv_t *priv;
1794         nvpair_t *nvp;
1795         i_nvp_t *curr;
1796 
1797         if (name == NULL || nvl == NULL ||
1798             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1799                 return (B_FALSE);
1800 
1801         for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
1802                 nvp = &curr->nvi_nvp;
1803 
1804                 if (strcmp(name, NVP_NAME(nvp)) == 0)
1805                         return (B_TRUE);
1806         }
1807 
1808         return (B_FALSE);
1809 }
1810 
1811 int
1812 nvpair_value_boolean_value(nvpair_t *nvp, boolean_t *val)
1813 {
1814         return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_VALUE, NULL, val));
1815 }
1816 
1817 int
1818 nvpair_value_byte(nvpair_t *nvp, uchar_t *val)
1819 {
1820         return (nvpair_value_common(nvp, DATA_TYPE_BYTE, NULL, val));
1821 }
1822 
1823 int
1824 nvpair_value_int8(nvpair_t *nvp, int8_t *val)
1825 {
1826         return (nvpair_value_common(nvp, DATA_TYPE_INT8, NULL, val));
1827 }
1828 
1829 int
1830 nvpair_value_uint8(nvpair_t *nvp, uint8_t *val)
1831 {
1832         return (nvpair_value_common(nvp, DATA_TYPE_UINT8, NULL, val));
1833 }
1834 
1835 int
1836 nvpair_value_int16(nvpair_t *nvp, int16_t *val)
1837 {
1838         return (nvpair_value_common(nvp, DATA_TYPE_INT16, NULL, val));
1839 }
1840 
1841 int
1842 nvpair_value_uint16(nvpair_t *nvp, uint16_t *val)
1843 {
1844         return (nvpair_value_common(nvp, DATA_TYPE_UINT16, NULL, val));
1845 }
1846 
1847 int
1848 nvpair_value_int32(nvpair_t *nvp, int32_t *val)
1849 {
1850         return (nvpair_value_common(nvp, DATA_TYPE_INT32, NULL, val));
1851 }
1852 
1853 int
1854 nvpair_value_uint32(nvpair_t *nvp, uint32_t *val)
1855 {
1856         return (nvpair_value_common(nvp, DATA_TYPE_UINT32, NULL, val));
1857 }
1858 
1859 int
1860 nvpair_value_int64(nvpair_t *nvp, int64_t *val)
1861 {
1862         return (nvpair_value_common(nvp, DATA_TYPE_INT64, NULL, val));
1863 }
1864 
1865 int
1866 nvpair_value_uint64(nvpair_t *nvp, uint64_t *val)
1867 {
1868         return (nvpair_value_common(nvp, DATA_TYPE_UINT64, NULL, val));
1869 }
1870 
1871 #if !defined(_KERNEL)
1872 int
1873 nvpair_value_double(nvpair_t *nvp, double *val)
1874 {
1875         return (nvpair_value_common(nvp, DATA_TYPE_DOUBLE, NULL, val));
1876 }
1877 #endif
1878 
1879 int
1880 nvpair_value_string(nvpair_t *nvp, char **val)
1881 {
1882         return (nvpair_value_common(nvp, DATA_TYPE_STRING, NULL, val));
1883 }
1884 
1885 int
1886 nvpair_value_nvlist(nvpair_t *nvp, nvlist_t **val)
1887 {
1888         return (nvpair_value_common(nvp, DATA_TYPE_NVLIST, NULL, val));
1889 }
1890 
1891 int
1892 nvpair_value_boolean_array(nvpair_t *nvp, boolean_t **val, uint_t *nelem)
1893 {
1894         return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_ARRAY, nelem, val));
1895 }
1896 
1897 int
1898 nvpair_value_byte_array(nvpair_t *nvp, uchar_t **val, uint_t *nelem)
1899 {
1900         return (nvpair_value_common(nvp, DATA_TYPE_BYTE_ARRAY, nelem, val));
1901 }
1902 
1903 int
1904 nvpair_value_int8_array(nvpair_t *nvp, int8_t **val, uint_t *nelem)
1905 {
1906         return (nvpair_value_common(nvp, DATA_TYPE_INT8_ARRAY, nelem, val));
1907 }
1908 
1909 int
1910 nvpair_value_uint8_array(nvpair_t *nvp, uint8_t **val, uint_t *nelem)
1911 {
1912         return (nvpair_value_common(nvp, DATA_TYPE_UINT8_ARRAY, nelem, val));
1913 }
1914 
1915 int
1916 nvpair_value_int16_array(nvpair_t *nvp, int16_t **val, uint_t *nelem)
1917 {
1918         return (nvpair_value_common(nvp, DATA_TYPE_INT16_ARRAY, nelem, val));
1919 }
1920 
1921 int
1922 nvpair_value_uint16_array(nvpair_t *nvp, uint16_t **val, uint_t *nelem)
1923 {
1924         return (nvpair_value_common(nvp, DATA_TYPE_UINT16_ARRAY, nelem, val));
1925 }
1926 
1927 int
1928 nvpair_value_int32_array(nvpair_t *nvp, int32_t **val, uint_t *nelem)
1929 {
1930         return (nvpair_value_common(nvp, DATA_TYPE_INT32_ARRAY, nelem, val));
1931 }
1932 
1933 int
1934 nvpair_value_uint32_array(nvpair_t *nvp, uint32_t **val, uint_t *nelem)
1935 {
1936         return (nvpair_value_common(nvp, DATA_TYPE_UINT32_ARRAY, nelem, val));
1937 }
1938 
1939 int
1940 nvpair_value_int64_array(nvpair_t *nvp, int64_t **val, uint_t *nelem)
1941 {
1942         return (nvpair_value_common(nvp, DATA_TYPE_INT64_ARRAY, nelem, val));
1943 }
1944 
1945 int
1946 nvpair_value_uint64_array(nvpair_t *nvp, uint64_t **val, uint_t *nelem)
1947 {
1948         return (nvpair_value_common(nvp, DATA_TYPE_UINT64_ARRAY, nelem, val));
1949 }
1950 
1951 int
1952 nvpair_value_string_array(nvpair_t *nvp, char ***val, uint_t *nelem)
1953 {
1954         return (nvpair_value_common(nvp, DATA_TYPE_STRING_ARRAY, nelem, val));
1955 }
1956 
1957 int
1958 nvpair_value_nvlist_array(nvpair_t *nvp, nvlist_t ***val, uint_t *nelem)
1959 {
1960         return (nvpair_value_common(nvp, DATA_TYPE_NVLIST_ARRAY, nelem, val));
1961 }
1962 
1963 int
1964 nvpair_value_hrtime(nvpair_t *nvp, hrtime_t *val)
1965 {
1966         return (nvpair_value_common(nvp, DATA_TYPE_HRTIME, NULL, val));
1967 }
1968 
1969 /*
1970  * Add specified pair to the list.
1971  */
1972 int
1973 nvlist_add_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1974 {
1975         if (nvl == NULL || nvp == NULL)
1976                 return (EINVAL);
1977 
1978         return (nvlist_add_common(nvl, NVP_NAME(nvp), NVP_TYPE(nvp),
1979             NVP_NELEM(nvp), NVP_VALUE(nvp)));
1980 }
1981 
1982 /*
1983  * Merge the supplied nvlists and put the result in dst.
1984  * The merged list will contain all names specified in both lists,
1985  * the values are taken from nvl in the case of duplicates.
1986  * Return 0 on success.
1987  */
1988 /*ARGSUSED*/
1989 int
1990 nvlist_merge(nvlist_t *dst, nvlist_t *nvl, int flag)
1991 {
1992         if (nvl == NULL || dst == NULL)
1993                 return (EINVAL);
1994 
1995         if (dst != nvl)
1996                 return (nvlist_copy_pairs(nvl, dst));
1997 
1998         return (0);
1999 }
2000 
2001 /*
2002  * Encoding related routines
2003  */
2004 #define NVS_OP_ENCODE   0
2005 #define NVS_OP_DECODE   1
2006 #define NVS_OP_GETSIZE  2
2007 
2008 typedef struct nvs_ops nvs_ops_t;
2009 
2010 typedef struct {
2011         int             nvs_op;
2012         const nvs_ops_t *nvs_ops;
2013         void            *nvs_private;
2014         nvpriv_t        *nvs_priv;
2015 } nvstream_t;
2016 
2017 /*
2018  * nvs operations are:
2019  *   - nvs_nvlist
2020  *     encoding / decoding of a nvlist header (nvlist_t)
2021  *     calculates the size used for header and end detection
2022  *
2023  *   - nvs_nvpair
2024  *     responsible for the first part of encoding / decoding of an nvpair
2025  *     calculates the decoded size of an nvpair
2026  *
2027  *   - nvs_nvp_op
2028  *     second part of encoding / decoding of an nvpair
2029  *
2030  *   - nvs_nvp_size
2031  *     calculates the encoding size of an nvpair
2032  *
2033  *   - nvs_nvl_fini
2034  *     encodes the end detection mark (zeros).
2035  */
2036 struct nvs_ops {
2037         int (*nvs_nvlist)(nvstream_t *, nvlist_t *, size_t *);
2038         int (*nvs_nvpair)(nvstream_t *, nvpair_t *, size_t *);
2039         int (*nvs_nvp_op)(nvstream_t *, nvpair_t *);
2040         int (*nvs_nvp_size)(nvstream_t *, nvpair_t *, size_t *);
2041         int (*nvs_nvl_fini)(nvstream_t *);
2042 };
2043 
2044 typedef struct {
2045         char    nvh_encoding;   /* nvs encoding method */
2046         char    nvh_endian;     /* nvs endian */
2047         char    nvh_reserved1;  /* reserved for future use */
2048         char    nvh_reserved2;  /* reserved for future use */
2049 } nvs_header_t;
2050 
2051 static int
2052 nvs_encode_pairs(nvstream_t *nvs, nvlist_t *nvl)
2053 {
2054         nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
2055         i_nvp_t *curr;
2056 
2057         /*
2058          * Walk nvpair in list and encode each nvpair
2059          */
2060         for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
2061                 if (nvs->nvs_ops->nvs_nvpair(nvs, &curr->nvi_nvp, NULL) != 0)
2062                         return (EFAULT);
2063 
2064         return (nvs->nvs_ops->nvs_nvl_fini(nvs));
2065 }
2066 
2067 static int
2068 nvs_decode_pairs(nvstream_t *nvs, nvlist_t *nvl)
2069 {
2070         nvpair_t *nvp;
2071         size_t nvsize;
2072         int err;
2073 
2074         /*
2075          * Get decoded size of next pair in stream, alloc
2076          * memory for nvpair_t, then decode the nvpair
2077          */
2078         while ((err = nvs->nvs_ops->nvs_nvpair(nvs, NULL, &nvsize)) == 0) {
2079                 if (nvsize == 0) /* end of list */
2080                         break;
2081 
2082                 /* make sure len makes sense */
2083                 if (nvsize < NVP_SIZE_CALC(1, 0))
2084                         return (EFAULT);
2085 
2086                 if ((nvp = nvp_buf_alloc(nvl, nvsize)) == NULL)
2087                         return (ENOMEM);
2088 
2089                 if ((err = nvs->nvs_ops->nvs_nvp_op(nvs, nvp)) != 0) {
2090                         nvp_buf_free(nvl, nvp);
2091                         return (err);
2092                 }
2093 
2094                 if (i_validate_nvpair(nvp) != 0) {
2095                         nvpair_free(nvp);
2096                         nvp_buf_free(nvl, nvp);
2097                         return (EFAULT);
2098                 }
2099 
2100                 nvp_buf_link(nvl, nvp);
2101         }
2102         return (err);
2103 }
2104 
2105 static int
2106 nvs_getsize_pairs(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
2107 {
2108         nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
2109         i_nvp_t *curr;
2110         uint64_t nvsize = *buflen;
2111         size_t size;
2112 
2113         /*
2114          * Get encoded size of nvpairs in nvlist
2115          */
2116         for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
2117                 if (nvs->nvs_ops->nvs_nvp_size(nvs, &curr->nvi_nvp, &size) != 0)
2118                         return (EINVAL);
2119 
2120                 if ((nvsize += size) > INT32_MAX)
2121                         return (EINVAL);
2122         }
2123 
2124         *buflen = nvsize;
2125         return (0);
2126 }
2127 
2128 static int
2129 nvs_operation(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
2130 {
2131         int err;
2132 
2133         if (nvl->nvl_priv == 0)
2134                 return (EFAULT);
2135 
2136         /*
2137          * Perform the operation, starting with header, then each nvpair
2138          */
2139         if ((err = nvs->nvs_ops->nvs_nvlist(nvs, nvl, buflen)) != 0)
2140                 return (err);
2141 
2142         switch (nvs->nvs_op) {
2143         case NVS_OP_ENCODE:
2144                 err = nvs_encode_pairs(nvs, nvl);
2145                 break;
2146 
2147         case NVS_OP_DECODE:
2148                 err = nvs_decode_pairs(nvs, nvl);
2149                 break;
2150 
2151         case NVS_OP_GETSIZE:
2152                 err = nvs_getsize_pairs(nvs, nvl, buflen);
2153                 break;
2154 
2155         default:
2156                 err = EINVAL;
2157         }
2158 
2159         return (err);
2160 }
2161 
2162 static int
2163 nvs_embedded(nvstream_t *nvs, nvlist_t *embedded)
2164 {
2165         switch (nvs->nvs_op) {
2166         case NVS_OP_ENCODE:
2167                 return (nvs_operation(nvs, embedded, NULL));
2168 
2169         case NVS_OP_DECODE: {
2170                 nvpriv_t *priv;
2171                 int err;
2172 
2173                 if (embedded->nvl_version != NV_VERSION)
2174                         return (ENOTSUP);
2175 
2176                 if ((priv = nv_priv_alloc_embedded(nvs->nvs_priv)) == NULL)
2177                         return (ENOMEM);
2178 
2179                 nvlist_init(embedded, embedded->nvl_nvflag, priv);
2180 
2181                 if ((err = nvs_operation(nvs, embedded, NULL)) != 0)
2182                         nvlist_free(embedded);
2183                 return (err);
2184         }
2185         default:
2186                 break;
2187         }
2188 
2189         return (EINVAL);
2190 }
2191 
2192 static int
2193 nvs_embedded_nvl_array(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2194 {
2195         size_t nelem = NVP_NELEM(nvp);
2196         nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
2197         int i;
2198 
2199         switch (nvs->nvs_op) {
2200         case NVS_OP_ENCODE:
2201                 for (i = 0; i < nelem; i++)
2202                         if (nvs_embedded(nvs, nvlp[i]) != 0)
2203                                 return (EFAULT);
2204                 break;
2205 
2206         case NVS_OP_DECODE: {
2207                 size_t len = nelem * sizeof (uint64_t);
2208                 nvlist_t *embedded = (nvlist_t *)((uintptr_t)nvlp + len);
2209 
2210                 bzero(nvlp, len);       /* don't trust packed data */
2211                 for (i = 0; i < nelem; i++) {
2212                         if (nvs_embedded(nvs, embedded) != 0) {
2213                                 nvpair_free(nvp);
2214                                 return (EFAULT);
2215                         }
2216 
2217                         nvlp[i] = embedded++;
2218                 }
2219                 break;
2220         }
2221         case NVS_OP_GETSIZE: {
2222                 uint64_t nvsize = 0;
2223 
2224                 for (i = 0; i < nelem; i++) {
2225                         size_t nvp_sz = 0;
2226 
2227                         if (nvs_operation(nvs, nvlp[i], &nvp_sz) != 0)
2228                                 return (EINVAL);
2229 
2230                         if ((nvsize += nvp_sz) > INT32_MAX)
2231                                 return (EINVAL);
2232                 }
2233 
2234                 *size = nvsize;
2235                 break;
2236         }
2237         default:
2238                 return (EINVAL);
2239         }
2240 
2241         return (0);
2242 }
2243 
2244 static int nvs_native(nvstream_t *, nvlist_t *, char *, size_t *);
2245 static int nvs_xdr(nvstream_t *, nvlist_t *, char *, size_t *);
2246 
2247 /*
2248  * Common routine for nvlist operations:
2249  * encode, decode, getsize (encoded size).
2250  */
2251 static int
2252 nvlist_common(nvlist_t *nvl, char *buf, size_t *buflen, int encoding,
2253     int nvs_op)
2254 {
2255         int err = 0;
2256         nvstream_t nvs;
2257         int nvl_endian;
2258 #ifdef  _LITTLE_ENDIAN
2259         int host_endian = 1;
2260 #else
2261         int host_endian = 0;
2262 #endif  /* _LITTLE_ENDIAN */
2263         nvs_header_t *nvh = (void *)buf;
2264 
2265         if (buflen == NULL || nvl == NULL ||
2266             (nvs.nvs_priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
2267                 return (EINVAL);
2268 
2269         nvs.nvs_op = nvs_op;
2270 
2271         /*
2272          * For NVS_OP_ENCODE and NVS_OP_DECODE make sure an nvlist and
2273          * a buffer is allocated.  The first 4 bytes in the buffer are
2274          * used for encoding method and host endian.
2275          */
2276         switch (nvs_op) {
2277         case NVS_OP_ENCODE:
2278                 if (buf == NULL || *buflen < sizeof (nvs_header_t))
2279                         return (EINVAL);
2280 
2281                 nvh->nvh_encoding = encoding;
2282                 nvh->nvh_endian = nvl_endian = host_endian;
2283                 nvh->nvh_reserved1 = 0;
2284                 nvh->nvh_reserved2 = 0;
2285                 break;
2286 
2287         case NVS_OP_DECODE:
2288                 if (buf == NULL || *buflen < sizeof (nvs_header_t))
2289                         return (EINVAL);
2290 
2291                 /* get method of encoding from first byte */
2292                 encoding = nvh->nvh_encoding;
2293                 nvl_endian = nvh->nvh_endian;
2294                 break;
2295 
2296         case NVS_OP_GETSIZE:
2297                 nvl_endian = host_endian;
2298 
2299                 /*
2300                  * add the size for encoding
2301                  */
2302                 *buflen = sizeof (nvs_header_t);
2303                 break;
2304 
2305         default:
2306                 return (ENOTSUP);
2307         }
2308 
2309         /*
2310          * Create an nvstream with proper encoding method
2311          */
2312         switch (encoding) {
2313         case NV_ENCODE_NATIVE:
2314                 /*
2315                  * check endianness, in case we are unpacking
2316                  * from a file
2317                  */
2318                 if (nvl_endian != host_endian)
2319                         return (ENOTSUP);
2320                 err = nvs_native(&nvs, nvl, buf, buflen);
2321                 break;
2322         case NV_ENCODE_XDR:
2323                 err = nvs_xdr(&nvs, nvl, buf, buflen);
2324                 break;
2325         default:
2326                 err = ENOTSUP;
2327                 break;
2328         }
2329 
2330         return (err);
2331 }
2332 
2333 int
2334 nvlist_size(nvlist_t *nvl, size_t *size, int encoding)
2335 {
2336         return (nvlist_common(nvl, NULL, size, encoding, NVS_OP_GETSIZE));
2337 }
2338 
2339 /*
2340  * Pack nvlist into contiguous memory
2341  */
2342 /*ARGSUSED1*/
2343 int
2344 nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
2345     int kmflag)
2346 {
2347 #if defined(_KERNEL) && !defined(_BOOT)
2348         return (nvlist_xpack(nvl, bufp, buflen, encoding,
2349             (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
2350 #else
2351         return (nvlist_xpack(nvl, bufp, buflen, encoding, nv_alloc_nosleep));
2352 #endif
2353 }
2354 
2355 int
2356 nvlist_xpack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
2357     nv_alloc_t *nva)
2358 {
2359         nvpriv_t nvpriv;
2360         size_t alloc_size;
2361         char *buf;
2362         int err;
2363 
2364         if (nva == NULL || nvl == NULL || bufp == NULL || buflen == NULL)
2365                 return (EINVAL);
2366 
2367         if (*bufp != NULL)
2368                 return (nvlist_common(nvl, *bufp, buflen, encoding,
2369                     NVS_OP_ENCODE));
2370 
2371         /*
2372          * Here is a difficult situation:
2373          * 1. The nvlist has fixed allocator properties.
2374          *    All other nvlist routines (like nvlist_add_*, ...) use
2375          *    these properties.
2376          * 2. When using nvlist_pack() the user can specify his own
2377          *    allocator properties (e.g. by using KM_NOSLEEP).
2378          *
2379          * We use the user specified properties (2). A clearer solution
2380          * will be to remove the kmflag from nvlist_pack(), but we will
2381          * not change the interface.
2382          */
2383         nv_priv_init(&nvpriv, nva, 0);
2384 
2385         if (err = nvlist_size(nvl, &alloc_size, encoding))
2386                 return (err);
2387 
2388         if ((buf = nv_mem_zalloc(&nvpriv, alloc_size)) == NULL)
2389                 return (ENOMEM);
2390 
2391         if ((err = nvlist_common(nvl, buf, &alloc_size, encoding,
2392             NVS_OP_ENCODE)) != 0) {
2393                 nv_mem_free(&nvpriv, buf, alloc_size);
2394         } else {
2395                 *buflen = alloc_size;
2396                 *bufp = buf;
2397         }
2398 
2399         return (err);
2400 }
2401 
2402 /*
2403  * Unpack buf into an nvlist_t
2404  */
2405 /*ARGSUSED1*/
2406 int
2407 nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int kmflag)
2408 {
2409 #if defined(_KERNEL) && !defined(_BOOT)
2410         return (nvlist_xunpack(buf, buflen, nvlp,
2411             (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
2412 #else
2413         return (nvlist_xunpack(buf, buflen, nvlp, nv_alloc_nosleep));
2414 #endif
2415 }
2416 
2417 int
2418 nvlist_xunpack(char *buf, size_t buflen, nvlist_t **nvlp, nv_alloc_t *nva)
2419 {
2420         nvlist_t *nvl;
2421         int err;
2422 
2423         if (nvlp == NULL)
2424                 return (EINVAL);
2425 
2426         if ((err = nvlist_xalloc(&nvl, 0, nva)) != 0)
2427                 return (err);
2428 
2429         if ((err = nvlist_common(nvl, buf, &buflen, 0, NVS_OP_DECODE)) != 0)
2430                 nvlist_free(nvl);
2431         else
2432                 *nvlp = nvl;
2433 
2434         return (err);
2435 }
2436 
2437 /*
2438  * Native encoding functions
2439  */
2440 typedef struct {
2441         /*
2442          * This structure is used when decoding a packed nvpair in
2443          * the native format.  n_base points to a buffer containing the
2444          * packed nvpair.  n_end is a pointer to the end of the buffer.
2445          * (n_end actually points to the first byte past the end of the
2446          * buffer.)  n_curr is a pointer that lies between n_base and n_end.
2447          * It points to the current data that we are decoding.
2448          * The amount of data left in the buffer is equal to n_end - n_curr.
2449          * n_flag is used to recognize a packed embedded list.
2450          */
2451         caddr_t n_base;
2452         caddr_t n_end;
2453         caddr_t n_curr;
2454         uint_t  n_flag;
2455 } nvs_native_t;
2456 
2457 static int
2458 nvs_native_create(nvstream_t *nvs, nvs_native_t *native, char *buf,
2459     size_t buflen)
2460 {
2461         switch (nvs->nvs_op) {
2462         case NVS_OP_ENCODE:
2463         case NVS_OP_DECODE:
2464                 nvs->nvs_private = native;
2465                 native->n_curr = native->n_base = buf;
2466                 native->n_end = buf + buflen;
2467                 native->n_flag = 0;
2468                 return (0);
2469 
2470         case NVS_OP_GETSIZE:
2471                 nvs->nvs_private = native;
2472                 native->n_curr = native->n_base = native->n_end = NULL;
2473                 native->n_flag = 0;
2474                 return (0);
2475         default:
2476                 return (EINVAL);
2477         }
2478 }
2479 
2480 /*ARGSUSED*/
2481 static void
2482 nvs_native_destroy(nvstream_t *nvs)
2483 {
2484 }
2485 
2486 static int
2487 native_cp(nvstream_t *nvs, void *buf, size_t size)
2488 {
2489         nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2490 
2491         if (native->n_curr + size > native->n_end)
2492                 return (EFAULT);
2493 
2494         /*
2495          * The bcopy() below eliminates alignment requirement
2496          * on the buffer (stream) and is preferred over direct access.
2497          */
2498         switch (nvs->nvs_op) {
2499         case NVS_OP_ENCODE:
2500                 bcopy(buf, native->n_curr, size);
2501                 break;
2502         case NVS_OP_DECODE:
2503                 bcopy(native->n_curr, buf, size);
2504                 break;
2505         default:
2506                 return (EINVAL);
2507         }
2508 
2509         native->n_curr += size;
2510         return (0);
2511 }
2512 
2513 /*
2514  * operate on nvlist_t header
2515  */
2516 static int
2517 nvs_native_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
2518 {
2519         nvs_native_t *native = nvs->nvs_private;
2520 
2521         switch (nvs->nvs_op) {
2522         case NVS_OP_ENCODE:
2523         case NVS_OP_DECODE:
2524                 if (native->n_flag)
2525                         return (0);     /* packed embedded list */
2526 
2527                 native->n_flag = 1;
2528 
2529                 /* copy version and nvflag of the nvlist_t */
2530                 if (native_cp(nvs, &nvl->nvl_version, sizeof (int32_t)) != 0 ||
2531                     native_cp(nvs, &nvl->nvl_nvflag, sizeof (int32_t)) != 0)
2532                         return (EFAULT);
2533 
2534                 return (0);
2535 
2536         case NVS_OP_GETSIZE:
2537                 /*
2538                  * if calculate for packed embedded list
2539                  *      4 for end of the embedded list
2540                  * else
2541                  *      2 * sizeof (int32_t) for nvl_version and nvl_nvflag
2542                  *      and 4 for end of the entire list
2543                  */
2544                 if (native->n_flag) {
2545                         *size += 4;
2546                 } else {
2547                         native->n_flag = 1;
2548                         *size += 2 * sizeof (int32_t) + 4;
2549                 }
2550 
2551                 return (0);
2552 
2553         default:
2554                 return (EINVAL);
2555         }
2556 }
2557 
2558 static int
2559 nvs_native_nvl_fini(nvstream_t *nvs)
2560 {
2561         if (nvs->nvs_op == NVS_OP_ENCODE) {
2562                 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2563                 /*
2564                  * Add 4 zero bytes at end of nvlist. They are used
2565                  * for end detection by the decode routine.
2566                  */
2567                 if (native->n_curr + sizeof (int) > native->n_end)
2568                         return (EFAULT);
2569 
2570                 bzero(native->n_curr, sizeof (int));
2571                 native->n_curr += sizeof (int);
2572         }
2573 
2574         return (0);
2575 }
2576 
2577 static int
2578 nvpair_native_embedded(nvstream_t *nvs, nvpair_t *nvp)
2579 {
2580         if (nvs->nvs_op == NVS_OP_ENCODE) {
2581                 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2582                 nvlist_t *packed = (void *)
2583                     (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
2584                 /*
2585                  * Null out the pointer that is meaningless in the packed
2586                  * structure. The address may not be aligned, so we have
2587                  * to use bzero.
2588                  */
2589                 bzero(&packed->nvl_priv, sizeof (packed->nvl_priv));
2590         }
2591 
2592         return (nvs_embedded(nvs, EMBEDDED_NVL(nvp)));
2593 }
2594 
2595 static int
2596 nvpair_native_embedded_array(nvstream_t *nvs, nvpair_t *nvp)
2597 {
2598         if (nvs->nvs_op == NVS_OP_ENCODE) {
2599                 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2600                 char *value = native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp);
2601                 size_t len = NVP_NELEM(nvp) * sizeof (uint64_t);
2602                 nvlist_t *packed = (nvlist_t *)((uintptr_t)value + len);
2603                 int i;
2604                 /*
2605                  * Null out pointers that are meaningless in the packed
2606                  * structure. The addresses may not be aligned, so we have
2607                  * to use bzero.
2608                  */
2609                 bzero(value, len);
2610 
2611                 for (i = 0; i < NVP_NELEM(nvp); i++, packed++)
2612                         /*
2613                          * Null out the pointer that is meaningless in the
2614                          * packed structure. The address may not be aligned,
2615                          * so we have to use bzero.
2616                          */
2617                         bzero(&packed->nvl_priv, sizeof (packed->nvl_priv));
2618         }
2619 
2620         return (nvs_embedded_nvl_array(nvs, nvp, NULL));
2621 }
2622 
2623 static void
2624 nvpair_native_string_array(nvstream_t *nvs, nvpair_t *nvp)
2625 {
2626         switch (nvs->nvs_op) {
2627         case NVS_OP_ENCODE: {
2628                 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2629                 uint64_t *strp = (void *)
2630                     (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
2631                 /*
2632                  * Null out pointers that are meaningless in the packed
2633                  * structure. The addresses may not be aligned, so we have
2634                  * to use bzero.
2635                  */
2636                 bzero(strp, NVP_NELEM(nvp) * sizeof (uint64_t));
2637                 break;
2638         }
2639         case NVS_OP_DECODE: {
2640                 char **strp = (void *)NVP_VALUE(nvp);
2641                 char *buf = ((char *)strp + NVP_NELEM(nvp) * sizeof (uint64_t));
2642                 int i;
2643 
2644                 for (i = 0; i < NVP_NELEM(nvp); i++) {
2645                         strp[i] = buf;
2646                         buf += strlen(buf) + 1;
2647                 }
2648                 break;
2649         }
2650         }
2651 }
2652 
2653 static int
2654 nvs_native_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
2655 {
2656         data_type_t type;
2657         int value_sz;
2658         int ret = 0;
2659 
2660         /*
2661          * We do the initial bcopy of the data before we look at
2662          * the nvpair type, because when we're decoding, we won't
2663          * have the correct values for the pair until we do the bcopy.
2664          */
2665         switch (nvs->nvs_op) {
2666         case NVS_OP_ENCODE:
2667         case NVS_OP_DECODE:
2668                 if (native_cp(nvs, nvp, nvp->nvp_size) != 0)
2669                         return (EFAULT);
2670                 break;
2671         default:
2672                 return (EINVAL);
2673         }
2674 
2675         /* verify nvp_name_sz, check the name string length */
2676         if (i_validate_nvpair_name(nvp) != 0)
2677                 return (EFAULT);
2678 
2679         type = NVP_TYPE(nvp);
2680 
2681         /*
2682          * Verify type and nelem and get the value size.
2683          * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
2684          * is the size of the string(s) excluded.
2685          */
2686         if ((value_sz = i_get_value_size(type, NULL, NVP_NELEM(nvp))) < 0)
2687                 return (EFAULT);
2688 
2689         if (NVP_SIZE_CALC(nvp->nvp_name_sz, value_sz) > nvp->nvp_size)
2690                 return (EFAULT);
2691 
2692         switch (type) {
2693         case DATA_TYPE_NVLIST:
2694                 ret = nvpair_native_embedded(nvs, nvp);
2695                 break;
2696         case DATA_TYPE_NVLIST_ARRAY:
2697                 ret = nvpair_native_embedded_array(nvs, nvp);
2698                 break;
2699         case DATA_TYPE_STRING_ARRAY:
2700                 nvpair_native_string_array(nvs, nvp);
2701                 break;
2702         default:
2703                 break;
2704         }
2705 
2706         return (ret);
2707 }
2708 
2709 static int
2710 nvs_native_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2711 {
2712         uint64_t nvp_sz = nvp->nvp_size;
2713 
2714         switch (NVP_TYPE(nvp)) {
2715         case DATA_TYPE_NVLIST: {
2716                 size_t nvsize = 0;
2717 
2718                 if (nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize) != 0)
2719                         return (EINVAL);
2720 
2721                 nvp_sz += nvsize;
2722                 break;
2723         }
2724         case DATA_TYPE_NVLIST_ARRAY: {
2725                 size_t nvsize;
2726 
2727                 if (nvs_embedded_nvl_array(nvs, nvp, &nvsize) != 0)
2728                         return (EINVAL);
2729 
2730                 nvp_sz += nvsize;
2731                 break;
2732         }
2733         default:
2734                 break;
2735         }
2736 
2737         if (nvp_sz > INT32_MAX)
2738                 return (EINVAL);
2739 
2740         *size = nvp_sz;
2741 
2742         return (0);
2743 }
2744 
2745 static int
2746 nvs_native_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2747 {
2748         switch (nvs->nvs_op) {
2749         case NVS_OP_ENCODE:
2750                 return (nvs_native_nvp_op(nvs, nvp));
2751 
2752         case NVS_OP_DECODE: {
2753                 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2754                 int32_t decode_len;
2755 
2756                 /* try to read the size value from the stream */
2757                 if (native->n_curr + sizeof (int32_t) > native->n_end)
2758                         return (EFAULT);
2759                 bcopy(native->n_curr, &decode_len, sizeof (int32_t));
2760 
2761                 /* sanity check the size value */
2762                 if (decode_len < 0 ||
2763                     decode_len > native->n_end - native->n_curr)
2764                         return (EFAULT);
2765 
2766                 *size = decode_len;
2767 
2768                 /*
2769                  * If at the end of the stream then move the cursor
2770                  * forward, otherwise nvpair_native_op() will read
2771                  * the entire nvpair at the same cursor position.
2772                  */
2773                 if (*size == 0)
2774                         native->n_curr += sizeof (int32_t);
2775                 break;
2776         }
2777 
2778         default:
2779                 return (EINVAL);
2780         }
2781 
2782         return (0);
2783 }
2784 
2785 static const nvs_ops_t nvs_native_ops = {
2786         nvs_native_nvlist,
2787         nvs_native_nvpair,
2788         nvs_native_nvp_op,
2789         nvs_native_nvp_size,
2790         nvs_native_nvl_fini
2791 };
2792 
2793 static int
2794 nvs_native(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
2795 {
2796         nvs_native_t native;
2797         int err;
2798 
2799         nvs->nvs_ops = &nvs_native_ops;
2800 
2801         if ((err = nvs_native_create(nvs, &native, buf + sizeof (nvs_header_t),
2802             *buflen - sizeof (nvs_header_t))) != 0)
2803                 return (err);
2804 
2805         err = nvs_operation(nvs, nvl, buflen);
2806 
2807         nvs_native_destroy(nvs);
2808 
2809         return (err);
2810 }
2811 
2812 /*
2813  * XDR encoding functions
2814  *
2815  * An xdr packed nvlist is encoded as:
2816  *
2817  *  - encoding methode and host endian (4 bytes)
2818  *  - nvl_version (4 bytes)
2819  *  - nvl_nvflag (4 bytes)
2820  *
2821  *  - encoded nvpairs, the format of one xdr encoded nvpair is:
2822  *      - encoded size of the nvpair (4 bytes)
2823  *      - decoded size of the nvpair (4 bytes)
2824  *      - name string, (4 + sizeof(NV_ALIGN4(string))
2825  *        a string is coded as size (4 bytes) and data
2826  *      - data type (4 bytes)
2827  *      - number of elements in the nvpair (4 bytes)
2828  *      - data
2829  *
2830  *  - 2 zero's for end of the entire list (8 bytes)
2831  */
2832 static int
2833 nvs_xdr_create(nvstream_t *nvs, XDR *xdr, char *buf, size_t buflen)
2834 {
2835         /* xdr data must be 4 byte aligned */
2836         if ((ulong_t)buf % 4 != 0)
2837                 return (EFAULT);
2838 
2839         switch (nvs->nvs_op) {
2840         case NVS_OP_ENCODE:
2841                 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_ENCODE);
2842                 nvs->nvs_private = xdr;
2843                 return (0);
2844         case NVS_OP_DECODE:
2845                 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_DECODE);
2846                 nvs->nvs_private = xdr;
2847                 return (0);
2848         case NVS_OP_GETSIZE:
2849                 nvs->nvs_private = NULL;
2850                 return (0);
2851         default:
2852                 return (EINVAL);
2853         }
2854 }
2855 
2856 static void
2857 nvs_xdr_destroy(nvstream_t *nvs)
2858 {
2859         switch (nvs->nvs_op) {
2860         case NVS_OP_ENCODE:
2861         case NVS_OP_DECODE:
2862                 xdr_destroy((XDR *)nvs->nvs_private);
2863                 break;
2864         default:
2865                 break;
2866         }
2867 }
2868 
2869 static int
2870 nvs_xdr_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
2871 {
2872         switch (nvs->nvs_op) {
2873         case NVS_OP_ENCODE:
2874         case NVS_OP_DECODE: {
2875                 XDR     *xdr = nvs->nvs_private;
2876 
2877                 if (!xdr_int(xdr, &nvl->nvl_version) ||
2878                     !xdr_u_int(xdr, &nvl->nvl_nvflag))
2879                         return (EFAULT);
2880                 break;
2881         }
2882         case NVS_OP_GETSIZE: {
2883                 /*
2884                  * 2 * 4 for nvl_version + nvl_nvflag
2885                  * and 8 for end of the entire list
2886                  */
2887                 *size += 2 * 4 + 8;
2888                 break;
2889         }
2890         default:
2891                 return (EINVAL);
2892         }
2893         return (0);
2894 }
2895 
2896 static int
2897 nvs_xdr_nvl_fini(nvstream_t *nvs)
2898 {
2899         if (nvs->nvs_op == NVS_OP_ENCODE) {
2900                 XDR *xdr = nvs->nvs_private;
2901                 int zero = 0;
2902 
2903                 if (!xdr_int(xdr, &zero) || !xdr_int(xdr, &zero))
2904                         return (EFAULT);
2905         }
2906 
2907         return (0);
2908 }
2909 
2910 /*
2911  * The format of xdr encoded nvpair is:
2912  * encode_size, decode_size, name string, data type, nelem, data
2913  */
2914 static int
2915 nvs_xdr_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
2916 {
2917         data_type_t type;
2918         char    *buf;
2919         char    *buf_end = (char *)nvp + nvp->nvp_size;
2920         int     value_sz;
2921         uint_t  nelem, buflen;
2922         bool_t  ret = FALSE;
2923         XDR     *xdr = nvs->nvs_private;
2924 
2925         ASSERT(xdr != NULL && nvp != NULL);
2926 
2927         /* name string */
2928         if ((buf = NVP_NAME(nvp)) >= buf_end)
2929                 return (EFAULT);
2930         buflen = buf_end - buf;
2931 
2932         if (!xdr_string(xdr, &buf, buflen - 1))
2933                 return (EFAULT);
2934         nvp->nvp_name_sz = strlen(buf) + 1;
2935 
2936         /* type and nelem */
2937         if (!xdr_int(xdr, (int *)&nvp->nvp_type) ||
2938             !xdr_int(xdr, &nvp->nvp_value_elem))
2939                 return (EFAULT);
2940 
2941         type = NVP_TYPE(nvp);
2942         nelem = nvp->nvp_value_elem;
2943 
2944         /*
2945          * Verify type and nelem and get the value size.
2946          * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
2947          * is the size of the string(s) excluded.
2948          */
2949         if ((value_sz = i_get_value_size(type, NULL, nelem)) < 0)
2950                 return (EFAULT);
2951 
2952         /* if there is no data to extract then return */
2953         if (nelem == 0)
2954                 return (0);
2955 
2956         /* value */
2957         if ((buf = NVP_VALUE(nvp)) >= buf_end)
2958                 return (EFAULT);
2959         buflen = buf_end - buf;
2960 
2961         if (buflen < value_sz)
2962                 return (EFAULT);
2963 
2964         switch (type) {
2965         case DATA_TYPE_NVLIST:
2966                 if (nvs_embedded(nvs, (void *)buf) == 0)
2967                         return (0);
2968                 break;
2969 
2970         case DATA_TYPE_NVLIST_ARRAY:
2971                 if (nvs_embedded_nvl_array(nvs, nvp, NULL) == 0)
2972                         return (0);
2973                 break;
2974 
2975         case DATA_TYPE_BOOLEAN:
2976                 ret = TRUE;
2977                 break;
2978 
2979         case DATA_TYPE_BYTE:
2980         case DATA_TYPE_INT8:
2981         case DATA_TYPE_UINT8:
2982                 ret = xdr_char(xdr, buf);
2983                 break;
2984 
2985         case DATA_TYPE_INT16:
2986                 ret = xdr_short(xdr, (void *)buf);
2987                 break;
2988 
2989         case DATA_TYPE_UINT16:
2990                 ret = xdr_u_short(xdr, (void *)buf);
2991                 break;
2992 
2993         case DATA_TYPE_BOOLEAN_VALUE:
2994         case DATA_TYPE_INT32:
2995                 ret = xdr_int(xdr, (void *)buf);
2996                 break;
2997 
2998         case DATA_TYPE_UINT32:
2999                 ret = xdr_u_int(xdr, (void *)buf);
3000                 break;
3001 
3002         case DATA_TYPE_INT64:
3003                 ret = xdr_longlong_t(xdr, (void *)buf);
3004                 break;
3005 
3006         case DATA_TYPE_UINT64:
3007                 ret = xdr_u_longlong_t(xdr, (void *)buf);
3008                 break;
3009 
3010         case DATA_TYPE_HRTIME:
3011                 /*
3012                  * NOTE: must expose the definition of hrtime_t here
3013                  */
3014                 ret = xdr_longlong_t(xdr, (void *)buf);
3015                 break;
3016 #if !defined(_KERNEL)
3017         case DATA_TYPE_DOUBLE:
3018                 ret = xdr_double(xdr, (void *)buf);
3019                 break;
3020 #endif
3021         case DATA_TYPE_STRING:
3022                 ret = xdr_string(xdr, &buf, buflen - 1);
3023                 break;
3024 
3025         case DATA_TYPE_BYTE_ARRAY:
3026                 ret = xdr_opaque(xdr, buf, nelem);
3027                 break;
3028 
3029         case DATA_TYPE_INT8_ARRAY:
3030         case DATA_TYPE_UINT8_ARRAY:
3031                 ret = xdr_array(xdr, &buf, &nelem, buflen, sizeof (int8_t),
3032                     (xdrproc_t)xdr_char);
3033                 break;
3034 
3035         case DATA_TYPE_INT16_ARRAY:
3036                 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int16_t),
3037                     sizeof (int16_t), (xdrproc_t)xdr_short);
3038                 break;
3039 
3040         case DATA_TYPE_UINT16_ARRAY:
3041                 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint16_t),
3042                     sizeof (uint16_t), (xdrproc_t)xdr_u_short);
3043                 break;
3044 
3045         case DATA_TYPE_BOOLEAN_ARRAY:
3046         case DATA_TYPE_INT32_ARRAY:
3047                 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int32_t),
3048                     sizeof (int32_t), (xdrproc_t)xdr_int);
3049                 break;
3050 
3051         case DATA_TYPE_UINT32_ARRAY:
3052                 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint32_t),
3053                     sizeof (uint32_t), (xdrproc_t)xdr_u_int);
3054                 break;
3055 
3056         case DATA_TYPE_INT64_ARRAY:
3057                 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int64_t),
3058                     sizeof (int64_t), (xdrproc_t)xdr_longlong_t);
3059                 break;
3060 
3061         case DATA_TYPE_UINT64_ARRAY:
3062                 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint64_t),
3063                     sizeof (uint64_t), (xdrproc_t)xdr_u_longlong_t);
3064                 break;
3065 
3066         case DATA_TYPE_STRING_ARRAY: {
3067                 size_t len = nelem * sizeof (uint64_t);
3068                 char **strp = (void *)buf;
3069                 int i;
3070 
3071                 if (nvs->nvs_op == NVS_OP_DECODE)
3072                         bzero(buf, len);        /* don't trust packed data */
3073 
3074                 for (i = 0; i < nelem; i++) {
3075                         if (buflen <= len)
3076                                 return (EFAULT);
3077 
3078                         buf += len;
3079                         buflen -= len;
3080 
3081                         if (xdr_string(xdr, &buf, buflen - 1) != TRUE)
3082                                 return (EFAULT);
3083 
3084                         if (nvs->nvs_op == NVS_OP_DECODE)
3085                                 strp[i] = buf;
3086                         len = strlen(buf) + 1;
3087                 }
3088                 ret = TRUE;
3089                 break;
3090         }
3091         default:
3092                 break;
3093         }
3094 
3095         return (ret == TRUE ? 0 : EFAULT);
3096 }
3097 
3098 static int
3099 nvs_xdr_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3100 {
3101         data_type_t type = NVP_TYPE(nvp);
3102         /*
3103          * encode_size + decode_size + name string size + data type + nelem
3104          * where name string size = 4 + NV_ALIGN4(strlen(NVP_NAME(nvp)))
3105          */
3106         uint64_t nvp_sz = 4 + 4 + 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) + 4 + 4;
3107 
3108         switch (type) {
3109         case DATA_TYPE_BOOLEAN:
3110                 break;
3111 
3112         case DATA_TYPE_BOOLEAN_VALUE:
3113         case DATA_TYPE_BYTE:
3114         case DATA_TYPE_INT8:
3115         case DATA_TYPE_UINT8:
3116         case DATA_TYPE_INT16:
3117         case DATA_TYPE_UINT16:
3118         case DATA_TYPE_INT32:
3119         case DATA_TYPE_UINT32:
3120                 nvp_sz += 4;    /* 4 is the minimum xdr unit */
3121                 break;
3122 
3123         case DATA_TYPE_INT64:
3124         case DATA_TYPE_UINT64:
3125         case DATA_TYPE_HRTIME:
3126 #if !defined(_KERNEL)
3127         case DATA_TYPE_DOUBLE:
3128 #endif
3129                 nvp_sz += 8;
3130                 break;
3131 
3132         case DATA_TYPE_STRING:
3133                 nvp_sz += 4 + NV_ALIGN4(strlen((char *)NVP_VALUE(nvp)));
3134                 break;
3135 
3136         case DATA_TYPE_BYTE_ARRAY:
3137                 nvp_sz += NV_ALIGN4(NVP_NELEM(nvp));
3138                 break;
3139 
3140         case DATA_TYPE_BOOLEAN_ARRAY:
3141         case DATA_TYPE_INT8_ARRAY:
3142         case DATA_TYPE_UINT8_ARRAY:
3143         case DATA_TYPE_INT16_ARRAY:
3144         case DATA_TYPE_UINT16_ARRAY:
3145         case DATA_TYPE_INT32_ARRAY:
3146         case DATA_TYPE_UINT32_ARRAY:
3147                 nvp_sz += 4 + 4 * (uint64_t)NVP_NELEM(nvp);
3148                 break;
3149 
3150         case DATA_TYPE_INT64_ARRAY:
3151         case DATA_TYPE_UINT64_ARRAY:
3152                 nvp_sz += 4 + 8 * (uint64_t)NVP_NELEM(nvp);
3153                 break;
3154 
3155         case DATA_TYPE_STRING_ARRAY: {
3156                 int i;
3157                 char **strs = (void *)NVP_VALUE(nvp);
3158 
3159                 for (i = 0; i < NVP_NELEM(nvp); i++)
3160                         nvp_sz += 4 + NV_ALIGN4(strlen(strs[i]));
3161 
3162                 break;
3163         }
3164 
3165         case DATA_TYPE_NVLIST:
3166         case DATA_TYPE_NVLIST_ARRAY: {
3167                 size_t nvsize = 0;
3168                 int old_nvs_op = nvs->nvs_op;
3169                 int err;
3170 
3171                 nvs->nvs_op = NVS_OP_GETSIZE;
3172                 if (type == DATA_TYPE_NVLIST)
3173                         err = nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize);
3174                 else
3175                         err = nvs_embedded_nvl_array(nvs, nvp, &nvsize);
3176                 nvs->nvs_op = old_nvs_op;
3177 
3178                 if (err != 0)
3179                         return (EINVAL);
3180 
3181                 nvp_sz += nvsize;
3182                 break;
3183         }
3184 
3185         default:
3186                 return (EINVAL);
3187         }
3188 
3189         if (nvp_sz > INT32_MAX)
3190                 return (EINVAL);
3191 
3192         *size = nvp_sz;
3193 
3194         return (0);
3195 }
3196 
3197 
3198 /*
3199  * The NVS_XDR_MAX_LEN macro takes a packed xdr buffer of size x and estimates
3200  * the largest nvpair that could be encoded in the buffer.
3201  *
3202  * See comments above nvpair_xdr_op() for the format of xdr encoding.
3203  * The size of a xdr packed nvpair without any data is 5 words.
3204  *
3205  * Using the size of the data directly as an estimate would be ok
3206  * in all cases except one.  If the data type is of DATA_TYPE_STRING_ARRAY
3207  * then the actual nvpair has space for an array of pointers to index
3208  * the strings.  These pointers are not encoded into the packed xdr buffer.
3209  *
3210  * If the data is of type DATA_TYPE_STRING_ARRAY and all the strings are
3211  * of length 0, then each string is endcoded in xdr format as a single word.
3212  * Therefore when expanded to an nvpair there will be 2.25 word used for
3213  * each string.  (a int64_t allocated for pointer usage, and a single char
3214  * for the null termination.)
3215  *
3216  * This is the calculation performed by the NVS_XDR_MAX_LEN macro.
3217  */
3218 #define NVS_XDR_HDR_LEN         ((size_t)(5 * 4))
3219 #define NVS_XDR_DATA_LEN(y)     (((size_t)(y) <= NVS_XDR_HDR_LEN) ? \
3220                                         0 : ((size_t)(y) - NVS_XDR_HDR_LEN))
3221 #define NVS_XDR_MAX_LEN(x)      (NVP_SIZE_CALC(1, 0) + \
3222                                         (NVS_XDR_DATA_LEN(x) * 2) + \
3223                                         NV_ALIGN4((NVS_XDR_DATA_LEN(x) / 4)))
3224 
3225 static int
3226 nvs_xdr_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3227 {
3228         XDR     *xdr = nvs->nvs_private;
3229         int32_t encode_len, decode_len;
3230 
3231         switch (nvs->nvs_op) {
3232         case NVS_OP_ENCODE: {
3233                 size_t nvsize;
3234 
3235                 if (nvs_xdr_nvp_size(nvs, nvp, &nvsize) != 0)
3236                         return (EFAULT);
3237 
3238                 decode_len = nvp->nvp_size;
3239                 encode_len = nvsize;
3240                 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
3241                         return (EFAULT);
3242 
3243                 return (nvs_xdr_nvp_op(nvs, nvp));
3244         }
3245         case NVS_OP_DECODE: {
3246                 struct xdr_bytesrec bytesrec;
3247 
3248                 /* get the encode and decode size */
3249                 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
3250                         return (EFAULT);
3251                 *size = decode_len;
3252 
3253                 /* are we at the end of the stream? */
3254                 if (*size == 0)
3255                         return (0);
3256 
3257                 /* sanity check the size parameter */
3258                 if (!xdr_control(xdr, XDR_GET_BYTES_AVAIL, &bytesrec))
3259                         return (EFAULT);
3260 
3261                 if (*size > NVS_XDR_MAX_LEN(bytesrec.xc_num_avail))
3262                         return (EFAULT);
3263                 break;
3264         }
3265 
3266         default:
3267                 return (EINVAL);
3268         }
3269         return (0);
3270 }
3271 
3272 static const struct nvs_ops nvs_xdr_ops = {
3273         nvs_xdr_nvlist,
3274         nvs_xdr_nvpair,
3275         nvs_xdr_nvp_op,
3276         nvs_xdr_nvp_size,
3277         nvs_xdr_nvl_fini
3278 };
3279 
3280 static int
3281 nvs_xdr(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
3282 {
3283         XDR xdr;
3284         int err;
3285 
3286         nvs->nvs_ops = &nvs_xdr_ops;
3287 
3288         if ((err = nvs_xdr_create(nvs, &xdr, buf + sizeof (nvs_header_t),
3289             *buflen - sizeof (nvs_header_t))) != 0)
3290                 return (err);
3291 
3292         err = nvs_operation(nvs, nvl, buflen);
3293 
3294         nvs_xdr_destroy(nvs);
3295 
3296         return (err);
3297 }