6141 use kmem_zalloc instead of kmem_alloc + bzero/memset

   1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 /*
  27  * IPsec Security Policy Database.
  28  *
  29  * This module maintains the SPD and provides routines used by ip and ip6
  30  * to apply IPsec policy to inbound and outbound datagrams.
  31  */
  32 
  33 #include <sys/types.h>
  34 #include <sys/stream.h>
  35 #include <sys/stropts.h>
  36 #include <sys/sysmacros.h>
  37 #include <sys/strsubr.h>
  38 #include <sys/strsun.h>
  39 #include <sys/strlog.h>
  40 #include <sys/strsun.h>
  41 #include <sys/cmn_err.h>
  42 #include <sys/zone.h>
  43 
  44 #include <sys/systm.h>
  45 #include <sys/param.h>
  46 #include <sys/kmem.h>
  47 #include <sys/ddi.h>
  48 
  49 #include <sys/crypto/api.h>
  50 
  51 #include <inet/common.h>
  52 #include <inet/mi.h>
  53 
  54 #include <netinet/ip6.h>
  55 #include <netinet/icmp6.h>
  56 #include <netinet/udp.h>
  57 
  58 #include <inet/ip.h>
  59 #include <inet/ip6.h>
  60 
  61 #include <net/pfkeyv2.h>
  62 #include <net/pfpolicy.h>
  63 #include <inet/sadb.h>
  64 #include <inet/ipsec_impl.h>
  65 
  66 #include <inet/ip_impl.h> /* For IP_MOD_ID */
  67 
  68 #include <inet/ipsecah.h>
  69 #include <inet/ipsecesp.h>
  70 #include <inet/ipdrop.h>
  71 #include <inet/ipclassifier.h>
  72 #include <inet/iptun.h>
  73 #include <inet/iptun/iptun_impl.h>
  74 
  75 static void ipsec_update_present_flags(ipsec_stack_t *);
  76 static ipsec_act_t *ipsec_act_wildcard_expand(ipsec_act_t *, uint_t *,
  77     netstack_t *);
  78 static mblk_t *ipsec_check_ipsecin_policy(mblk_t *, ipsec_policy_t *,
  79     ipha_t *, ip6_t *, uint64_t, ip_recv_attr_t *, netstack_t *);
  80 static void ipsec_action_free_table(ipsec_action_t *);
  81 static void ipsec_action_reclaim(void *);
  82 static void ipsec_action_reclaim_stack(ipsec_stack_t *);
  83 static void ipsid_init(netstack_t *);
  84 static void ipsid_fini(netstack_t *);
  85 
  86 /* sel_flags values for ipsec_init_inbound_sel(). */
  87 #define SEL_NONE        0x0000
  88 #define SEL_PORT_POLICY 0x0001
  89 #define SEL_IS_ICMP     0x0002
  90 #define SEL_TUNNEL_MODE 0x0004
  91 #define SEL_POST_FRAG   0x0008
  92 
  93 /* Return values for ipsec_init_inbound_sel(). */
  94 typedef enum { SELRET_NOMEM, SELRET_BADPKT, SELRET_SUCCESS, SELRET_TUNFRAG}
  95     selret_t;
  96 
  97 static selret_t ipsec_init_inbound_sel(ipsec_selector_t *, mblk_t *,
  98     ipha_t *, ip6_t *, uint8_t);
  99 
 100 static boolean_t ipsec_check_ipsecin_action(ip_recv_attr_t *, mblk_t *,
 101     struct ipsec_action_s *, ipha_t *ipha, ip6_t *ip6h, const char **,
 102     kstat_named_t **, netstack_t *);
 103 static void ipsec_unregister_prov_update(void);
 104 static void ipsec_prov_update_callback_stack(uint32_t, void *, netstack_t *);
 105 static boolean_t ipsec_compare_action(ipsec_policy_t *, ipsec_policy_t *);
 106 static uint32_t selector_hash(ipsec_selector_t *, ipsec_policy_root_t *);
 107 static boolean_t ipsec_kstat_init(ipsec_stack_t *);
 108 static void ipsec_kstat_destroy(ipsec_stack_t *);
 109 static int ipsec_free_tables(ipsec_stack_t *);
 110 static int tunnel_compare(const void *, const void *);
 111 static void ipsec_freemsg_chain(mblk_t *);
 112 static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *,
 113     struct kstat_named *, ipdropper_t *);
 114 static boolean_t ipsec_kstat_init(ipsec_stack_t *);
 115 static void ipsec_kstat_destroy(ipsec_stack_t *);
 116 static int ipsec_free_tables(ipsec_stack_t *);
 117 static int tunnel_compare(const void *, const void *);
 118 static void ipsec_freemsg_chain(mblk_t *);
 119 
 120 /*
 121  * Selector hash table is statically sized at module load time.
 122  * we default to 251 buckets, which is the largest prime number under 255
 123  */
 124 
 125 #define IPSEC_SPDHASH_DEFAULT 251
 126 
 127 /* SPD hash-size tunable per tunnel. */
 128 #define TUN_SPDHASH_DEFAULT 5
 129 
 130 uint32_t ipsec_spd_hashsize;
 131 uint32_t tun_spd_hashsize;
 132 
 133 #define IPSEC_SEL_NOHASH ((uint32_t)(~0))
 134 
 135 /*
 136  * Handle global across all stack instances
 137  */
 138 static crypto_notify_handle_t prov_update_handle = NULL;
 139 
 140 static kmem_cache_t *ipsec_action_cache;
 141 static kmem_cache_t *ipsec_sel_cache;
 142 static kmem_cache_t *ipsec_pol_cache;
 143 
 144 /* Frag cache prototypes */
 145 static void ipsec_fragcache_clean(ipsec_fragcache_t *, ipsec_stack_t *);
 146 static ipsec_fragcache_entry_t *fragcache_delentry(int,
 147     ipsec_fragcache_entry_t *, ipsec_fragcache_t *, ipsec_stack_t *);
 148 boolean_t ipsec_fragcache_init(ipsec_fragcache_t *);
 149 void ipsec_fragcache_uninit(ipsec_fragcache_t *, ipsec_stack_t *ipss);
 150 mblk_t *ipsec_fragcache_add(ipsec_fragcache_t *, mblk_t *, mblk_t *,
 151     int, ipsec_stack_t *);
 152 
 153 int ipsec_hdr_pullup_needed = 0;
 154 int ipsec_weird_null_inbound_policy = 0;
 155 
 156 #define ALGBITS_ROUND_DOWN(x, align)    (((x)/(align))*(align))
 157 #define ALGBITS_ROUND_UP(x, align)      ALGBITS_ROUND_DOWN((x)+(align)-1, align)
 158 
 159 /*
 160  * Inbound traffic should have matching identities for both SA's.
 161  */
 162 
 163 #define SA_IDS_MATCH(sa1, sa2)                                          \
 164         (((sa1) == NULL) || ((sa2) == NULL) ||                          \
 165         (((sa1)->ipsa_src_cid == (sa2)->ipsa_src_cid) &&          \
 166             (((sa1)->ipsa_dst_cid == (sa2)->ipsa_dst_cid))))
 167 
 168 /*
 169  * IPv6 Fragments
 170  */
 171 #define IS_V6_FRAGMENT(ipp)     (ipp.ipp_fields & IPPF_FRAGHDR)
 172 
 173 /*
 174  * Policy failure messages.
 175  */
 176 static char *ipsec_policy_failure_msgs[] = {
 177 
 178         /* IPSEC_POLICY_NOT_NEEDED */
 179         "%s: Dropping the datagram because the incoming packet "
 180         "is %s, but the recipient expects clear; Source %s, "
 181         "Destination %s.\n",
 182 
 183         /* IPSEC_POLICY_MISMATCH */
 184         "%s: Policy Failure for the incoming packet (%s); Source %s, "
 185         "Destination %s.\n",
 186 
 187         /* IPSEC_POLICY_AUTH_NOT_NEEDED */
 188         "%s: Authentication present while not expected in the "
 189         "incoming %s packet; Source %s, Destination %s.\n",
 190 
 191         /* IPSEC_POLICY_ENCR_NOT_NEEDED */
 192         "%s: Encryption present while not expected in the "
 193         "incoming %s packet; Source %s, Destination %s.\n",
 194 
 195         /* IPSEC_POLICY_SE_NOT_NEEDED */
 196         "%s: Self-Encapsulation present while not expected in the "
 197         "incoming %s packet; Source %s, Destination %s.\n",
 198 };
 199 
 200 /*
 201  * General overviews:
 202  *
 203  * Locking:
 204  *
 205  *      All of the system policy structures are protected by a single
 206  *      rwlock.  These structures are threaded in a
 207  *      fairly complex fashion and are not expected to change on a
 208  *      regular basis, so this should not cause scaling/contention
 209  *      problems.  As a result, policy checks should (hopefully) be MT-hot.
 210  *
 211  * Allocation policy:
 212  *
 213  *      We use custom kmem cache types for the various
 214  *      bits & pieces of the policy data structures.  All allocations
 215  *      use KM_NOSLEEP instead of KM_SLEEP for policy allocation.  The
 216  *      policy table is of potentially unbounded size, so we don't
 217  *      want to provide a way to hog all system memory with policy
 218  *      entries..
 219  */
 220 
 221 /* Convenient functions for freeing or dropping a b_next linked mblk chain */
 222 
 223 /* Free all messages in an mblk chain */
 224 static void
 225 ipsec_freemsg_chain(mblk_t *mp)
 226 {
 227         mblk_t *mpnext;
 228         while (mp != NULL) {
 229                 ASSERT(mp->b_prev == NULL);
 230                 mpnext = mp->b_next;
 231                 mp->b_next = NULL;
 232                 freemsg(mp);
 233                 mp = mpnext;
 234         }
 235 }
 236 
 237 /*
 238  * ip_drop all messages in an mblk chain
 239  * Can handle a b_next chain of ip_recv_attr_t mblks, or just a b_next chain
 240  * of data.
 241  */
 242 static void
 243 ip_drop_packet_chain(mblk_t *mp, boolean_t inbound, ill_t *ill,
 244     struct kstat_named *counter, ipdropper_t *who_called)
 245 {
 246         mblk_t *mpnext;
 247         while (mp != NULL) {
 248                 ASSERT(mp->b_prev == NULL);
 249                 mpnext = mp->b_next;
 250                 mp->b_next = NULL;
 251                 if (ip_recv_attr_is_mblk(mp))
 252                         mp = ip_recv_attr_free_mblk(mp);
 253                 ip_drop_packet(mp, inbound, ill, counter, who_called);
 254                 mp = mpnext;
 255         }
 256 }
 257 
 258 /*
 259  * AVL tree comparison function.
 260  * the in-kernel avl assumes unique keys for all objects.
 261  * Since sometimes policy will duplicate rules, we may insert
 262  * multiple rules with the same rule id, so we need a tie-breaker.
 263  */
 264 static int
 265 ipsec_policy_cmpbyid(const void *a, const void *b)
 266 {
 267         const ipsec_policy_t *ipa, *ipb;
 268         uint64_t idxa, idxb;
 269 
 270         ipa = (const ipsec_policy_t *)a;
 271         ipb = (const ipsec_policy_t *)b;
 272         idxa = ipa->ipsp_index;
 273         idxb = ipb->ipsp_index;
 274 
 275         if (idxa < idxb)
 276                 return (-1);
 277         if (idxa > idxb)
 278                 return (1);
 279         /*
 280          * Tie-breaker #1: All installed policy rules have a non-NULL
 281          * ipsl_sel (selector set), so an entry with a NULL ipsp_sel is not
 282          * actually in-tree but rather a template node being used in
 283          * an avl_find query; see ipsec_policy_delete().  This gives us
 284          * a placeholder in the ordering just before the first entry with
 285          * a key >= the one we're looking for, so we can walk forward from
 286          * that point to get the remaining entries with the same id.
 287          */
 288         if ((ipa->ipsp_sel == NULL) && (ipb->ipsp_sel != NULL))
 289                 return (-1);
 290         if ((ipb->ipsp_sel == NULL) && (ipa->ipsp_sel != NULL))
 291                 return (1);
 292         /*
 293          * At most one of the arguments to the comparison should have a
 294          * NULL selector pointer; if not, the tree is broken.
 295          */
 296         ASSERT(ipa->ipsp_sel != NULL);
 297         ASSERT(ipb->ipsp_sel != NULL);
 298         /*
 299          * Tie-breaker #2: use the virtual address of the policy node
 300          * to arbitrarily break ties.  Since we use the new tree node in
 301          * the avl_find() in ipsec_insert_always, the new node will be
 302          * inserted into the tree in the right place in the sequence.
 303          */
 304         if (ipa < ipb)
 305                 return (-1);
 306         if (ipa > ipb)
 307                 return (1);
 308         return (0);
 309 }
 310 
 311 /*
 312  * Free what ipsec_alloc_table allocated.
 313  */
 314 void
 315 ipsec_polhead_free_table(ipsec_policy_head_t *iph)
 316 {
 317         int dir;
 318         int i;
 319 
 320         for (dir = 0; dir < IPSEC_NTYPES; dir++) {
 321                 ipsec_policy_root_t *ipr = &iph->iph_root[dir];
 322 
 323                 if (ipr->ipr_hash == NULL)
 324                         continue;
 325 
 326                 for (i = 0; i < ipr->ipr_nchains; i++) {
 327                         ASSERT(ipr->ipr_hash[i].hash_head == NULL);
 328                 }
 329                 kmem_free(ipr->ipr_hash, ipr->ipr_nchains *
 330                     sizeof (ipsec_policy_hash_t));
 331                 ipr->ipr_hash = NULL;
 332         }
 333 }
 334 
 335 void
 336 ipsec_polhead_destroy(ipsec_policy_head_t *iph)
 337 {
 338         int dir;
 339 
 340         avl_destroy(&iph->iph_rulebyid);
 341         rw_destroy(&iph->iph_lock);
 342 
 343         for (dir = 0; dir < IPSEC_NTYPES; dir++) {
 344                 ipsec_policy_root_t *ipr = &iph->iph_root[dir];
 345                 int chain;
 346 
 347                 for (chain = 0; chain < ipr->ipr_nchains; chain++)
 348                         mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
 349 
 350         }
 351         ipsec_polhead_free_table(iph);
 352 }
 353 
 354 /*
 355  * Free the IPsec stack instance.
 356  */
 357 /* ARGSUSED */
 358 static void
 359 ipsec_stack_fini(netstackid_t stackid, void *arg)
 360 {
 361         ipsec_stack_t   *ipss = (ipsec_stack_t *)arg;
 362         void *cookie;
 363         ipsec_tun_pol_t *node;
 364         netstack_t      *ns = ipss->ipsec_netstack;
 365         int             i;
 366         ipsec_algtype_t algtype;
 367 
 368         ipsec_loader_destroy(ipss);
 369 
 370         rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
 371         /*
 372          * It's possible we can just ASSERT() the tree is empty.  After all,
 373          * we aren't called until IP is ready to unload (and presumably all
 374          * tunnels have been unplumbed).  But we'll play it safe for now, the
 375          * loop will just exit immediately if it's empty.
 376          */
 377         cookie = NULL;
 378         while ((node = (ipsec_tun_pol_t *)
 379             avl_destroy_nodes(&ipss->ipsec_tunnel_policies,
 380             &cookie)) != NULL) {
 381                 ITP_REFRELE(node, ns);
 382         }
 383         avl_destroy(&ipss->ipsec_tunnel_policies);
 384         rw_exit(&ipss->ipsec_tunnel_policy_lock);
 385         rw_destroy(&ipss->ipsec_tunnel_policy_lock);
 386 
 387         ipsec_config_flush(ns);
 388 
 389         ipsec_kstat_destroy(ipss);
 390 
 391         ip_drop_unregister(&ipss->ipsec_dropper);
 392 
 393         ip_drop_unregister(&ipss->ipsec_spd_dropper);
 394         ip_drop_destroy(ipss);
 395         /*
 396          * Globals start with ref == 1 to prevent IPPH_REFRELE() from
 397          * attempting to free them, hence they should have 1 now.
 398          */
 399         ipsec_polhead_destroy(&ipss->ipsec_system_policy);
 400         ASSERT(ipss->ipsec_system_policy.iph_refs == 1);
 401         ipsec_polhead_destroy(&ipss->ipsec_inactive_policy);
 402         ASSERT(ipss->ipsec_inactive_policy.iph_refs == 1);
 403 
 404         for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
 405                 ipsec_action_free_table(ipss->ipsec_action_hash[i].hash_head);
 406                 ipss->ipsec_action_hash[i].hash_head = NULL;
 407                 mutex_destroy(&(ipss->ipsec_action_hash[i].hash_lock));
 408         }
 409 
 410         for (i = 0; i < ipss->ipsec_spd_hashsize; i++) {
 411                 ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL);
 412                 mutex_destroy(&(ipss->ipsec_sel_hash[i].hash_lock));
 413         }
 414 
 415         mutex_enter(&ipss->ipsec_alg_lock);
 416         for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype ++) {
 417                 int nalgs = ipss->ipsec_nalgs[algtype];
 418 
 419                 for (i = 0; i < nalgs; i++) {
 420                         if (ipss->ipsec_alglists[algtype][i] != NULL)
 421                                 ipsec_alg_unreg(algtype, i, ns);
 422                 }
 423         }
 424         mutex_exit(&ipss->ipsec_alg_lock);
 425         mutex_destroy(&ipss->ipsec_alg_lock);
 426 
 427         ipsid_gc(ns);
 428         ipsid_fini(ns);
 429 
 430         (void) ipsec_free_tables(ipss);
 431         kmem_free(ipss, sizeof (*ipss));
 432 }
 433 
 434 void
 435 ipsec_policy_g_destroy(void)
 436 {
 437         kmem_cache_destroy(ipsec_action_cache);
 438         kmem_cache_destroy(ipsec_sel_cache);
 439         kmem_cache_destroy(ipsec_pol_cache);
 440 
 441         ipsec_unregister_prov_update();
 442 
 443         netstack_unregister(NS_IPSEC);
 444 }
 445 
 446 
 447 /*
 448  * Free what ipsec_alloc_tables allocated.
 449  * Called when table allocation fails to free the table.
 450  */
 451 static int
 452 ipsec_free_tables(ipsec_stack_t *ipss)
 453 {
 454         int i;
 455 
 456         if (ipss->ipsec_sel_hash != NULL) {
 457                 for (i = 0; i < ipss->ipsec_spd_hashsize; i++) {
 458                         ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL);
 459                 }
 460                 kmem_free(ipss->ipsec_sel_hash, ipss->ipsec_spd_hashsize *
 461                     sizeof (*ipss->ipsec_sel_hash));
 462                 ipss->ipsec_sel_hash = NULL;
 463                 ipss->ipsec_spd_hashsize = 0;
 464         }
 465         ipsec_polhead_free_table(&ipss->ipsec_system_policy);
 466         ipsec_polhead_free_table(&ipss->ipsec_inactive_policy);
 467 
 468         return (ENOMEM);
 469 }
 470 
 471 /*
 472  * Attempt to allocate the tables in a single policy head.
 473  * Return nonzero on failure after cleaning up any work in progress.
 474  */
 475 int
 476 ipsec_alloc_table(ipsec_policy_head_t *iph, int nchains, int kmflag,
 477     boolean_t global_cleanup, netstack_t *ns)
 478 {
 479         int dir;
 480 
 481         for (dir = 0; dir < IPSEC_NTYPES; dir++) {
 482                 ipsec_policy_root_t *ipr = &iph->iph_root[dir];
 483 
 484                 ipr->ipr_nchains = nchains;
 485                 ipr->ipr_hash = kmem_zalloc(nchains *
 486                     sizeof (ipsec_policy_hash_t), kmflag);
 487                 if (ipr->ipr_hash == NULL)
 488                         return (global_cleanup ?
 489                             ipsec_free_tables(ns->netstack_ipsec) :
 490                             ENOMEM);
 491         }
 492         return (0);
 493 }
 494 
 495 /*
 496  * Attempt to allocate the various tables.  Return nonzero on failure
 497  * after cleaning up any work in progress.
 498  */
 499 static int
 500 ipsec_alloc_tables(int kmflag, netstack_t *ns)
 501 {
 502         int error;
 503         ipsec_stack_t   *ipss = ns->netstack_ipsec;
 504 
 505         error = ipsec_alloc_table(&ipss->ipsec_system_policy,
 506             ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns);
 507         if (error != 0)
 508                 return (error);
 509 
 510         error = ipsec_alloc_table(&ipss->ipsec_inactive_policy,
 511             ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns);
 512         if (error != 0)
 513                 return (error);
 514 
 515         ipss->ipsec_sel_hash = kmem_zalloc(ipss->ipsec_spd_hashsize *
 516             sizeof (*ipss->ipsec_sel_hash), kmflag);
 517 
 518         if (ipss->ipsec_sel_hash == NULL)
 519                 return (ipsec_free_tables(ipss));
 520 
 521         return (0);
 522 }
 523 
 524 /*
 525  * After table allocation, initialize a policy head.
 526  */
 527 void
 528 ipsec_polhead_init(ipsec_policy_head_t *iph, int nchains)
 529 {
 530         int dir, chain;
 531 
 532         rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
 533         avl_create(&iph->iph_rulebyid, ipsec_policy_cmpbyid,
 534             sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
 535 
 536         for (dir = 0; dir < IPSEC_NTYPES; dir++) {
 537                 ipsec_policy_root_t *ipr = &iph->iph_root[dir];
 538                 ipr->ipr_nchains = nchains;
 539 
 540                 for (chain = 0; chain < nchains; chain++) {
 541                         mutex_init(&(ipr->ipr_hash[chain].hash_lock),
 542                             NULL, MUTEX_DEFAULT, NULL);
 543                 }
 544         }
 545 }
 546 
 547 static boolean_t
 548 ipsec_kstat_init(ipsec_stack_t *ipss)
 549 {
 550         ipss->ipsec_ksp = kstat_create_netstack("ip", 0, "ipsec_stat", "net",
 551             KSTAT_TYPE_NAMED, sizeof (ipsec_kstats_t) / sizeof (kstat_named_t),
 552             KSTAT_FLAG_PERSISTENT, ipss->ipsec_netstack->netstack_stackid);
 553 
 554         if (ipss->ipsec_ksp == NULL || ipss->ipsec_ksp->ks_data == NULL)
 555                 return (B_FALSE);
 556 
 557         ipss->ipsec_kstats = ipss->ipsec_ksp->ks_data;
 558 
 559 #define KI(x) kstat_named_init(&ipss->ipsec_kstats->x, #x, KSTAT_DATA_UINT64)
 560         KI(esp_stat_in_requests);
 561         KI(esp_stat_in_discards);
 562         KI(esp_stat_lookup_failure);
 563         KI(ah_stat_in_requests);
 564         KI(ah_stat_in_discards);
 565         KI(ah_stat_lookup_failure);
 566         KI(sadb_acquire_maxpackets);
 567         KI(sadb_acquire_qhiwater);
 568 #undef KI
 569 
 570         kstat_install(ipss->ipsec_ksp);
 571         return (B_TRUE);
 572 }
 573 
 574 static void
 575 ipsec_kstat_destroy(ipsec_stack_t *ipss)
 576 {
 577         kstat_delete_netstack(ipss->ipsec_ksp,
 578             ipss->ipsec_netstack->netstack_stackid);
 579         ipss->ipsec_kstats = NULL;
 580 
 581 }
 582 
 583 /*
 584  * Initialize the IPsec stack instance.
 585  */
 586 /* ARGSUSED */
 587 static void *
 588 ipsec_stack_init(netstackid_t stackid, netstack_t *ns)
 589 {
 590         ipsec_stack_t   *ipss;
 591         int i;
 592 
 593         ipss = (ipsec_stack_t *)kmem_zalloc(sizeof (*ipss), KM_SLEEP);
 594         ipss->ipsec_netstack = ns;
 595 
 596         /*
 597          * FIXME: netstack_ipsec is used by some of the routines we call
 598          * below, but it isn't set until this routine returns.
 599          * Either we introduce optional xxx_stack_alloc() functions
 600          * that will be called by the netstack framework before xxx_stack_init,
 601          * or we switch spd.c and sadb.c to operate on ipsec_stack_t
 602          * (latter has some include file order issues for sadb.h, but makes
 603          * sense if we merge some of the ipsec related stack_t's together.
 604          */
 605         ns->netstack_ipsec = ipss;
 606 
 607         /*
 608          * Make two attempts to allocate policy hash tables; try it at
 609          * the "preferred" size (may be set in /etc/system) first,
 610          * then fall back to the default size.
 611          */
 612         ipss->ipsec_spd_hashsize = (ipsec_spd_hashsize == 0) ?
 613             IPSEC_SPDHASH_DEFAULT : ipsec_spd_hashsize;
 614 
 615         if (ipsec_alloc_tables(KM_NOSLEEP, ns) != 0) {
 616                 cmn_err(CE_WARN,
 617                     "Unable to allocate %d entry IPsec policy hash table",
 618                     ipss->ipsec_spd_hashsize);
 619                 ipss->ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT;
 620                 cmn_err(CE_WARN, "Falling back to %d entries",
 621                     ipss->ipsec_spd_hashsize);
 622                 (void) ipsec_alloc_tables(KM_SLEEP, ns);
 623         }
 624 
 625         /* Just set a default for tunnels. */
 626         ipss->ipsec_tun_spd_hashsize = (tun_spd_hashsize == 0) ?
 627             TUN_SPDHASH_DEFAULT : tun_spd_hashsize;
 628 
 629         ipsid_init(ns);
 630         /*
 631          * Globals need ref == 1 to prevent IPPH_REFRELE() from attempting
 632          * to free them.
 633          */
 634         ipss->ipsec_system_policy.iph_refs = 1;
 635         ipss->ipsec_inactive_policy.iph_refs = 1;
 636         ipsec_polhead_init(&ipss->ipsec_system_policy,
 637             ipss->ipsec_spd_hashsize);
 638         ipsec_polhead_init(&ipss->ipsec_inactive_policy,
 639             ipss->ipsec_spd_hashsize);
 640         rw_init(&ipss->ipsec_tunnel_policy_lock, NULL, RW_DEFAULT, NULL);
 641         avl_create(&ipss->ipsec_tunnel_policies, tunnel_compare,
 642             sizeof (ipsec_tun_pol_t), 0);
 643 
 644         ipss->ipsec_next_policy_index = 1;
 645 
 646         rw_init(&ipss->ipsec_system_policy.iph_lock, NULL, RW_DEFAULT, NULL);
 647         rw_init(&ipss->ipsec_inactive_policy.iph_lock, NULL, RW_DEFAULT, NULL);
 648 
 649         for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++)
 650                 mutex_init(&(ipss->ipsec_action_hash[i].hash_lock),
 651                     NULL, MUTEX_DEFAULT, NULL);
 652 
 653         for (i = 0; i < ipss->ipsec_spd_hashsize; i++)
 654                 mutex_init(&(ipss->ipsec_sel_hash[i].hash_lock),
 655                     NULL, MUTEX_DEFAULT, NULL);
 656 
 657         mutex_init(&ipss->ipsec_alg_lock, NULL, MUTEX_DEFAULT, NULL);
 658         for (i = 0; i < IPSEC_NALGTYPES; i++) {
 659                 ipss->ipsec_nalgs[i] = 0;
 660         }
 661 
 662         ip_drop_init(ipss);
 663         ip_drop_register(&ipss->ipsec_spd_dropper, "IPsec SPD");
 664 
 665         /* IP's IPsec code calls the packet dropper */
 666         ip_drop_register(&ipss->ipsec_dropper, "IP IPsec processing");
 667 
 668         (void) ipsec_kstat_init(ipss);
 669 
 670         ipsec_loader_init(ipss);
 671         ipsec_loader_start(ipss);
 672 
 673         return (ipss);
 674 }
 675 
 676 /* Global across all stack instances */
 677 void
 678 ipsec_policy_g_init(void)
 679 {
 680         ipsec_action_cache = kmem_cache_create("ipsec_actions",
 681             sizeof (ipsec_action_t), _POINTER_ALIGNMENT, NULL, NULL,
 682             ipsec_action_reclaim, NULL, NULL, 0);
 683         ipsec_sel_cache = kmem_cache_create("ipsec_selectors",
 684             sizeof (ipsec_sel_t), _POINTER_ALIGNMENT, NULL, NULL,
 685             NULL, NULL, NULL, 0);
 686         ipsec_pol_cache = kmem_cache_create("ipsec_policy",
 687             sizeof (ipsec_policy_t), _POINTER_ALIGNMENT, NULL, NULL,
 688             NULL, NULL, NULL, 0);
 689 
 690         /*
 691          * We want to be informed each time a stack is created or
 692          * destroyed in the kernel, so we can maintain the
 693          * set of ipsec_stack_t's.
 694          */
 695         netstack_register(NS_IPSEC, ipsec_stack_init, NULL, ipsec_stack_fini);
 696 }
 697 
 698 /*
 699  * Sort algorithm lists.
 700  *
 701  * I may need to split this based on
 702  * authentication/encryption, and I may wish to have an administrator
 703  * configure this list.  Hold on to some NDD variables...
 704  *
 705  * XXX For now, sort on minimum key size (GAG!).  While minimum key size is
 706  * not the ideal metric, it's the only quantifiable measure available.
 707  * We need a better metric for sorting algorithms by preference.
 708  */
 709 static void
 710 alg_insert_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns)
 711 {
 712         ipsec_stack_t   *ipss = ns->netstack_ipsec;
 713         ipsec_alginfo_t *ai = ipss->ipsec_alglists[at][algid];
 714         uint8_t holder, swap;
 715         uint_t i;
 716         uint_t count = ipss->ipsec_nalgs[at];
 717         ASSERT(ai != NULL);
 718         ASSERT(algid == ai->alg_id);
 719 
 720         ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
 721 
 722         holder = algid;
 723 
 724         for (i = 0; i < count - 1; i++) {
 725                 ipsec_alginfo_t *alt;
 726 
 727                 alt = ipss->ipsec_alglists[at][ipss->ipsec_sortlist[at][i]];
 728                 /*
 729                  * If you want to give precedence to newly added algs,
 730                  * add the = in the > comparison.
 731                  */
 732                 if ((holder != algid) || (ai->alg_minbits > alt->alg_minbits)) {
 733                         /* Swap sortlist[i] and holder. */
 734                         swap = ipss->ipsec_sortlist[at][i];
 735                         ipss->ipsec_sortlist[at][i] = holder;
 736                         holder = swap;
 737                         ai = alt;
 738                 } /* Else just continue. */
 739         }
 740 
 741         /* Store holder in last slot. */
 742         ipss->ipsec_sortlist[at][i] = holder;
 743 }
 744 
 745 /*
 746  * Remove an algorithm from a sorted algorithm list.
 747  * This should be considerably easier, even with complex sorting.
 748  */
 749 static void
 750 alg_remove_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns)
 751 {
 752         boolean_t copyback = B_FALSE;
 753         int i;
 754         ipsec_stack_t   *ipss = ns->netstack_ipsec;
 755         int newcount = ipss->ipsec_nalgs[at];
 756 
 757         ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
 758 
 759         for (i = 0; i <= newcount; i++) {
 760                 if (copyback) {
 761                         ipss->ipsec_sortlist[at][i-1] =
 762                             ipss->ipsec_sortlist[at][i];
 763                 } else if (ipss->ipsec_sortlist[at][i] == algid) {
 764                         copyback = B_TRUE;
 765                 }
 766         }
 767 }
 768 
 769 /*
 770  * Add the specified algorithm to the algorithm tables.
 771  * Must be called while holding the algorithm table writer lock.
 772  */
 773 void
 774 ipsec_alg_reg(ipsec_algtype_t algtype, ipsec_alginfo_t *alg, netstack_t *ns)
 775 {
 776         ipsec_stack_t   *ipss = ns->netstack_ipsec;
 777 
 778         ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
 779 
 780         ASSERT(ipss->ipsec_alglists[algtype][alg->alg_id] == NULL);
 781         ipsec_alg_fix_min_max(alg, algtype, ns);
 782         ipss->ipsec_alglists[algtype][alg->alg_id] = alg;
 783 
 784         ipss->ipsec_nalgs[algtype]++;
 785         alg_insert_sortlist(algtype, alg->alg_id, ns);
 786 }
 787 
 788 /*
 789  * Remove the specified algorithm from the algorithm tables.
 790  * Must be called while holding the algorithm table writer lock.
 791  */
 792 void
 793 ipsec_alg_unreg(ipsec_algtype_t algtype, uint8_t algid, netstack_t *ns)
 794 {
 795         ipsec_stack_t   *ipss = ns->netstack_ipsec;
 796 
 797         ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
 798 
 799         ASSERT(ipss->ipsec_alglists[algtype][algid] != NULL);
 800         ipsec_alg_free(ipss->ipsec_alglists[algtype][algid]);
 801         ipss->ipsec_alglists[algtype][algid] = NULL;
 802 
 803         ipss->ipsec_nalgs[algtype]--;
 804         alg_remove_sortlist(algtype, algid, ns);
 805 }
 806 
 807 /*
 808  * Hooks for spdsock to get a grip on system policy.
 809  */
 810 
 811 ipsec_policy_head_t *
 812 ipsec_system_policy(netstack_t *ns)
 813 {
 814         ipsec_stack_t   *ipss = ns->netstack_ipsec;
 815         ipsec_policy_head_t *h = &ipss->ipsec_system_policy;
 816 
 817         IPPH_REFHOLD(h);
 818         return (h);
 819 }
 820 
 821 ipsec_policy_head_t *
 822 ipsec_inactive_policy(netstack_t *ns)
 823 {
 824         ipsec_stack_t   *ipss = ns->netstack_ipsec;
 825         ipsec_policy_head_t *h = &ipss->ipsec_inactive_policy;
 826 
 827         IPPH_REFHOLD(h);
 828         return (h);
 829 }
 830 
 831 /*
 832  * Lock inactive policy, then active policy, then exchange policy root
 833  * pointers.
 834  */
 835 void
 836 ipsec_swap_policy(ipsec_policy_head_t *active, ipsec_policy_head_t *inactive,
 837     netstack_t *ns)
 838 {
 839         int af, dir;
 840         avl_tree_t r1, r2;
 841 
 842         rw_enter(&inactive->iph_lock, RW_WRITER);
 843         rw_enter(&active->iph_lock, RW_WRITER);
 844 
 845         r1 = active->iph_rulebyid;
 846         r2 = inactive->iph_rulebyid;
 847         active->iph_rulebyid = r2;
 848         inactive->iph_rulebyid = r1;
 849 
 850         for (dir = 0; dir < IPSEC_NTYPES; dir++) {
 851                 ipsec_policy_hash_t *h1, *h2;
 852 
 853                 h1 = active->iph_root[dir].ipr_hash;
 854                 h2 = inactive->iph_root[dir].ipr_hash;
 855                 active->iph_root[dir].ipr_hash = h2;
 856                 inactive->iph_root[dir].ipr_hash = h1;
 857 
 858                 for (af = 0; af < IPSEC_NAF; af++) {
 859                         ipsec_policy_t *t1, *t2;
 860 
 861                         t1 = active->iph_root[dir].ipr_nonhash[af];
 862                         t2 = inactive->iph_root[dir].ipr_nonhash[af];
 863                         active->iph_root[dir].ipr_nonhash[af] = t2;
 864                         inactive->iph_root[dir].ipr_nonhash[af] = t1;
 865                         if (t1 != NULL) {
 866                                 t1->ipsp_hash.hash_pp =
 867                                     &(inactive->iph_root[dir].ipr_nonhash[af]);
 868                         }
 869                         if (t2 != NULL) {
 870                                 t2->ipsp_hash.hash_pp =
 871                                     &(active->iph_root[dir].ipr_nonhash[af]);
 872                         }
 873 
 874                 }
 875         }
 876         active->iph_gen++;
 877         inactive->iph_gen++;
 878         ipsec_update_present_flags(ns->netstack_ipsec);
 879         rw_exit(&active->iph_lock);
 880         rw_exit(&inactive->iph_lock);
 881 }
 882 
 883 /*
 884  * Swap global policy primary/secondary.
 885  */
 886 void
 887 ipsec_swap_global_policy(netstack_t *ns)
 888 {
 889         ipsec_stack_t   *ipss = ns->netstack_ipsec;
 890 
 891         ipsec_swap_policy(&ipss->ipsec_system_policy,
 892             &ipss->ipsec_inactive_policy, ns);
 893 }
 894 
 895 /*
 896  * Clone one policy rule..
 897  */
 898 static ipsec_policy_t *
 899 ipsec_copy_policy(const ipsec_policy_t *src)
 900 {
 901         ipsec_policy_t *dst = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
 902 
 903         if (dst == NULL)
 904                 return (NULL);
 905 
 906         /*
 907          * Adjust refcounts of cloned state.
 908          */
 909         IPACT_REFHOLD(src->ipsp_act);
 910         src->ipsp_sel->ipsl_refs++;
 911 
 912         HASH_NULL(dst, ipsp_hash);
 913         dst->ipsp_netstack = src->ipsp_netstack;
 914         dst->ipsp_refs = 1;
 915         dst->ipsp_sel = src->ipsp_sel;
 916         dst->ipsp_act = src->ipsp_act;
 917         dst->ipsp_prio = src->ipsp_prio;
 918         dst->ipsp_index = src->ipsp_index;
 919 
 920         return (dst);
 921 }
 922 
 923 void
 924 ipsec_insert_always(avl_tree_t *tree, void *new_node)
 925 {
 926         void *node;
 927         avl_index_t where;
 928 
 929         node = avl_find(tree, new_node, &where);
 930         ASSERT(node == NULL);
 931         avl_insert(tree, new_node, where);
 932 }
 933 
 934 
 935 static int
 936 ipsec_copy_chain(ipsec_policy_head_t *dph, ipsec_policy_t *src,
 937     ipsec_policy_t **dstp)
 938 {
 939         for (; src != NULL; src = src->ipsp_hash.hash_next) {
 940                 ipsec_policy_t *dst = ipsec_copy_policy(src);
 941                 if (dst == NULL)
 942                         return (ENOMEM);
 943 
 944                 HASHLIST_INSERT(dst, ipsp_hash, *dstp);
 945                 ipsec_insert_always(&dph->iph_rulebyid, dst);
 946         }
 947         return (0);
 948 }
 949 
 950 
 951 
 952 /*
 953  * Make one policy head look exactly like another.
 954  *
 955  * As with ipsec_swap_policy, we lock the destination policy head first, then
 956  * the source policy head. Note that we only need to read-lock the source
 957  * policy head as we are not changing it.
 958  */
 959 int
 960 ipsec_copy_polhead(ipsec_policy_head_t *sph, ipsec_policy_head_t *dph,
 961     netstack_t *ns)
 962 {
 963         int af, dir, chain, nchains;
 964 
 965         rw_enter(&dph->iph_lock, RW_WRITER);
 966 
 967         ipsec_polhead_flush(dph, ns);
 968 
 969         rw_enter(&sph->iph_lock, RW_READER);
 970 
 971         for (dir = 0; dir < IPSEC_NTYPES; dir++) {
 972                 ipsec_policy_root_t *dpr = &dph->iph_root[dir];
 973                 ipsec_policy_root_t *spr = &sph->iph_root[dir];
 974                 nchains = dpr->ipr_nchains;
 975 
 976                 ASSERT(dpr->ipr_nchains == spr->ipr_nchains);
 977 
 978                 for (af = 0; af < IPSEC_NAF; af++) {
 979                         if (ipsec_copy_chain(dph, spr->ipr_nonhash[af],
 980                             &dpr->ipr_nonhash[af]))
 981                                 goto abort_copy;
 982                 }
 983 
 984                 for (chain = 0; chain < nchains; chain++) {
 985                         if (ipsec_copy_chain(dph,
 986                             spr->ipr_hash[chain].hash_head,
 987                             &dpr->ipr_hash[chain].hash_head))
 988                                 goto abort_copy;
 989                 }
 990         }
 991 
 992         dph->iph_gen++;
 993 
 994         rw_exit(&sph->iph_lock);
 995         rw_exit(&dph->iph_lock);
 996         return (0);
 997 
 998 abort_copy:
 999         ipsec_polhead_flush(dph, ns);
1000         rw_exit(&sph->iph_lock);
1001         rw_exit(&dph->iph_lock);
1002         return (ENOMEM);
1003 }
1004 
1005 /*
1006  * Clone currently active policy to the inactive policy list.
1007  */
1008 int
1009 ipsec_clone_system_policy(netstack_t *ns)
1010 {
1011         ipsec_stack_t   *ipss = ns->netstack_ipsec;
1012 
1013         return (ipsec_copy_polhead(&ipss->ipsec_system_policy,
1014             &ipss->ipsec_inactive_policy, ns));
1015 }
1016 
1017 /*
1018  * Extract the string from ipsec_policy_failure_msgs[type] and
1019  * log it.
1020  *
1021  */
1022 void
1023 ipsec_log_policy_failure(int type, char *func_name, ipha_t *ipha, ip6_t *ip6h,
1024     boolean_t secure, netstack_t *ns)
1025 {
1026         char    sbuf[INET6_ADDRSTRLEN];
1027         char    dbuf[INET6_ADDRSTRLEN];
1028         char    *s;
1029         char    *d;
1030         ipsec_stack_t   *ipss = ns->netstack_ipsec;
1031 
1032         ASSERT((ipha == NULL && ip6h != NULL) ||
1033             (ip6h == NULL && ipha != NULL));
1034 
1035         if (ipha != NULL) {
1036                 s = inet_ntop(AF_INET, &ipha->ipha_src, sbuf, sizeof (sbuf));
1037                 d = inet_ntop(AF_INET, &ipha->ipha_dst, dbuf, sizeof (dbuf));
1038         } else {
1039                 s = inet_ntop(AF_INET6, &ip6h->ip6_src, sbuf, sizeof (sbuf));
1040                 d = inet_ntop(AF_INET6, &ip6h->ip6_dst, dbuf, sizeof (dbuf));
1041 
1042         }
1043 
1044         /* Always bump the policy failure counter. */
1045         ipss->ipsec_policy_failure_count[type]++;
1046 
1047         ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
1048             ipsec_policy_failure_msgs[type], func_name,
1049             (secure ? "secure" : "not secure"), s, d);
1050 }
1051 
1052 /*
1053  * Rate-limiting front-end to strlog() for AH and ESP.  Uses the ndd variables
1054  * in /dev/ip and the same rate-limiting clock so that there's a single
1055  * knob to turn to throttle the rate of messages.
1056  */
1057 void
1058 ipsec_rl_strlog(netstack_t *ns, short mid, short sid, char level, ushort_t sl,
1059     char *fmt, ...)
1060 {
1061         va_list adx;
1062         hrtime_t current = gethrtime();
1063         ip_stack_t      *ipst = ns->netstack_ip;
1064         ipsec_stack_t   *ipss = ns->netstack_ipsec;
1065 
1066         sl |= SL_CONSOLE;
1067         /*
1068          * Throttle logging to stop syslog from being swamped. If variable
1069          * 'ipsec_policy_log_interval' is zero, don't log any messages at
1070          * all, otherwise log only one message every 'ipsec_policy_log_interval'
1071          * msec. Convert interval (in msec) to hrtime (in nsec).
1072          */
1073 
1074         if (ipst->ips_ipsec_policy_log_interval) {
1075                 if (ipss->ipsec_policy_failure_last +
1076                     MSEC2NSEC(ipst->ips_ipsec_policy_log_interval) <= current) {
1077                         va_start(adx, fmt);
1078                         (void) vstrlog(mid, sid, level, sl, fmt, adx);
1079                         va_end(adx);
1080                         ipss->ipsec_policy_failure_last = current;
1081                 }
1082         }
1083 }
1084 
1085 void
1086 ipsec_config_flush(netstack_t *ns)
1087 {
1088         ipsec_stack_t   *ipss = ns->netstack_ipsec;
1089 
1090         rw_enter(&ipss->ipsec_system_policy.iph_lock, RW_WRITER);
1091         ipsec_polhead_flush(&ipss->ipsec_system_policy, ns);
1092         ipss->ipsec_next_policy_index = 1;
1093         rw_exit(&ipss->ipsec_system_policy.iph_lock);
1094         ipsec_action_reclaim_stack(ipss);
1095 }
1096 
1097 /*
1098  * Clip a policy's min/max keybits vs. the capabilities of the
1099  * algorithm.
1100  */
1101 static void
1102 act_alg_adjust(uint_t algtype, uint_t algid,
1103     uint16_t *minbits, uint16_t *maxbits, netstack_t *ns)
1104 {
1105         ipsec_stack_t   *ipss = ns->netstack_ipsec;
1106         ipsec_alginfo_t *algp = ipss->ipsec_alglists[algtype][algid];
1107 
1108         if (algp != NULL) {
1109                 /*
1110                  * If passed-in minbits is zero, we assume the caller trusts
1111                  * us with setting the minimum key size.  We pick the
1112                  * algorithms DEFAULT key size for the minimum in this case.
1113                  */
1114                 if (*minbits == 0) {
1115                         *minbits = algp->alg_default_bits;
1116                         ASSERT(*minbits >= algp->alg_minbits);
1117                 } else {
1118                         *minbits = MAX(MIN(*minbits, algp->alg_maxbits),
1119                             algp->alg_minbits);
1120                 }
1121                 if (*maxbits == 0)
1122                         *maxbits = algp->alg_maxbits;
1123                 else
1124                         *maxbits = MIN(MAX(*maxbits, algp->alg_minbits),
1125                             algp->alg_maxbits);
1126                 ASSERT(*minbits <= *maxbits);
1127         } else {
1128                 *minbits = 0;
1129                 *maxbits = 0;
1130         }
1131 }
1132 
1133 /*
1134  * Check an action's requested algorithms against the algorithms currently
1135  * loaded in the system.
1136  */
1137 boolean_t
1138 ipsec_check_action(ipsec_act_t *act, int *diag, netstack_t *ns)
1139 {
1140         ipsec_prot_t *ipp;
1141         ipsec_stack_t   *ipss = ns->netstack_ipsec;
1142 
1143         ipp = &act->ipa_apply;
1144 
1145         if (ipp->ipp_use_ah &&
1146             ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_auth_alg] == NULL) {
1147                 *diag = SPD_DIAGNOSTIC_UNSUPP_AH_ALG;
1148                 return (B_FALSE);
1149         }
1150         if (ipp->ipp_use_espa &&
1151             ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_esp_auth_alg] ==
1152             NULL) {
1153                 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_ALG;
1154                 return (B_FALSE);
1155         }
1156         if (ipp->ipp_use_esp &&
1157             ipss->ipsec_alglists[IPSEC_ALG_ENCR][ipp->ipp_encr_alg] == NULL) {
1158                 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_ALG;
1159                 return (B_FALSE);
1160         }
1161 
1162         act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_auth_alg,
1163             &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns);
1164         act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_esp_auth_alg,
1165             &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns);
1166         act_alg_adjust(IPSEC_ALG_ENCR, ipp->ipp_encr_alg,
1167             &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns);
1168 
1169         if (ipp->ipp_ah_minbits > ipp->ipp_ah_maxbits) {
1170                 *diag = SPD_DIAGNOSTIC_UNSUPP_AH_KEYSIZE;
1171                 return (B_FALSE);
1172         }
1173         if (ipp->ipp_espa_minbits > ipp->ipp_espa_maxbits) {
1174                 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_KEYSIZE;
1175                 return (B_FALSE);
1176         }
1177         if (ipp->ipp_espe_minbits > ipp->ipp_espe_maxbits) {
1178                 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_KEYSIZE;
1179                 return (B_FALSE);
1180         }
1181         /* TODO: sanity check lifetimes */
1182         return (B_TRUE);
1183 }
1184 
1185 /*
1186  * Set up a single action during wildcard expansion..
1187  */
1188 static void
1189 ipsec_setup_act(ipsec_act_t *outact, ipsec_act_t *act,
1190     uint_t auth_alg, uint_t encr_alg, uint_t eauth_alg, netstack_t *ns)
1191 {
1192         ipsec_prot_t *ipp;
1193 
1194         *outact = *act;
1195         ipp = &outact->ipa_apply;
1196         ipp->ipp_auth_alg = (uint8_t)auth_alg;
1197         ipp->ipp_encr_alg = (uint8_t)encr_alg;
1198         ipp->ipp_esp_auth_alg = (uint8_t)eauth_alg;
1199 
1200         act_alg_adjust(IPSEC_ALG_AUTH, auth_alg,
1201             &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns);
1202         act_alg_adjust(IPSEC_ALG_AUTH, eauth_alg,
1203             &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns);
1204         act_alg_adjust(IPSEC_ALG_ENCR, encr_alg,
1205             &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns);
1206 }
1207 
1208 /*
1209  * combinatoric expansion time: expand a wildcarded action into an
1210  * array of wildcarded actions; we return the exploded action list,
1211  * and return a count in *nact (output only).
1212  */
1213 static ipsec_act_t *
1214 ipsec_act_wildcard_expand(ipsec_act_t *act, uint_t *nact, netstack_t *ns)
1215 {
1216         boolean_t use_ah, use_esp, use_espa;
1217         boolean_t wild_auth, wild_encr, wild_eauth;
1218         uint_t  auth_alg, auth_idx, auth_min, auth_max;
1219         uint_t  eauth_alg, eauth_idx, eauth_min, eauth_max;
1220         uint_t  encr_alg, encr_idx, encr_min, encr_max;
1221         uint_t  action_count, ai;
1222         ipsec_act_t *outact;
1223         ipsec_stack_t   *ipss = ns->netstack_ipsec;
1224 
1225         if (act->ipa_type != IPSEC_ACT_APPLY) {
1226                 outact = kmem_alloc(sizeof (*act), KM_NOSLEEP);
1227                 *nact = 1;
1228                 if (outact != NULL)
1229                         bcopy(act, outact, sizeof (*act));
1230                 return (outact);
1231         }
1232         /*
1233          * compute the combinatoric explosion..
1234          *
1235          * we assume a request for encr if esp_req is PREF_REQUIRED
1236          * we assume a request for ah auth if ah_req is PREF_REQUIRED.
1237          * we assume a request for esp auth if !ah and esp_req is PREF_REQUIRED
1238          */
1239 
1240         use_ah = act->ipa_apply.ipp_use_ah;
1241         use_esp = act->ipa_apply.ipp_use_esp;
1242         use_espa = act->ipa_apply.ipp_use_espa;
1243         auth_alg = act->ipa_apply.ipp_auth_alg;
1244         eauth_alg = act->ipa_apply.ipp_esp_auth_alg;
1245         encr_alg = act->ipa_apply.ipp_encr_alg;
1246 
1247         wild_auth = use_ah && (auth_alg == 0);
1248         wild_eauth = use_espa && (eauth_alg == 0);
1249         wild_encr = use_esp && (encr_alg == 0);
1250 
1251         action_count = 1;
1252         auth_min = auth_max = auth_alg;
1253         eauth_min = eauth_max = eauth_alg;
1254         encr_min = encr_max = encr_alg;
1255 
1256         /*
1257          * set up for explosion.. for each dimension, expand output
1258          * size by the explosion factor.
1259          *
1260          * Don't include the "any" algorithms, if defined, as no
1261          * kernel policies should be set for these algorithms.
1262          */
1263 
1264 #define SET_EXP_MINMAX(type, wild, alg, min, max, ipss)         \
1265         if (wild) {                                             \
1266                 int nalgs = ipss->ipsec_nalgs[type];         \
1267                 if (ipss->ipsec_alglists[type][alg] != NULL) \
1268                         nalgs--;                                \
1269                 action_count *= nalgs;                          \
1270                 min = 0;                                        \
1271                 max = ipss->ipsec_nalgs[type] - 1;           \
1272         }
1273 
1274         SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_auth, SADB_AALG_NONE,
1275             auth_min, auth_max, ipss);
1276         SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_eauth, SADB_AALG_NONE,
1277             eauth_min, eauth_max, ipss);
1278         SET_EXP_MINMAX(IPSEC_ALG_ENCR, wild_encr, SADB_EALG_NONE,
1279             encr_min, encr_max, ipss);
1280 
1281 #undef  SET_EXP_MINMAX
1282 
1283         /*
1284          * ok, allocate the whole mess..
1285          */
1286 
1287         outact = kmem_alloc(sizeof (*outact) * action_count, KM_NOSLEEP);
1288         if (outact == NULL)
1289                 return (NULL);
1290 
1291         /*
1292          * Now compute all combinations.  Note that non-wildcarded
1293          * dimensions just get a single value from auth_min, while
1294          * wildcarded dimensions indirect through the sortlist.
1295          *
1296          * We do encryption outermost since, at this time, there's
1297          * greater difference in security and performance between
1298          * encryption algorithms vs. authentication algorithms.
1299          */
1300 
1301         ai = 0;
1302 
1303 #define WHICH_ALG(type, wild, idx, ipss) \
1304         ((wild)?(ipss->ipsec_sortlist[type][idx]):(idx))
1305 
1306         for (encr_idx = encr_min; encr_idx <= encr_max; encr_idx++) {
1307                 encr_alg = WHICH_ALG(IPSEC_ALG_ENCR, wild_encr, encr_idx, ipss);
1308                 if (wild_encr && encr_alg == SADB_EALG_NONE)
1309                         continue;
1310                 for (auth_idx = auth_min; auth_idx <= auth_max; auth_idx++) {
1311                         auth_alg = WHICH_ALG(IPSEC_ALG_AUTH, wild_auth,
1312                             auth_idx, ipss);
1313                         if (wild_auth && auth_alg == SADB_AALG_NONE)
1314                                 continue;
1315                         for (eauth_idx = eauth_min; eauth_idx <= eauth_max;
1316                             eauth_idx++) {
1317                                 eauth_alg = WHICH_ALG(IPSEC_ALG_AUTH,
1318                                     wild_eauth, eauth_idx, ipss);
1319                                 if (wild_eauth && eauth_alg == SADB_AALG_NONE)
1320                                         continue;
1321 
1322                                 ipsec_setup_act(&outact[ai], act,
1323                                     auth_alg, encr_alg, eauth_alg, ns);
1324                                 ai++;
1325                         }
1326                 }
1327         }
1328 
1329 #undef WHICH_ALG
1330 
1331         ASSERT(ai == action_count);
1332         *nact = action_count;
1333         return (outact);
1334 }
1335 
1336 /*
1337  * Extract the parts of an ipsec_prot_t from an old-style ipsec_req_t.
1338  */
1339 static void
1340 ipsec_prot_from_req(const ipsec_req_t *req, ipsec_prot_t *ipp)
1341 {
1342         bzero(ipp, sizeof (*ipp));
1343         /*
1344          * ipp_use_* are bitfields.  Look at "!!" in the following as a
1345          * "boolean canonicalization" operator.
1346          */
1347         ipp->ipp_use_ah = !!(req->ipsr_ah_req & IPSEC_PREF_REQUIRED);
1348         ipp->ipp_use_esp = !!(req->ipsr_esp_req & IPSEC_PREF_REQUIRED);
1349         ipp->ipp_use_espa = !!(req->ipsr_esp_auth_alg);
1350         ipp->ipp_use_se = !!(req->ipsr_self_encap_req & IPSEC_PREF_REQUIRED);
1351         ipp->ipp_use_unique = !!((req->ipsr_ah_req|req->ipsr_esp_req) &
1352             IPSEC_PREF_UNIQUE);
1353         ipp->ipp_encr_alg = req->ipsr_esp_alg;
1354         /*
1355          * SADB_AALG_ANY is a placeholder to distinguish "any" from
1356          * "none" above.  If auth is required, as determined above,
1357          * SADB_AALG_ANY becomes 0, which is the representation
1358          * of "any" and "none" in PF_KEY v2.
1359          */
1360         ipp->ipp_auth_alg = (req->ipsr_auth_alg != SADB_AALG_ANY) ?
1361             req->ipsr_auth_alg : 0;
1362         ipp->ipp_esp_auth_alg = (req->ipsr_esp_auth_alg != SADB_AALG_ANY) ?
1363             req->ipsr_esp_auth_alg : 0;
1364 }
1365 
1366 /*
1367  * Extract a new-style action from a request.
1368  */
1369 void
1370 ipsec_actvec_from_req(const ipsec_req_t *req, ipsec_act_t **actp, uint_t *nactp,
1371     netstack_t *ns)
1372 {
1373         struct ipsec_act act;
1374 
1375         bzero(&act, sizeof (act));
1376         if ((req->ipsr_ah_req & IPSEC_PREF_NEVER) &&
1377             (req->ipsr_esp_req & IPSEC_PREF_NEVER)) {
1378                 act.ipa_type = IPSEC_ACT_BYPASS;
1379         } else {
1380                 act.ipa_type = IPSEC_ACT_APPLY;
1381                 ipsec_prot_from_req(req, &act.ipa_apply);
1382         }
1383         *actp = ipsec_act_wildcard_expand(&act, nactp, ns);
1384 }
1385 
1386 /*
1387  * Convert a new-style "prot" back to an ipsec_req_t (more backwards compat).
1388  * We assume caller has already zero'ed *req for us.
1389  */
1390 static int
1391 ipsec_req_from_prot(ipsec_prot_t *ipp, ipsec_req_t *req)
1392 {
1393         req->ipsr_esp_alg = ipp->ipp_encr_alg;
1394         req->ipsr_auth_alg = ipp->ipp_auth_alg;
1395         req->ipsr_esp_auth_alg = ipp->ipp_esp_auth_alg;
1396 
1397         if (ipp->ipp_use_unique) {
1398                 req->ipsr_ah_req |= IPSEC_PREF_UNIQUE;
1399                 req->ipsr_esp_req |= IPSEC_PREF_UNIQUE;
1400         }
1401         if (ipp->ipp_use_se)
1402                 req->ipsr_self_encap_req |= IPSEC_PREF_REQUIRED;
1403         if (ipp->ipp_use_ah)
1404                 req->ipsr_ah_req |= IPSEC_PREF_REQUIRED;
1405         if (ipp->ipp_use_esp)
1406                 req->ipsr_esp_req |= IPSEC_PREF_REQUIRED;
1407         return (sizeof (*req));
1408 }
1409 
1410 /*
1411  * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1412  * We assume caller has already zero'ed *req for us.
1413  */
1414 static int
1415 ipsec_req_from_act(ipsec_action_t *ap, ipsec_req_t *req)
1416 {
1417         switch (ap->ipa_act.ipa_type) {
1418         case IPSEC_ACT_BYPASS:
1419                 req->ipsr_ah_req = IPSEC_PREF_NEVER;
1420                 req->ipsr_esp_req = IPSEC_PREF_NEVER;
1421                 return (sizeof (*req));
1422         case IPSEC_ACT_APPLY:
1423                 return (ipsec_req_from_prot(&ap->ipa_act.ipa_apply, req));
1424         }
1425         return (sizeof (*req));
1426 }
1427 
1428 /*
1429  * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1430  * We assume caller has already zero'ed *req for us.
1431  */
1432 int
1433 ipsec_req_from_head(ipsec_policy_head_t *ph, ipsec_req_t *req, int af)
1434 {
1435         ipsec_policy_t *p;
1436 
1437         /*
1438          * FULL-PERSOCK: consult hash table, too?
1439          */
1440         for (p = ph->iph_root[IPSEC_INBOUND].ipr_nonhash[af];
1441             p != NULL;
1442             p = p->ipsp_hash.hash_next) {
1443                 if ((p->ipsp_sel->ipsl_key.ipsl_valid & IPSL_WILDCARD) == 0)
1444                         return (ipsec_req_from_act(p->ipsp_act, req));
1445         }
1446         return (sizeof (*req));
1447 }
1448 
1449 /*
1450  * Based on per-socket or latched policy, convert to an appropriate
1451  * IP_SEC_OPT ipsec_req_t for the socket option; return size so we can
1452  * be tail-called from ip.
1453  */
1454 int
1455 ipsec_req_from_conn(conn_t *connp, ipsec_req_t *req, int af)
1456 {
1457         ipsec_latch_t *ipl;
1458         int rv = sizeof (ipsec_req_t);
1459 
1460         bzero(req, sizeof (*req));
1461 
1462         ASSERT(MUTEX_HELD(&connp->conn_lock));
1463         ipl = connp->conn_latch;
1464 
1465         /*
1466          * Find appropriate policy.  First choice is latched action;
1467          * failing that, see latched policy; failing that,
1468          * look at configured policy.
1469          */
1470         if (ipl != NULL) {
1471                 if (connp->conn_latch_in_action != NULL) {
1472                         rv = ipsec_req_from_act(connp->conn_latch_in_action,
1473                             req);
1474                         goto done;
1475                 }
1476                 if (connp->conn_latch_in_policy != NULL) {
1477                         rv = ipsec_req_from_act(
1478                             connp->conn_latch_in_policy->ipsp_act, req);
1479                         goto done;
1480                 }
1481         }
1482         if (connp->conn_policy != NULL)
1483                 rv = ipsec_req_from_head(connp->conn_policy, req, af);
1484 done:
1485         return (rv);
1486 }
1487 
1488 void
1489 ipsec_actvec_free(ipsec_act_t *act, uint_t nact)
1490 {
1491         kmem_free(act, nact * sizeof (*act));
1492 }
1493 
1494 /*
1495  * Consumes a reference to ipsp.
1496  */
1497 static mblk_t *
1498 ipsec_check_loopback_policy(mblk_t *data_mp, ip_recv_attr_t *ira,
1499     ipsec_policy_t *ipsp)
1500 {
1501         if (!(ira->ira_flags & IRAF_IPSEC_SECURE))
1502                 return (data_mp);
1503 
1504         ASSERT(ira->ira_flags & IRAF_LOOPBACK);
1505 
1506         IPPOL_REFRELE(ipsp);
1507 
1508         /*
1509          * We should do an actual policy check here.  Revisit this
1510          * when we revisit the IPsec API.  (And pass a conn_t in when we
1511          * get there.)
1512          */
1513 
1514         return (data_mp);
1515 }
1516 
1517 /*
1518  * Check that packet's inbound ports & proto match the selectors
1519  * expected by the SAs it traversed on the way in.
1520  */
1521 static boolean_t
1522 ipsec_check_ipsecin_unique(ip_recv_attr_t *ira, const char **reason,
1523     kstat_named_t **counter, uint64_t pkt_unique, netstack_t *ns)
1524 {
1525         uint64_t ah_mask, esp_mask;
1526         ipsa_t *ah_assoc;
1527         ipsa_t *esp_assoc;
1528         ipsec_stack_t   *ipss = ns->netstack_ipsec;
1529 
1530         ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1531         ASSERT(!(ira->ira_flags & IRAF_LOOPBACK));
1532 
1533         ah_assoc = ira->ira_ipsec_ah_sa;
1534         esp_assoc = ira->ira_ipsec_esp_sa;
1535         ASSERT((ah_assoc != NULL) || (esp_assoc != NULL));
1536 
1537         ah_mask = (ah_assoc != NULL) ? ah_assoc->ipsa_unique_mask : 0;
1538         esp_mask = (esp_assoc != NULL) ? esp_assoc->ipsa_unique_mask : 0;
1539 
1540         if ((ah_mask == 0) && (esp_mask == 0))
1541                 return (B_TRUE);
1542 
1543         /*
1544          * The pkt_unique check will also check for tunnel mode on the SA
1545          * vs. the tunneled_packet boolean.  "Be liberal in what you receive"
1546          * should not apply in this case.  ;)
1547          */
1548 
1549         if (ah_mask != 0 &&
1550             ah_assoc->ipsa_unique_id != (pkt_unique & ah_mask)) {
1551                 *reason = "AH inner header mismatch";
1552                 *counter = DROPPER(ipss, ipds_spd_ah_innermismatch);
1553                 return (B_FALSE);
1554         }
1555         if (esp_mask != 0 &&
1556             esp_assoc->ipsa_unique_id != (pkt_unique & esp_mask)) {
1557                 *reason = "ESP inner header mismatch";
1558                 *counter = DROPPER(ipss, ipds_spd_esp_innermismatch);
1559                 return (B_FALSE);
1560         }
1561         return (B_TRUE);
1562 }
1563 
1564 static boolean_t
1565 ipsec_check_ipsecin_action(ip_recv_attr_t *ira, mblk_t *mp, ipsec_action_t *ap,
1566     ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter,
1567     netstack_t *ns)
1568 {
1569         boolean_t ret = B_TRUE;
1570         ipsec_prot_t *ipp;
1571         ipsa_t *ah_assoc;
1572         ipsa_t *esp_assoc;
1573         boolean_t decaps;
1574         ipsec_stack_t   *ipss = ns->netstack_ipsec;
1575 
1576         ASSERT((ipha == NULL && ip6h != NULL) ||
1577             (ip6h == NULL && ipha != NULL));
1578 
1579         if (ira->ira_flags & IRAF_LOOPBACK) {
1580                 /*
1581                  * Besides accepting pointer-equivalent actions, we also
1582                  * accept any ICMP errors we generated for ourselves,
1583                  * regardless of policy.  If we do not wish to make this
1584                  * assumption in the future, check here, and where
1585                  * IXAF_TRUSTED_ICMP is initialized in ip.c and ip6.c.
1586                  */
1587                 if (ap == ira->ira_ipsec_action ||
1588                     (ira->ira_flags & IRAF_TRUSTED_ICMP))
1589                         return (B_TRUE);
1590 
1591                 /* Deep compare necessary here?? */
1592                 *counter = DROPPER(ipss, ipds_spd_loopback_mismatch);
1593                 *reason = "loopback policy mismatch";
1594                 return (B_FALSE);
1595         }
1596         ASSERT(!(ira->ira_flags & IRAF_TRUSTED_ICMP));
1597         ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1598 
1599         ah_assoc = ira->ira_ipsec_ah_sa;
1600         esp_assoc = ira->ira_ipsec_esp_sa;
1601 
1602         decaps = (ira->ira_flags & IRAF_IPSEC_DECAPS);
1603 
1604         switch (ap->ipa_act.ipa_type) {
1605         case IPSEC_ACT_DISCARD:
1606         case IPSEC_ACT_REJECT:
1607                 /* Should "fail hard" */
1608                 *counter = DROPPER(ipss, ipds_spd_explicit);
1609                 *reason = "blocked by policy";
1610                 return (B_FALSE);
1611 
1612         case IPSEC_ACT_BYPASS:
1613         case IPSEC_ACT_CLEAR:
1614                 *counter = DROPPER(ipss, ipds_spd_got_secure);
1615                 *reason = "expected clear, got protected";
1616                 return (B_FALSE);
1617 
1618         case IPSEC_ACT_APPLY:
1619                 ipp = &ap->ipa_act.ipa_apply;
1620                 /*
1621                  * As of now we do the simple checks of whether
1622                  * the datagram has gone through the required IPSEC
1623                  * protocol constraints or not. We might have more
1624                  * in the future like sensitive levels, key bits, etc.
1625                  * If it fails the constraints, check whether we would
1626                  * have accepted this if it had come in clear.
1627                  */
1628                 if (ipp->ipp_use_ah) {
1629                         if (ah_assoc == NULL) {
1630                                 ret = ipsec_inbound_accept_clear(mp, ipha,
1631                                     ip6h);
1632                                 *counter = DROPPER(ipss, ipds_spd_got_clear);
1633                                 *reason = "unprotected not accepted";
1634                                 break;
1635                         }
1636                         ASSERT(ah_assoc != NULL);
1637                         ASSERT(ipp->ipp_auth_alg != 0);
1638 
1639                         if (ah_assoc->ipsa_auth_alg !=
1640                             ipp->ipp_auth_alg) {
1641                                 *counter = DROPPER(ipss, ipds_spd_bad_ahalg);
1642                                 *reason = "unacceptable ah alg";
1643                                 ret = B_FALSE;
1644                                 break;
1645                         }
1646                 } else if (ah_assoc != NULL) {
1647                         /*
1648                          * Don't allow this. Check IPSEC NOTE above
1649                          * ip_fanout_proto().
1650                          */
1651                         *counter = DROPPER(ipss, ipds_spd_got_ah);
1652                         *reason = "unexpected AH";
1653                         ret = B_FALSE;
1654                         break;
1655                 }
1656                 if (ipp->ipp_use_esp) {
1657                         if (esp_assoc == NULL) {
1658                                 ret = ipsec_inbound_accept_clear(mp, ipha,
1659                                     ip6h);
1660                                 *counter = DROPPER(ipss, ipds_spd_got_clear);
1661                                 *reason = "unprotected not accepted";
1662                                 break;
1663                         }
1664                         ASSERT(esp_assoc != NULL);
1665                         ASSERT(ipp->ipp_encr_alg != 0);
1666 
1667                         if (esp_assoc->ipsa_encr_alg !=
1668                             ipp->ipp_encr_alg) {
1669                                 *counter = DROPPER(ipss, ipds_spd_bad_espealg);
1670                                 *reason = "unacceptable esp alg";
1671                                 ret = B_FALSE;
1672                                 break;
1673                         }
1674                         /*
1675                          * If the client does not need authentication,
1676                          * we don't verify the alogrithm.
1677                          */
1678                         if (ipp->ipp_use_espa) {
1679                                 if (esp_assoc->ipsa_auth_alg !=
1680                                     ipp->ipp_esp_auth_alg) {
1681                                         *counter = DROPPER(ipss,
1682                                             ipds_spd_bad_espaalg);
1683                                         *reason = "unacceptable esp auth alg";
1684                                         ret = B_FALSE;
1685                                         break;
1686                                 }
1687                         }
1688                 } else if (esp_assoc != NULL) {
1689                         /*
1690                          * Don't allow this. Check IPSEC NOTE above
1691                          * ip_fanout_proto().
1692                          */
1693                         *counter = DROPPER(ipss, ipds_spd_got_esp);
1694                         *reason = "unexpected ESP";
1695                         ret = B_FALSE;
1696                         break;
1697                 }
1698                 if (ipp->ipp_use_se) {
1699                         if (!decaps) {
1700                                 ret = ipsec_inbound_accept_clear(mp, ipha,
1701                                     ip6h);
1702                                 if (!ret) {
1703                                         /* XXX mutant? */
1704                                         *counter = DROPPER(ipss,
1705                                             ipds_spd_bad_selfencap);
1706                                         *reason = "self encap not found";
1707                                         break;
1708                                 }
1709                         }
1710                 } else if (decaps) {
1711                         /*
1712                          * XXX If the packet comes in tunneled and the
1713                          * recipient does not expect it to be tunneled, it
1714                          * is okay. But we drop to be consistent with the
1715                          * other cases.
1716                          */
1717                         *counter = DROPPER(ipss, ipds_spd_got_selfencap);
1718                         *reason = "unexpected self encap";
1719                         ret = B_FALSE;
1720                         break;
1721                 }
1722                 if (ira->ira_ipsec_action != NULL) {
1723                         /*
1724                          * This can happen if we do a double policy-check on
1725                          * a packet
1726                          * XXX XXX should fix this case!
1727                          */
1728                         IPACT_REFRELE(ira->ira_ipsec_action);
1729                 }
1730                 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1731                 ASSERT(ira->ira_ipsec_action == NULL);
1732                 IPACT_REFHOLD(ap);
1733                 ira->ira_ipsec_action = ap;
1734                 break;  /* from switch */
1735         }
1736         return (ret);
1737 }
1738 
1739 static boolean_t
1740 spd_match_inbound_ids(ipsec_latch_t *ipl, ipsa_t *sa)
1741 {
1742         ASSERT(ipl->ipl_ids_latched == B_TRUE);
1743         return ipsid_equal(ipl->ipl_remote_cid, sa->ipsa_src_cid) &&
1744             ipsid_equal(ipl->ipl_local_cid, sa->ipsa_dst_cid);
1745 }
1746 
1747 /*
1748  * Takes a latched conn and an inbound packet and returns a unique_id suitable
1749  * for SA comparisons.  Most of the time we will copy from the conn_t, but
1750  * there are cases when the conn_t is latched but it has wildcard selectors,
1751  * and then we need to fallback to scooping them out of the packet.
1752  *
1753  * Assume we'll never have 0 with a conn_t present, so use 0 as a failure.  We
1754  * can get away with this because we only have non-zero ports/proto for
1755  * latched conn_ts.
1756  *
1757  * Ideal candidate for an "inline" keyword, as we're JUST convoluted enough
1758  * to not be a nice macro.
1759  */
1760 static uint64_t
1761 conn_to_unique(conn_t *connp, mblk_t *data_mp, ipha_t *ipha, ip6_t *ip6h)
1762 {
1763         ipsec_selector_t sel;
1764         uint8_t ulp = connp->conn_proto;
1765 
1766         ASSERT(connp->conn_latch_in_policy != NULL);
1767 
1768         if ((ulp == IPPROTO_TCP || ulp == IPPROTO_UDP || ulp == IPPROTO_SCTP) &&
1769             (connp->conn_fport == 0 || connp->conn_lport == 0)) {
1770                 /* Slow path - we gotta grab from the packet. */
1771                 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
1772                     SEL_NONE) != SELRET_SUCCESS) {
1773                         /* Failure -> have caller free packet with ENOMEM. */
1774                         return (0);
1775                 }
1776                 return (SA_UNIQUE_ID(sel.ips_remote_port, sel.ips_local_port,
1777                     sel.ips_protocol, 0));
1778         }
1779 
1780 #ifdef DEBUG_NOT_UNTIL_6478464
1781         if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, SEL_NONE) ==
1782             SELRET_SUCCESS) {
1783                 ASSERT(sel.ips_local_port == connp->conn_lport);
1784                 ASSERT(sel.ips_remote_port == connp->conn_fport);
1785                 ASSERT(sel.ips_protocol == connp->conn_proto);
1786         }
1787         ASSERT(connp->conn_proto != 0);
1788 #endif
1789 
1790         return (SA_UNIQUE_ID(connp->conn_fport, connp->conn_lport, ulp, 0));
1791 }
1792 
1793 /*
1794  * Called to check policy on a latched connection.
1795  * Note that we don't dereference conn_latch or conn_ihere since the conn might
1796  * be closing. The caller passes a held ipsec_latch_t instead.
1797  */
1798 static boolean_t
1799 ipsec_check_ipsecin_latch(ip_recv_attr_t *ira, mblk_t *mp, ipsec_latch_t *ipl,
1800     ipsec_action_t *ap, ipha_t *ipha, ip6_t *ip6h, const char **reason,
1801     kstat_named_t **counter, conn_t *connp, netstack_t *ns)
1802 {
1803         ipsec_stack_t   *ipss = ns->netstack_ipsec;
1804 
1805         ASSERT(ipl->ipl_ids_latched == B_TRUE);
1806         ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1807 
1808         if (!(ira->ira_flags & IRAF_LOOPBACK)) {
1809                 /*
1810                  * Over loopback, there aren't real security associations,
1811                  * so there are neither identities nor "unique" values
1812                  * for us to check the packet against.
1813                  */
1814                 if (ira->ira_ipsec_ah_sa != NULL) {
1815                         if (!spd_match_inbound_ids(ipl,
1816                             ira->ira_ipsec_ah_sa)) {
1817                                 *counter = DROPPER(ipss, ipds_spd_ah_badid);
1818                                 *reason = "AH identity mismatch";
1819                                 return (B_FALSE);
1820                         }
1821                 }
1822 
1823                 if (ira->ira_ipsec_esp_sa != NULL) {
1824                         if (!spd_match_inbound_ids(ipl,
1825                             ira->ira_ipsec_esp_sa)) {
1826                                 *counter = DROPPER(ipss, ipds_spd_esp_badid);
1827                                 *reason = "ESP identity mismatch";
1828                                 return (B_FALSE);
1829                         }
1830                 }
1831 
1832                 /*
1833                  * Can fudge pkt_unique from connp because we're latched.
1834                  * In DEBUG kernels (see conn_to_unique()'s implementation),
1835                  * verify this even if it REALLY slows things down.
1836                  */
1837                 if (!ipsec_check_ipsecin_unique(ira, reason, counter,
1838                     conn_to_unique(connp, mp, ipha, ip6h), ns)) {
1839                         return (B_FALSE);
1840                 }
1841         }
1842         return (ipsec_check_ipsecin_action(ira, mp, ap, ipha, ip6h, reason,
1843             counter, ns));
1844 }
1845 
1846 /*
1847  * Check to see whether this secured datagram meets the policy
1848  * constraints specified in ipsp.
1849  *
1850  * Called from ipsec_check_global_policy, and ipsec_check_inbound_policy.
1851  *
1852  * Consumes a reference to ipsp.
1853  * Returns the mblk if ok.
1854  */
1855 static mblk_t *
1856 ipsec_check_ipsecin_policy(mblk_t *data_mp, ipsec_policy_t *ipsp,
1857     ipha_t *ipha, ip6_t *ip6h, uint64_t pkt_unique, ip_recv_attr_t *ira,
1858     netstack_t *ns)
1859 {
1860         ipsec_action_t *ap;
1861         const char *reason = "no policy actions found";
1862         ip_stack_t      *ipst = ns->netstack_ip;
1863         ipsec_stack_t   *ipss = ns->netstack_ipsec;
1864         kstat_named_t *counter;
1865 
1866         counter = DROPPER(ipss, ipds_spd_got_secure);
1867 
1868         ASSERT(ipsp != NULL);
1869 
1870         ASSERT((ipha == NULL && ip6h != NULL) ||
1871             (ip6h == NULL && ipha != NULL));
1872 
1873         if (ira->ira_flags & IRAF_LOOPBACK)
1874                 return (ipsec_check_loopback_policy(data_mp, ira, ipsp));
1875 
1876         ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1877 
1878         if (ira->ira_ipsec_action != NULL) {
1879                 /*
1880                  * this can happen if we do a double policy-check on a packet
1881                  * Would be nice to be able to delete this test..
1882                  */
1883                 IPACT_REFRELE(ira->ira_ipsec_action);
1884         }
1885         ASSERT(ira->ira_ipsec_action == NULL);
1886 
1887         if (!SA_IDS_MATCH(ira->ira_ipsec_ah_sa, ira->ira_ipsec_esp_sa)) {
1888                 reason = "inbound AH and ESP identities differ";
1889                 counter = DROPPER(ipss, ipds_spd_ahesp_diffid);
1890                 goto drop;
1891         }
1892 
1893         if (!ipsec_check_ipsecin_unique(ira, &reason, &counter, pkt_unique,
1894             ns))
1895                 goto drop;
1896 
1897         /*
1898          * Ok, now loop through the possible actions and see if any
1899          * of them work for us.
1900          */
1901 
1902         for (ap = ipsp->ipsp_act; ap != NULL; ap = ap->ipa_next) {
1903                 if (ipsec_check_ipsecin_action(ira, data_mp, ap,
1904                     ipha, ip6h, &reason, &counter, ns)) {
1905                         BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
1906                         IPPOL_REFRELE(ipsp);
1907                         return (data_mp);
1908                 }
1909         }
1910 drop:
1911         ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
1912             "ipsec inbound policy mismatch: %s, packet dropped\n",
1913             reason);
1914         IPPOL_REFRELE(ipsp);
1915         ASSERT(ira->ira_ipsec_action == NULL);
1916         BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
1917         ip_drop_packet(data_mp, B_TRUE, NULL, counter,
1918             &ipss->ipsec_spd_dropper);
1919         return (NULL);
1920 }
1921 
1922 /*
1923  * sleazy prefix-length-based compare.
1924  * another inlining candidate..
1925  */
1926 boolean_t
1927 ip_addr_match(uint8_t *addr1, int pfxlen, in6_addr_t *addr2p)
1928 {
1929         int offset = pfxlen>>3;
1930         int bitsleft = pfxlen & 7;
1931         uint8_t *addr2 = (uint8_t *)addr2p;
1932 
1933         /*
1934          * and there was much evil..
1935          * XXX should inline-expand the bcmp here and do this 32 bits
1936          * or 64 bits at a time..
1937          */
1938         return ((bcmp(addr1, addr2, offset) == 0) &&
1939             ((bitsleft == 0) ||
1940             (((addr1[offset] ^ addr2[offset]) & (0xff<<(8-bitsleft))) == 0)));
1941 }
1942 
1943 static ipsec_policy_t *
1944 ipsec_find_policy_chain(ipsec_policy_t *best, ipsec_policy_t *chain,
1945     ipsec_selector_t *sel, boolean_t is_icmp_inv_acq)
1946 {
1947         ipsec_selkey_t *isel;
1948         ipsec_policy_t *p;
1949         int bpri = best ? best->ipsp_prio : 0;
1950 
1951         for (p = chain; p != NULL; p = p->ipsp_hash.hash_next) {
1952                 uint32_t valid;
1953 
1954                 if (p->ipsp_prio <= bpri)
1955                         continue;
1956                 isel = &p->ipsp_sel->ipsl_key;
1957                 valid = isel->ipsl_valid;
1958 
1959                 if ((valid & IPSL_PROTOCOL) &&
1960                     (isel->ipsl_proto != sel->ips_protocol))
1961                         continue;
1962 
1963                 if ((valid & IPSL_REMOTE_ADDR) &&
1964                     !ip_addr_match((uint8_t *)&isel->ipsl_remote,
1965                     isel->ipsl_remote_pfxlen, &sel->ips_remote_addr_v6))
1966                         continue;
1967 
1968                 if ((valid & IPSL_LOCAL_ADDR) &&
1969                     !ip_addr_match((uint8_t *)&isel->ipsl_local,
1970                     isel->ipsl_local_pfxlen, &sel->ips_local_addr_v6))
1971                         continue;
1972 
1973                 if ((valid & IPSL_REMOTE_PORT) &&
1974                     isel->ipsl_rport != sel->ips_remote_port)
1975                         continue;
1976 
1977                 if ((valid & IPSL_LOCAL_PORT) &&
1978                     isel->ipsl_lport != sel->ips_local_port)
1979                         continue;
1980 
1981                 if (!is_icmp_inv_acq) {
1982                         if ((valid & IPSL_ICMP_TYPE) &&
1983                             (isel->ipsl_icmp_type > sel->ips_icmp_type ||
1984                             isel->ipsl_icmp_type_end < sel->ips_icmp_type)) {
1985                                 continue;
1986                         }
1987 
1988                         if ((valid & IPSL_ICMP_CODE) &&
1989                             (isel->ipsl_icmp_code > sel->ips_icmp_code ||
1990                             isel->ipsl_icmp_code_end <
1991                             sel->ips_icmp_code)) {
1992                                 continue;
1993                         }
1994                 } else {
1995                         /*
1996                          * special case for icmp inverse acquire
1997                          * we only want policies that aren't drop/pass
1998                          */
1999                         if (p->ipsp_act->ipa_act.ipa_type != IPSEC_ACT_APPLY)
2000                                 continue;
2001                 }
2002 
2003                 /* we matched all the packet-port-field selectors! */
2004                 best = p;
2005                 bpri = p->ipsp_prio;
2006         }
2007 
2008         return (best);
2009 }
2010 
2011 /*
2012  * Try to find and return the best policy entry under a given policy
2013  * root for a given set of selectors; the first parameter "best" is
2014  * the current best policy so far.  If "best" is non-null, we have a
2015  * reference to it.  We return a reference to a policy; if that policy
2016  * is not the original "best", we need to release that reference
2017  * before returning.
2018  */
2019 ipsec_policy_t *
2020 ipsec_find_policy_head(ipsec_policy_t *best, ipsec_policy_head_t *head,
2021     int direction, ipsec_selector_t *sel)
2022 {
2023         ipsec_policy_t *curbest;
2024         ipsec_policy_root_t *root;
2025         uint8_t is_icmp_inv_acq = sel->ips_is_icmp_inv_acq;
2026         int af = sel->ips_isv4 ? IPSEC_AF_V4 : IPSEC_AF_V6;
2027 
2028         curbest = best;
2029         root = &head->iph_root[direction];
2030 
2031 #ifdef DEBUG
2032         if (is_icmp_inv_acq) {
2033                 if (sel->ips_isv4) {
2034                         if (sel->ips_protocol != IPPROTO_ICMP) {
2035                                 cmn_err(CE_WARN, "ipsec_find_policy_head:"
2036                                     " expecting icmp, got %d",
2037                                     sel->ips_protocol);
2038                         }
2039                 } else {
2040                         if (sel->ips_protocol != IPPROTO_ICMPV6) {
2041                                 cmn_err(CE_WARN, "ipsec_find_policy_head:"
2042                                     " expecting icmpv6, got %d",
2043                                     sel->ips_protocol);
2044                         }
2045                 }
2046         }
2047 #endif
2048 
2049         rw_enter(&head->iph_lock, RW_READER);
2050 
2051         if (root->ipr_nchains > 0) {
2052                 curbest = ipsec_find_policy_chain(curbest,
2053                     root->ipr_hash[selector_hash(sel, root)].hash_head, sel,
2054                     is_icmp_inv_acq);
2055         }
2056         curbest = ipsec_find_policy_chain(curbest, root->ipr_nonhash[af], sel,
2057             is_icmp_inv_acq);
2058 
2059         /*
2060          * Adjust reference counts if we found anything new.
2061          */
2062         if (curbest != best) {
2063                 ASSERT(curbest != NULL);
2064                 IPPOL_REFHOLD(curbest);
2065 
2066                 if (best != NULL) {
2067                         IPPOL_REFRELE(best);
2068                 }
2069         }
2070 
2071         rw_exit(&head->iph_lock);
2072 
2073         return (curbest);
2074 }
2075 
2076 /*
2077  * Find the best system policy (either global or per-interface) which
2078  * applies to the given selector; look in all the relevant policy roots
2079  * to figure out which policy wins.
2080  *
2081  * Returns a reference to a policy; caller must release this
2082  * reference when done.
2083  */
2084 ipsec_policy_t *
2085 ipsec_find_policy(int direction, const conn_t *connp, ipsec_selector_t *sel,
2086     netstack_t *ns)
2087 {
2088         ipsec_policy_t *p;
2089         ipsec_stack_t   *ipss = ns->netstack_ipsec;
2090 
2091         p = ipsec_find_policy_head(NULL, &ipss->ipsec_system_policy,
2092             direction, sel);
2093         if ((connp != NULL) && (connp->conn_policy != NULL)) {
2094                 p = ipsec_find_policy_head(p, connp->conn_policy,
2095                     direction, sel);
2096         }
2097 
2098         return (p);
2099 }
2100 
2101 /*
2102  * Check with global policy and see whether this inbound
2103  * packet meets the policy constraints.
2104  *
2105  * Locate appropriate policy from global policy, supplemented by the
2106  * conn's configured and/or cached policy if the conn is supplied.
2107  *
2108  * Dispatch to ipsec_check_ipsecin_policy if we have policy and an
2109  * encrypted packet to see if they match.
2110  *
2111  * Otherwise, see if the policy allows cleartext; if not, drop it on the
2112  * floor.
2113  */
2114 mblk_t *
2115 ipsec_check_global_policy(mblk_t *data_mp, conn_t *connp,
2116     ipha_t *ipha, ip6_t *ip6h, ip_recv_attr_t *ira, netstack_t *ns)
2117 {
2118         ipsec_policy_t *p;
2119         ipsec_selector_t sel;
2120         boolean_t policy_present;
2121         kstat_named_t *counter;
2122         uint64_t pkt_unique;
2123         ip_stack_t      *ipst = ns->netstack_ip;
2124         ipsec_stack_t   *ipss = ns->netstack_ipsec;
2125 
2126         sel.ips_is_icmp_inv_acq = 0;
2127 
2128         ASSERT((ipha == NULL && ip6h != NULL) ||
2129             (ip6h == NULL && ipha != NULL));
2130 
2131         if (ipha != NULL)
2132                 policy_present = ipss->ipsec_inbound_v4_policy_present;
2133         else
2134                 policy_present = ipss->ipsec_inbound_v6_policy_present;
2135 
2136         if (!policy_present && connp == NULL) {
2137                 /*
2138                  * No global policy and no per-socket policy;
2139                  * just pass it back (but we shouldn't get here in that case)
2140                  */
2141                 return (data_mp);
2142         }
2143 
2144         /*
2145          * If we have cached policy, use it.
2146          * Otherwise consult system policy.
2147          */
2148         if ((connp != NULL) && (connp->conn_latch != NULL)) {
2149                 p = connp->conn_latch_in_policy;
2150                 if (p != NULL) {
2151                         IPPOL_REFHOLD(p);
2152                 }
2153                 /*
2154                  * Fudge sel for UNIQUE_ID setting below.
2155                  */
2156                 pkt_unique = conn_to_unique(connp, data_mp, ipha, ip6h);
2157         } else {
2158                 /* Initialize the ports in the selector */
2159                 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
2160                     SEL_NONE) == SELRET_NOMEM) {
2161                         /*
2162                          * Technically not a policy mismatch, but it is
2163                          * an internal failure.
2164                          */
2165                         ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
2166                             "ipsec_init_inbound_sel", ipha, ip6h, B_TRUE, ns);
2167                         counter = DROPPER(ipss, ipds_spd_nomem);
2168                         goto fail;
2169                 }
2170 
2171                 /*
2172                  * Find the policy which best applies.
2173                  *
2174                  * If we find global policy, we should look at both
2175                  * local policy and global policy and see which is
2176                  * stronger and match accordingly.
2177                  *
2178                  * If we don't find a global policy, check with
2179                  * local policy alone.
2180                  */
2181 
2182                 p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, &sel, ns);
2183                 pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port,
2184                     sel.ips_local_port, sel.ips_protocol, 0);
2185         }
2186 
2187         if (p == NULL) {
2188                 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
2189                         /*
2190                          * We have no policy; default to succeeding.
2191                          * XXX paranoid system design doesn't do this.
2192                          */
2193                         BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2194                         return (data_mp);
2195                 } else {
2196                         counter = DROPPER(ipss, ipds_spd_got_secure);
2197                         ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
2198                             "ipsec_check_global_policy", ipha, ip6h, B_TRUE,
2199                             ns);
2200                         goto fail;
2201                 }
2202         }
2203         if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2204                 return (ipsec_check_ipsecin_policy(data_mp, p, ipha, ip6h,
2205                     pkt_unique, ira, ns));
2206         }
2207         if (p->ipsp_act->ipa_allow_clear) {
2208                 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2209                 IPPOL_REFRELE(p);
2210                 return (data_mp);
2211         }
2212         IPPOL_REFRELE(p);
2213         /*
2214          * If we reach here, we will drop the packet because it failed the
2215          * global policy check because the packet was cleartext, and it
2216          * should not have been.
2217          */
2218         ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
2219             "ipsec_check_global_policy", ipha, ip6h, B_FALSE, ns);
2220         counter = DROPPER(ipss, ipds_spd_got_clear);
2221 
2222 fail:
2223         ip_drop_packet(data_mp, B_TRUE, NULL, counter,
2224             &ipss->ipsec_spd_dropper);
2225         BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2226         return (NULL);
2227 }
2228 
2229 /*
2230  * We check whether an inbound datagram is a valid one
2231  * to accept in clear. If it is secure, it is the job
2232  * of IPSEC to log information appropriately if it
2233  * suspects that it may not be the real one.
2234  *
2235  * It is called only while fanning out to the ULP
2236  * where ULP accepts only secure data and the incoming
2237  * is clear. Usually we never accept clear datagrams in
2238  * such cases. ICMP is the only exception.
2239  *
2240  * NOTE : We don't call this function if the client (ULP)
2241  * is willing to accept things in clear.
2242  */
2243 boolean_t
2244 ipsec_inbound_accept_clear(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h)
2245 {
2246         ushort_t iph_hdr_length;
2247         icmph_t *icmph;
2248         icmp6_t *icmp6;
2249         uint8_t *nexthdrp;
2250 
2251         ASSERT((ipha != NULL && ip6h == NULL) ||
2252             (ipha == NULL && ip6h != NULL));
2253 
2254         if (ip6h != NULL) {
2255                 iph_hdr_length = ip_hdr_length_v6(mp, ip6h);
2256                 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
2257                     &nexthdrp)) {
2258                         return (B_FALSE);
2259                 }
2260                 if (*nexthdrp != IPPROTO_ICMPV6)
2261                         return (B_FALSE);
2262                 icmp6 = (icmp6_t *)(&mp->b_rptr[iph_hdr_length]);
2263                 /* Match IPv6 ICMP policy as closely as IPv4 as possible. */
2264                 switch (icmp6->icmp6_type) {
2265                 case ICMP6_PARAM_PROB:
2266                         /* Corresponds to port/proto unreach in IPv4. */
2267                 case ICMP6_ECHO_REQUEST:
2268                         /* Just like IPv4. */
2269                         return (B_FALSE);
2270 
2271                 case MLD_LISTENER_QUERY:
2272                 case MLD_LISTENER_REPORT:
2273                 case MLD_LISTENER_REDUCTION:
2274                         /*
2275                          * XXX Seperate NDD in IPv4 what about here?
2276                          * Plus, mcast is important to ND.
2277                          */
2278                 case ICMP6_DST_UNREACH:
2279                         /* Corresponds to HOST/NET unreachable in IPv4. */
2280                 case ICMP6_PACKET_TOO_BIG:
2281                 case ICMP6_ECHO_REPLY:
2282                         /* These are trusted in IPv4. */
2283                 case ND_ROUTER_SOLICIT:
2284                 case ND_ROUTER_ADVERT:
2285                 case ND_NEIGHBOR_SOLICIT:
2286                 case ND_NEIGHBOR_ADVERT:
2287                 case ND_REDIRECT:
2288                         /* Trust ND messages for now. */
2289                 case ICMP6_TIME_EXCEEDED:
2290                 default:
2291                         return (B_TRUE);
2292                 }
2293         } else {
2294                 /*
2295                  * If it is not ICMP, fail this request.
2296                  */
2297                 if (ipha->ipha_protocol != IPPROTO_ICMP) {
2298 #ifdef FRAGCACHE_DEBUG
2299                         cmn_err(CE_WARN, "Dropping - ipha_proto = %d\n",
2300                             ipha->ipha_protocol);
2301 #endif
2302                         return (B_FALSE);
2303                 }
2304                 iph_hdr_length = IPH_HDR_LENGTH(ipha);
2305                 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2306                 /*
2307                  * It is an insecure icmp message. Check to see whether we are
2308                  * willing to accept this one.
2309                  */
2310 
2311                 switch (icmph->icmph_type) {
2312                 case ICMP_ECHO_REPLY:
2313                 case ICMP_TIME_STAMP_REPLY:
2314                 case ICMP_INFO_REPLY:
2315                 case ICMP_ROUTER_ADVERTISEMENT:
2316                         /*
2317                          * We should not encourage clear replies if this
2318                          * client expects secure. If somebody is replying
2319                          * in clear some mailicious user watching both the
2320                          * request and reply, can do chosen-plain-text attacks.
2321                          * With global policy we might be just expecting secure
2322                          * but sending out clear. We don't know what the right
2323                          * thing is. We can't do much here as we can't control
2324                          * the sender here. Till we are sure of what to do,
2325                          * accept them.
2326                          */
2327                         return (B_TRUE);
2328                 case ICMP_ECHO_REQUEST:
2329                 case ICMP_TIME_STAMP_REQUEST:
2330                 case ICMP_INFO_REQUEST:
2331                 case ICMP_ADDRESS_MASK_REQUEST:
2332                 case ICMP_ROUTER_SOLICITATION:
2333                 case ICMP_ADDRESS_MASK_REPLY:
2334                         /*
2335                          * Don't accept this as somebody could be sending
2336                          * us plain text to get encrypted data. If we reply,
2337                          * it will lead to chosen plain text attack.
2338                          */
2339                         return (B_FALSE);
2340                 case ICMP_DEST_UNREACHABLE:
2341                         switch (icmph->icmph_code) {
2342                         case ICMP_FRAGMENTATION_NEEDED:
2343                                 /*
2344                                  * Be in sync with icmp_inbound, where we have
2345                                  * already set dce_pmtu
2346                                  */
2347 #ifdef FRAGCACHE_DEBUG
2348                         cmn_err(CE_WARN, "ICMP frag needed\n");
2349 #endif
2350                                 return (B_TRUE);
2351                         case ICMP_HOST_UNREACHABLE:
2352                         case ICMP_NET_UNREACHABLE:
2353                                 /*
2354                                  * By accepting, we could reset a connection.
2355                                  * How do we solve the problem of some
2356                                  * intermediate router sending in-secure ICMP
2357                                  * messages ?
2358                                  */
2359                                 return (B_TRUE);
2360                         case ICMP_PORT_UNREACHABLE:
2361                         case ICMP_PROTOCOL_UNREACHABLE:
2362                         default :
2363                                 return (B_FALSE);
2364                         }
2365                 case ICMP_SOURCE_QUENCH:
2366                         /*
2367                          * If this is an attack, TCP will slow start
2368                          * because of this. Is it very harmful ?
2369                          */
2370                         return (B_TRUE);
2371                 case ICMP_PARAM_PROBLEM:
2372                         return (B_FALSE);
2373                 case ICMP_TIME_EXCEEDED:
2374                         return (B_TRUE);
2375                 case ICMP_REDIRECT:
2376                         return (B_FALSE);
2377                 default :
2378                         return (B_FALSE);
2379                 }
2380         }
2381 }
2382 
2383 void
2384 ipsec_latch_ids(ipsec_latch_t *ipl, ipsid_t *local, ipsid_t *remote)
2385 {
2386         mutex_enter(&ipl->ipl_lock);
2387 
2388         if (ipl->ipl_ids_latched) {
2389                 /* I lost, someone else got here before me */
2390                 mutex_exit(&ipl->ipl_lock);
2391                 return;
2392         }
2393 
2394         if (local != NULL)
2395                 IPSID_REFHOLD(local);
2396         if (remote != NULL)
2397                 IPSID_REFHOLD(remote);
2398 
2399         ipl->ipl_local_cid = local;
2400         ipl->ipl_remote_cid = remote;
2401         ipl->ipl_ids_latched = B_TRUE;
2402         mutex_exit(&ipl->ipl_lock);
2403 }
2404 
2405 void
2406 ipsec_latch_inbound(conn_t *connp, ip_recv_attr_t *ira)
2407 {
2408         ipsa_t *sa;
2409         ipsec_latch_t *ipl = connp->conn_latch;
2410 
2411         if (!ipl->ipl_ids_latched) {
2412                 ipsid_t *local = NULL;
2413                 ipsid_t *remote = NULL;
2414 
2415                 if (!(ira->ira_flags & IRAF_LOOPBACK)) {
2416                         ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
2417                         if (ira->ira_ipsec_esp_sa != NULL)
2418                                 sa = ira->ira_ipsec_esp_sa;
2419                         else
2420                                 sa = ira->ira_ipsec_ah_sa;
2421                         ASSERT(sa != NULL);
2422                         local = sa->ipsa_dst_cid;
2423                         remote = sa->ipsa_src_cid;
2424                 }
2425                 ipsec_latch_ids(ipl, local, remote);
2426         }
2427         if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2428                 if (connp->conn_latch_in_action != NULL) {
2429                         /*
2430                          * Previously cached action.  This is probably
2431                          * harmless, but in DEBUG kernels, check for
2432                          * action equality.
2433                          *
2434                          * Preserve the existing action to preserve latch
2435                          * invariance.
2436                          */
2437                         ASSERT(connp->conn_latch_in_action ==
2438                             ira->ira_ipsec_action);
2439                         return;
2440                 }
2441                 connp->conn_latch_in_action = ira->ira_ipsec_action;
2442                 IPACT_REFHOLD(connp->conn_latch_in_action);
2443         }
2444 }
2445 
2446 /*
2447  * Check whether the policy constraints are met either for an
2448  * inbound datagram; called from IP in numerous places.
2449  *
2450  * Note that this is not a chokepoint for inbound policy checks;
2451  * see also ipsec_check_ipsecin_latch() and ipsec_check_global_policy()
2452  */
2453 mblk_t *
2454 ipsec_check_inbound_policy(mblk_t *mp, conn_t *connp,
2455     ipha_t *ipha, ip6_t *ip6h, ip_recv_attr_t *ira)
2456 {
2457         boolean_t       ret;
2458         ipsec_latch_t   *ipl;
2459         ipsec_action_t  *ap;
2460         uint64_t        unique_id;
2461         ipsec_stack_t   *ipss;
2462         ip_stack_t      *ipst;
2463         netstack_t      *ns;
2464         ipsec_policy_head_t *policy_head;
2465         ipsec_policy_t  *p = NULL;
2466 
2467         ASSERT(connp != NULL);
2468         ns = connp->conn_netstack;
2469         ipss = ns->netstack_ipsec;
2470         ipst = ns->netstack_ip;
2471 
2472         if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
2473                 /*
2474                  * This is the case where the incoming datagram is
2475                  * cleartext and we need to see whether this client
2476                  * would like to receive such untrustworthy things from
2477                  * the wire.
2478                  */
2479                 ASSERT(mp != NULL);
2480 
2481                 mutex_enter(&connp->conn_lock);
2482                 if (connp->conn_state_flags & CONN_CONDEMNED) {
2483                         mutex_exit(&connp->conn_lock);
2484                         ip_drop_packet(mp, B_TRUE, NULL,
2485                             DROPPER(ipss, ipds_spd_got_clear),
2486                             &ipss->ipsec_spd_dropper);
2487                         BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2488                         return (NULL);
2489                 }
2490                 if (connp->conn_latch != NULL) {
2491                         /* Hold a reference in case the conn is closing */
2492                         p = connp->conn_latch_in_policy;
2493                         if (p != NULL)
2494                                 IPPOL_REFHOLD(p);
2495                         mutex_exit(&connp->conn_lock);
2496                         /*
2497                          * Policy is cached in the conn.
2498                          */
2499                         if (p != NULL && !p->ipsp_act->ipa_allow_clear) {
2500                                 ret = ipsec_inbound_accept_clear(mp,
2501                                     ipha, ip6h);
2502                                 if (ret) {
2503                                         BUMP_MIB(&ipst->ips_ip_mib,
2504                                             ipsecInSucceeded);
2505                                         IPPOL_REFRELE(p);
2506                                         return (mp);
2507                                 } else {
2508                                         ipsec_log_policy_failure(
2509                                             IPSEC_POLICY_MISMATCH,
2510                                             "ipsec_check_inbound_policy", ipha,
2511                                             ip6h, B_FALSE, ns);
2512                                         ip_drop_packet(mp, B_TRUE, NULL,
2513                                             DROPPER(ipss, ipds_spd_got_clear),
2514                                             &ipss->ipsec_spd_dropper);
2515                                         BUMP_MIB(&ipst->ips_ip_mib,
2516                                             ipsecInFailed);
2517                                         IPPOL_REFRELE(p);
2518                                         return (NULL);
2519                                 }
2520                         } else {
2521                                 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2522                                 if (p != NULL)
2523                                         IPPOL_REFRELE(p);
2524                                 return (mp);
2525                         }
2526                 } else {
2527                         policy_head = connp->conn_policy;
2528 
2529                         /* Hold a reference in case the conn is closing */
2530                         if (policy_head != NULL)
2531                                 IPPH_REFHOLD(policy_head);
2532                         mutex_exit(&connp->conn_lock);
2533                         /*
2534                          * As this is a non-hardbound connection we need
2535                          * to look at both per-socket policy and global
2536                          * policy.
2537                          */
2538                         mp = ipsec_check_global_policy(mp, connp,
2539                             ipha, ip6h, ira, ns);
2540                         if (policy_head != NULL)
2541                                 IPPH_REFRELE(policy_head, ns);
2542                         return (mp);
2543                 }
2544         }
2545 
2546         mutex_enter(&connp->conn_lock);
2547         /* Connection is closing */
2548         if (connp->conn_state_flags & CONN_CONDEMNED) {
2549                 mutex_exit(&connp->conn_lock);
2550                 ip_drop_packet(mp, B_TRUE, NULL,
2551                     DROPPER(ipss, ipds_spd_got_clear),
2552                     &ipss->ipsec_spd_dropper);
2553                 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2554                 return (NULL);
2555         }
2556 
2557         /*
2558          * Once a connection is latched it remains so for life, the conn_latch
2559          * pointer on the conn has not changed, simply initializing ipl here
2560          * as the earlier initialization was done only in the cleartext case.
2561          */
2562         if ((ipl = connp->conn_latch) == NULL) {
2563                 mblk_t *retmp;
2564                 policy_head = connp->conn_policy;
2565 
2566                 /* Hold a reference in case the conn is closing */
2567                 if (policy_head != NULL)
2568                         IPPH_REFHOLD(policy_head);
2569                 mutex_exit(&connp->conn_lock);
2570                 /*
2571                  * We don't have policies cached in the conn
2572                  * for this stream. So, look at the global
2573                  * policy. It will check against conn or global
2574                  * depending on whichever is stronger.
2575                  */
2576                 retmp = ipsec_check_global_policy(mp, connp,
2577                     ipha, ip6h, ira, ns);
2578                 if (policy_head != NULL)
2579                         IPPH_REFRELE(policy_head, ns);
2580                 return (retmp);
2581         }
2582 
2583         IPLATCH_REFHOLD(ipl);
2584         /* Hold reference on conn_latch_in_action in case conn is closing */
2585         ap = connp->conn_latch_in_action;
2586         if (ap != NULL)
2587                 IPACT_REFHOLD(ap);
2588         mutex_exit(&connp->conn_lock);
2589 
2590         if (ap != NULL) {
2591                 /* Policy is cached & latched; fast(er) path */
2592                 const char *reason;
2593                 kstat_named_t *counter;
2594 
2595                 if (ipsec_check_ipsecin_latch(ira, mp, ipl, ap,
2596                     ipha, ip6h, &reason, &counter, connp, ns)) {
2597                         BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2598                         IPLATCH_REFRELE(ipl);
2599                         IPACT_REFRELE(ap);
2600                         return (mp);
2601                 }
2602                 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0,
2603                     SL_ERROR|SL_WARN|SL_CONSOLE,
2604                     "ipsec inbound policy mismatch: %s, packet dropped\n",
2605                     reason);
2606                 ip_drop_packet(mp, B_TRUE, NULL, counter,
2607                     &ipss->ipsec_spd_dropper);
2608                 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2609                 IPLATCH_REFRELE(ipl);
2610                 IPACT_REFRELE(ap);
2611                 return (NULL);
2612         }
2613         if ((p = connp->conn_latch_in_policy) == NULL) {
2614                 ipsec_weird_null_inbound_policy++;
2615                 IPLATCH_REFRELE(ipl);
2616                 return (mp);
2617         }
2618 
2619         unique_id = conn_to_unique(connp, mp, ipha, ip6h);
2620         IPPOL_REFHOLD(p);
2621         mp = ipsec_check_ipsecin_policy(mp, p, ipha, ip6h, unique_id, ira, ns);
2622         /*
2623          * NOTE: ipsecIn{Failed,Succeeeded} bumped by
2624          * ipsec_check_ipsecin_policy().
2625          */
2626         if (mp != NULL)
2627                 ipsec_latch_inbound(connp, ira);
2628         IPLATCH_REFRELE(ipl);
2629         return (mp);
2630 }
2631 
2632 /*
2633  * Handle all sorts of cases like tunnel-mode and ICMP.
2634  */
2635 static int
2636 prepended_length(mblk_t *mp, uintptr_t hptr)
2637 {
2638         int rc = 0;
2639 
2640         while (mp != NULL) {
2641                 if (hptr >= (uintptr_t)mp->b_rptr && hptr <
2642                     (uintptr_t)mp->b_wptr) {
2643                         rc += (int)(hptr - (uintptr_t)mp->b_rptr);
2644                         break;  /* out of while loop */
2645                 }
2646                 rc += (int)MBLKL(mp);
2647                 mp = mp->b_cont;
2648         }
2649 
2650         if (mp == NULL) {
2651                 /*
2652                  * IF (big IF) we make it here by naturally exiting the loop,
2653                  * then ip6h isn't in the mblk chain "mp" at all.
2654                  *
2655                  * The only case where this happens is with a reversed IP
2656                  * header that gets passed up by inbound ICMP processing.
2657                  * This unfortunately triggers longstanding bug 6478464.  For
2658                  * now, just pass up 0 for the answer.
2659                  */
2660 #ifdef DEBUG_NOT_UNTIL_6478464
2661                 ASSERT(mp != NULL);
2662 #endif
2663                 rc = 0;
2664         }
2665 
2666         return (rc);
2667 }
2668 
2669 /*
2670  * Returns:
2671  *
2672  * SELRET_NOMEM --> msgpullup() needed to gather things failed.
2673  * SELRET_BADPKT --> If we're being called after tunnel-mode fragment
2674  *                   gathering, the initial fragment is too short for
2675  *                   useful data.  Only returned if SEL_TUNNEL_FIRSTFRAG is
2676  *                   set.
2677  * SELRET_SUCCESS --> "sel" now has initialized IPsec selector data.
2678  * SELRET_TUNFRAG --> This is a fragment in a tunnel-mode packet.  Caller
2679  *                    should put this packet in a fragment-gathering queue.
2680  *                    Only returned if SEL_TUNNEL_MODE and SEL_PORT_POLICY
2681  *                    is set.
2682  *
2683  * Note that ipha/ip6h can be in a different mblk (mp->b_cont) in the case
2684  * of tunneled packets.
2685  * Also, mp->b_rptr can be an ICMP error where ipha/ip6h is the packet in
2686  * error past the ICMP error.
2687  */
2688 static selret_t
2689 ipsec_init_inbound_sel(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2690     ip6_t *ip6h, uint8_t sel_flags)
2691 {
2692         uint16_t *ports;
2693         int outer_hdr_len = 0;  /* For ICMP or tunnel-mode cases... */
2694         ushort_t hdr_len;
2695         mblk_t *spare_mp = NULL;
2696         uint8_t *nexthdrp, *transportp;
2697         uint8_t nexthdr;
2698         uint8_t icmp_proto;
2699         ip_pkt_t ipp;
2700         boolean_t port_policy_present = (sel_flags & SEL_PORT_POLICY);
2701         boolean_t is_icmp = (sel_flags & SEL_IS_ICMP);
2702         boolean_t tunnel_mode = (sel_flags & SEL_TUNNEL_MODE);
2703         boolean_t post_frag = (sel_flags & SEL_POST_FRAG);
2704 
2705         ASSERT((ipha == NULL && ip6h != NULL) ||
2706             (ipha != NULL && ip6h == NULL));
2707 
2708         if (ip6h != NULL) {
2709                 outer_hdr_len = prepended_length(mp, (uintptr_t)ip6h);
2710                 nexthdr = ip6h->ip6_nxt;
2711                 icmp_proto = IPPROTO_ICMPV6;
2712                 sel->ips_isv4 = B_FALSE;
2713                 sel->ips_local_addr_v6 = ip6h->ip6_dst;
2714                 sel->ips_remote_addr_v6 = ip6h->ip6_src;
2715 
2716                 bzero(&ipp, sizeof (ipp));
2717 
2718                 switch (nexthdr) {
2719                 case IPPROTO_HOPOPTS:
2720                 case IPPROTO_ROUTING:
2721                 case IPPROTO_DSTOPTS:
2722                 case IPPROTO_FRAGMENT:
2723                         /*
2724                          * Use ip_hdr_length_nexthdr_v6().  And have a spare
2725                          * mblk that's contiguous to feed it
2726                          */
2727                         if ((spare_mp = msgpullup(mp, -1)) == NULL)
2728                                 return (SELRET_NOMEM);
2729                         if (!ip_hdr_length_nexthdr_v6(spare_mp,
2730                             (ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2731                             &hdr_len, &nexthdrp)) {
2732                                 /* Malformed packet - caller frees. */
2733                                 ipsec_freemsg_chain(spare_mp);
2734                                 return (SELRET_BADPKT);
2735                         }
2736                         /* Repopulate now that we have the whole packet */
2737                         ip6h = (ip6_t *)(spare_mp->b_rptr + outer_hdr_len);
2738                         (void) ip_find_hdr_v6(spare_mp, ip6h, B_FALSE, &ipp,
2739                             NULL);
2740                         nexthdr = *nexthdrp;
2741                         /* We can just extract based on hdr_len now. */
2742                         break;
2743                 default:
2744                         (void) ip_find_hdr_v6(mp, ip6h, B_FALSE, &ipp, NULL);
2745                         hdr_len = IPV6_HDR_LEN;
2746                         break;
2747                 }
2748                 if (port_policy_present && IS_V6_FRAGMENT(ipp) && !is_icmp) {
2749                         /* IPv6 Fragment */
2750                         ipsec_freemsg_chain(spare_mp);
2751                         return (SELRET_TUNFRAG);
2752                 }
2753                 transportp = (uint8_t *)ip6h + hdr_len;
2754         } else {
2755                 outer_hdr_len = prepended_length(mp, (uintptr_t)ipha);
2756                 icmp_proto = IPPROTO_ICMP;
2757                 sel->ips_isv4 = B_TRUE;
2758                 sel->ips_local_addr_v4 = ipha->ipha_dst;
2759                 sel->ips_remote_addr_v4 = ipha->ipha_src;
2760                 nexthdr = ipha->ipha_protocol;
2761                 hdr_len = IPH_HDR_LENGTH(ipha);
2762 
2763                 if (port_policy_present &&
2764                     IS_V4_FRAGMENT(ipha->ipha_fragment_offset_and_flags) &&
2765                     !is_icmp) {
2766                         /* IPv4 Fragment */
2767                         ipsec_freemsg_chain(spare_mp);
2768                         return (SELRET_TUNFRAG);
2769                 }
2770                 transportp = (uint8_t *)ipha + hdr_len;
2771         }
2772         sel->ips_protocol = nexthdr;
2773 
2774         if ((nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2775             nexthdr != IPPROTO_SCTP && nexthdr != icmp_proto) ||
2776             (!port_policy_present && !post_frag && tunnel_mode)) {
2777                 sel->ips_remote_port = sel->ips_local_port = 0;
2778                 ipsec_freemsg_chain(spare_mp);
2779                 return (SELRET_SUCCESS);
2780         }
2781 
2782         if (transportp + 4 > mp->b_wptr) {
2783                 /* If we didn't pullup a copy already, do so now. */
2784                 /*
2785                  * XXX performance, will upper-layers frequently split TCP/UDP
2786                  * apart from IP or options?  If so, perhaps we should revisit
2787                  * the spare_mp strategy.
2788                  */
2789                 ipsec_hdr_pullup_needed++;
2790                 if (spare_mp == NULL &&
2791                     (spare_mp = msgpullup(mp, -1)) == NULL) {
2792                         return (SELRET_NOMEM);
2793                 }
2794                 transportp = &spare_mp->b_rptr[hdr_len + outer_hdr_len];
2795         }
2796 
2797         if (nexthdr == icmp_proto) {
2798                 sel->ips_icmp_type = *transportp++;
2799                 sel->ips_icmp_code = *transportp;
2800                 sel->ips_remote_port = sel->ips_local_port = 0;
2801         } else {
2802                 ports = (uint16_t *)transportp;
2803                 sel->ips_remote_port = *ports++;
2804                 sel->ips_local_port = *ports;
2805         }
2806         ipsec_freemsg_chain(spare_mp);
2807         return (SELRET_SUCCESS);
2808 }
2809 
2810 /*
2811  * This is called with a b_next chain of messages from the fragcache code,
2812  * hence it needs to discard a chain on error.
2813  */
2814 static boolean_t
2815 ipsec_init_outbound_ports(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2816     ip6_t *ip6h, int outer_hdr_len, ipsec_stack_t *ipss)
2817 {
2818         /*
2819          * XXX cut&paste shared with ipsec_init_inbound_sel
2820          */
2821         uint16_t *ports;
2822         ushort_t hdr_len;
2823         mblk_t *spare_mp = NULL;
2824         uint8_t *nexthdrp;
2825         uint8_t nexthdr;
2826         uint8_t *typecode;
2827         uint8_t check_proto;
2828 
2829         ASSERT((ipha == NULL && ip6h != NULL) ||
2830             (ipha != NULL && ip6h == NULL));
2831 
2832         if (ip6h != NULL) {
2833                 check_proto = IPPROTO_ICMPV6;
2834                 nexthdr = ip6h->ip6_nxt;
2835                 switch (nexthdr) {
2836                 case IPPROTO_HOPOPTS:
2837                 case IPPROTO_ROUTING:
2838                 case IPPROTO_DSTOPTS:
2839                 case IPPROTO_FRAGMENT:
2840                         /*
2841                          * Use ip_hdr_length_nexthdr_v6().  And have a spare
2842                          * mblk that's contiguous to feed it
2843                          */
2844                         spare_mp = msgpullup(mp, -1);
2845                         if (spare_mp == NULL ||
2846                             !ip_hdr_length_nexthdr_v6(spare_mp,
2847                             (ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2848                             &hdr_len, &nexthdrp)) {
2849                                 /* Always works, even if NULL. */
2850                                 ipsec_freemsg_chain(spare_mp);
2851                                 ip_drop_packet_chain(mp, B_FALSE, NULL,
2852                                     DROPPER(ipss, ipds_spd_nomem),
2853                                     &ipss->ipsec_spd_dropper);
2854                                 return (B_FALSE);
2855                         } else {
2856                                 nexthdr = *nexthdrp;
2857                                 /* We can just extract based on hdr_len now. */
2858                         }
2859                         break;
2860                 default:
2861                         hdr_len = IPV6_HDR_LEN;
2862                         break;
2863                 }
2864         } else {
2865                 check_proto = IPPROTO_ICMP;
2866                 hdr_len = IPH_HDR_LENGTH(ipha);
2867                 nexthdr = ipha->ipha_protocol;
2868         }
2869 
2870         sel->ips_protocol = nexthdr;
2871         if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2872             nexthdr != IPPROTO_SCTP && nexthdr != check_proto) {
2873                 sel->ips_local_port = sel->ips_remote_port = 0;
2874                 ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */
2875                 return (B_TRUE);
2876         }
2877 
2878         if (&mp->b_rptr[hdr_len] + 4 + outer_hdr_len > mp->b_wptr) {
2879                 /* If we didn't pullup a copy already, do so now. */
2880                 /*
2881                  * XXX performance, will upper-layers frequently split TCP/UDP
2882                  * apart from IP or options?  If so, perhaps we should revisit
2883                  * the spare_mp strategy.
2884                  *
2885                  * XXX should this be msgpullup(mp, hdr_len+4) ???
2886                  */
2887                 if (spare_mp == NULL &&
2888                     (spare_mp = msgpullup(mp, -1)) == NULL) {
2889                         ip_drop_packet_chain(mp, B_FALSE, NULL,
2890                             DROPPER(ipss, ipds_spd_nomem),
2891                             &ipss->ipsec_spd_dropper);
2892                         return (B_FALSE);
2893                 }
2894                 ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len];
2895         } else {
2896                 ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len];
2897         }
2898 
2899         if (nexthdr == check_proto) {
2900                 typecode = (uint8_t *)ports;
2901                 sel->ips_icmp_type = *typecode++;
2902                 sel->ips_icmp_code = *typecode;
2903                 sel->ips_remote_port = sel->ips_local_port = 0;
2904         } else {
2905                 sel->ips_local_port = *ports++;
2906                 sel->ips_remote_port = *ports;
2907         }
2908         ipsec_freemsg_chain(spare_mp);  /* Always works, even if NULL */
2909         return (B_TRUE);
2910 }
2911 
2912 /*
2913  * Prepend an mblk with a ipsec_crypto_t to the message chain.
2914  * Frees the argument and returns NULL should the allocation fail.
2915  * Returns the pointer to the crypto data part.
2916  */
2917 mblk_t *
2918 ipsec_add_crypto_data(mblk_t *data_mp, ipsec_crypto_t **icp)
2919 {
2920         mblk_t  *mp;
2921 
2922         mp = allocb(sizeof (ipsec_crypto_t), BPRI_MED);
2923         if (mp == NULL) {
2924                 freemsg(data_mp);
2925                 return (NULL);
2926         }
2927         bzero(mp->b_rptr, sizeof (ipsec_crypto_t));
2928         mp->b_wptr += sizeof (ipsec_crypto_t);
2929         mp->b_cont = data_mp;
2930         mp->b_datap->db_type = M_EVENT;   /* For ASSERT */
2931         *icp = (ipsec_crypto_t *)mp->b_rptr;
2932         return (mp);
2933 }
2934 
2935 /*
2936  * Remove what was prepended above. Return b_cont and a pointer to the
2937  * crypto data.
2938  * The caller must call ipsec_free_crypto_data for mblk once it is done
2939  * with the crypto data.
2940  */
2941 mblk_t *
2942 ipsec_remove_crypto_data(mblk_t *crypto_mp, ipsec_crypto_t **icp)
2943 {
2944         ASSERT(crypto_mp->b_datap->db_type == M_EVENT);
2945         ASSERT(MBLKL(crypto_mp) == sizeof (ipsec_crypto_t));
2946 
2947         *icp = (ipsec_crypto_t *)crypto_mp->b_rptr;
2948         return (crypto_mp->b_cont);
2949 }
2950 
2951 /*
2952  * Free what was prepended above. Return b_cont.
2953  */
2954 mblk_t *
2955 ipsec_free_crypto_data(mblk_t *crypto_mp)
2956 {
2957         mblk_t  *mp;
2958 
2959         ASSERT(crypto_mp->b_datap->db_type == M_EVENT);
2960         ASSERT(MBLKL(crypto_mp) == sizeof (ipsec_crypto_t));
2961 
2962         mp = crypto_mp->b_cont;
2963         freeb(crypto_mp);
2964         return (mp);
2965 }
2966 
2967 /*
2968  * Create an ipsec_action_t based on the way an inbound packet was protected.
2969  * Used to reflect traffic back to a sender.
2970  *
2971  * We don't bother interning the action into the hash table.
2972  */
2973 ipsec_action_t *
2974 ipsec_in_to_out_action(ip_recv_attr_t *ira)
2975 {
2976         ipsa_t *ah_assoc, *esp_assoc;
2977         uint_t auth_alg = 0, encr_alg = 0, espa_alg = 0;
2978         ipsec_action_t *ap;
2979         boolean_t unique;
2980 
2981         ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
2982 
2983         if (ap == NULL)
2984                 return (NULL);
2985 
2986         bzero(ap, sizeof (*ap));
2987         HASH_NULL(ap, ipa_hash);
2988         ap->ipa_next = NULL;
2989         ap->ipa_refs = 1;
2990 
2991         /*
2992          * Get the algorithms that were used for this packet.
2993          */
2994         ap->ipa_act.ipa_type = IPSEC_ACT_APPLY;
2995         ap->ipa_act.ipa_log = 0;
2996         ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
2997 
2998         ah_assoc = ira->ira_ipsec_ah_sa;
2999         ap->ipa_act.ipa_apply.ipp_use_ah = (ah_assoc != NULL);
3000 
3001         esp_assoc = ira->ira_ipsec_esp_sa;
3002         ap->ipa_act.ipa_apply.ipp_use_esp = (esp_assoc != NULL);
3003 
3004         if (esp_assoc != NULL) {
3005                 encr_alg = esp_assoc->ipsa_encr_alg;
3006                 espa_alg = esp_assoc->ipsa_auth_alg;
3007                 ap->ipa_act.ipa_apply.ipp_use_espa = (espa_alg != 0);
3008         }
3009         if (ah_assoc != NULL)
3010                 auth_alg = ah_assoc->ipsa_auth_alg;
3011 
3012         ap->ipa_act.ipa_apply.ipp_encr_alg = (uint8_t)encr_alg;
3013         ap->ipa_act.ipa_apply.ipp_auth_alg = (uint8_t)auth_alg;
3014         ap->ipa_act.ipa_apply.ipp_esp_auth_alg = (uint8_t)espa_alg;
3015         ap->ipa_act.ipa_apply.ipp_use_se =
3016             !!(ira->ira_flags & IRAF_IPSEC_DECAPS);
3017         unique = B_FALSE;
3018 
3019         if (esp_assoc != NULL) {
3020                 ap->ipa_act.ipa_apply.ipp_espa_minbits =
3021                     esp_assoc->ipsa_authkeybits;
3022                 ap->ipa_act.ipa_apply.ipp_espa_maxbits =
3023                     esp_assoc->ipsa_authkeybits;
3024                 ap->ipa_act.ipa_apply.ipp_espe_minbits =
3025                     esp_assoc->ipsa_encrkeybits;
3026                 ap->ipa_act.ipa_apply.ipp_espe_maxbits =
3027                     esp_assoc->ipsa_encrkeybits;
3028                 ap->ipa_act.ipa_apply.ipp_km_proto = esp_assoc->ipsa_kmp;
3029                 ap->ipa_act.ipa_apply.ipp_km_cookie = esp_assoc->ipsa_kmc;
3030                 if (esp_assoc->ipsa_flags & IPSA_F_UNIQUE)
3031                         unique = B_TRUE;
3032         }
3033         if (ah_assoc != NULL) {
3034                 ap->ipa_act.ipa_apply.ipp_ah_minbits =
3035                     ah_assoc->ipsa_authkeybits;
3036                 ap->ipa_act.ipa_apply.ipp_ah_maxbits =
3037                     ah_assoc->ipsa_authkeybits;
3038                 ap->ipa_act.ipa_apply.ipp_km_proto = ah_assoc->ipsa_kmp;
3039                 ap->ipa_act.ipa_apply.ipp_km_cookie = ah_assoc->ipsa_kmc;
3040                 if (ah_assoc->ipsa_flags & IPSA_F_UNIQUE)
3041                         unique = B_TRUE;
3042         }
3043         ap->ipa_act.ipa_apply.ipp_use_unique = unique;
3044         ap->ipa_want_unique = unique;
3045         ap->ipa_allow_clear = B_FALSE;
3046         ap->ipa_want_se = !!(ira->ira_flags & IRAF_IPSEC_DECAPS);
3047         ap->ipa_want_ah = (ah_assoc != NULL);
3048         ap->ipa_want_esp = (esp_assoc != NULL);
3049 
3050         ap->ipa_ovhd = ipsec_act_ovhd(&ap->ipa_act);
3051 
3052         ap->ipa_act.ipa_apply.ipp_replay_depth = 0; /* don't care */
3053 
3054         return (ap);
3055 }
3056 
3057 
3058 /*
3059  * Compute the worst-case amount of extra space required by an action.
3060  * Note that, because of the ESP considerations listed below, this is
3061  * actually not the same as the best-case reduction in the MTU; in the
3062  * future, we should pass additional information to this function to
3063  * allow the actual MTU impact to be computed.
3064  *
3065  * AH: Revisit this if we implement algorithms with
3066  * a verifier size of more than 12 bytes.
3067  *
3068  * ESP: A more exact but more messy computation would take into
3069  * account the interaction between the cipher block size and the
3070  * effective MTU, yielding the inner payload size which reflects a
3071  * packet with *minimum* ESP padding..
3072  */
3073 int32_t
3074 ipsec_act_ovhd(const ipsec_act_t *act)
3075 {
3076         int32_t overhead = 0;
3077 
3078         if (act->ipa_type == IPSEC_ACT_APPLY) {
3079                 const ipsec_prot_t *ipp = &act->ipa_apply;
3080 
3081                 if (ipp->ipp_use_ah)
3082                         overhead += IPSEC_MAX_AH_HDR_SIZE;
3083                 if (ipp->ipp_use_esp) {
3084                         overhead += IPSEC_MAX_ESP_HDR_SIZE;
3085                         overhead += sizeof (struct udphdr);
3086                 }
3087                 if (ipp->ipp_use_se)
3088                         overhead += IP_SIMPLE_HDR_LENGTH;
3089         }
3090         return (overhead);
3091 }
3092 
3093 /*
3094  * This hash function is used only when creating policies and thus is not
3095  * performance-critical for packet flows.
3096  *
3097  * Future work: canonicalize the structures hashed with this (i.e.,
3098  * zeroize padding) so the hash works correctly.
3099  */
3100 /* ARGSUSED */
3101 static uint32_t
3102 policy_hash(int size, const void *start, const void *end)
3103 {
3104         return (0);
3105 }
3106 
3107 
3108 /*
3109  * Hash function macros for each address type.
3110  *
3111  * The IPV6 hash function assumes that the low order 32-bits of the
3112  * address (typically containing the low order 24 bits of the mac
3113  * address) are reasonably well-distributed.  Revisit this if we run
3114  * into trouble from lots of collisions on ::1 addresses and the like
3115  * (seems unlikely).
3116  */
3117 #define IPSEC_IPV4_HASH(a, n) ((a) % (n))
3118 #define IPSEC_IPV6_HASH(a, n) (((a).s6_addr32[3]) % (n))
3119 
3120 /*
3121  * These two hash functions should produce coordinated values
3122  * but have slightly different roles.
3123  */
3124 static uint32_t
3125 selkey_hash(const ipsec_selkey_t *selkey, netstack_t *ns)
3126 {
3127         uint32_t valid = selkey->ipsl_valid;
3128         ipsec_stack_t   *ipss = ns->netstack_ipsec;
3129 
3130         if (!(valid & IPSL_REMOTE_ADDR))
3131                 return (IPSEC_SEL_NOHASH);
3132 
3133         if (valid & IPSL_IPV4) {
3134                 if (selkey->ipsl_remote_pfxlen == 32) {
3135                         return (IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
3136                             ipss->ipsec_spd_hashsize));
3137                 }
3138         }
3139         if (valid & IPSL_IPV6) {
3140                 if (selkey->ipsl_remote_pfxlen == 128) {
3141                         return (IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
3142                             ipss->ipsec_spd_hashsize));
3143                 }
3144         }
3145         return (IPSEC_SEL_NOHASH);
3146 }
3147 
3148 static uint32_t
3149 selector_hash(ipsec_selector_t *sel, ipsec_policy_root_t *root)
3150 {
3151         if (sel->ips_isv4) {
3152                 return (IPSEC_IPV4_HASH(sel->ips_remote_addr_v4,
3153                     root->ipr_nchains));
3154         }
3155         return (IPSEC_IPV6_HASH(sel->ips_remote_addr_v6, root->ipr_nchains));
3156 }
3157 
3158 /*
3159  * Intern actions into the action hash table.
3160  */
3161 ipsec_action_t *
3162 ipsec_act_find(const ipsec_act_t *a, int n, netstack_t *ns)
3163 {
3164         int i;
3165         uint32_t hval;
3166         ipsec_action_t *ap;
3167         ipsec_action_t *prev = NULL;
3168         int32_t overhead, maxovhd = 0;
3169         boolean_t allow_clear = B_FALSE;
3170         boolean_t want_ah = B_FALSE;
3171         boolean_t want_esp = B_FALSE;
3172         boolean_t want_se = B_FALSE;
3173         boolean_t want_unique = B_FALSE;
3174         ipsec_stack_t   *ipss = ns->netstack_ipsec;
3175 
3176         /*
3177          * TODO: should canonicalize a[] (i.e., zeroize any padding)
3178          * so we can use a non-trivial policy_hash function.
3179          */
3180         for (i = n-1; i >= 0; i--) {
3181                 hval = policy_hash(IPSEC_ACTION_HASH_SIZE, &a[i], &a[n]);
3182 
3183                 HASH_LOCK(ipss->ipsec_action_hash, hval);
3184 
3185                 for (HASH_ITERATE(ap, ipa_hash,
3186                     ipss->ipsec_action_hash, hval)) {
3187                         if (bcmp(&ap->ipa_act, &a[i], sizeof (*a)) != 0)
3188                                 continue;
3189                         if (ap->ipa_next != prev)
3190                                 continue;
3191                         break;
3192                 }
3193                 if (ap != NULL) {
3194                         HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3195                         prev = ap;
3196                         continue;
3197                 }
3198                 /*
3199                  * need to allocate a new one..
3200                  */
3201                 ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
3202                 if (ap == NULL) {
3203                         HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3204                         if (prev != NULL)
3205                                 ipsec_action_free(prev);
3206                         return (NULL);
3207                 }
3208                 HASH_INSERT(ap, ipa_hash, ipss->ipsec_action_hash, hval);
3209 
3210                 ap->ipa_next = prev;
3211                 ap->ipa_act = a[i];
3212 
3213                 overhead = ipsec_act_ovhd(&a[i]);
3214                 if (maxovhd < overhead)
3215                         maxovhd = overhead;
3216 
3217                 if ((a[i].ipa_type == IPSEC_ACT_BYPASS) ||
3218                     (a[i].ipa_type == IPSEC_ACT_CLEAR))
3219                         allow_clear = B_TRUE;
3220                 if (a[i].ipa_type == IPSEC_ACT_APPLY) {
3221                         const ipsec_prot_t *ipp = &a[i].ipa_apply;
3222 
3223                         ASSERT(ipp->ipp_use_ah || ipp->ipp_use_esp);
3224                         want_ah |= ipp->ipp_use_ah;
3225                         want_esp |= ipp->ipp_use_esp;
3226                         want_se |= ipp->ipp_use_se;
3227                         want_unique |= ipp->ipp_use_unique;
3228                 }
3229                 ap->ipa_allow_clear = allow_clear;
3230                 ap->ipa_want_ah = want_ah;
3231                 ap->ipa_want_esp = want_esp;
3232                 ap->ipa_want_se = want_se;
3233                 ap->ipa_want_unique = want_unique;
3234                 ap->ipa_refs = 1; /* from the hash table */
3235                 ap->ipa_ovhd = maxovhd;
3236                 if (prev)
3237                         prev->ipa_refs++;
3238                 prev = ap;
3239                 HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3240         }
3241 
3242         ap->ipa_refs++;              /* caller's reference */
3243 
3244         return (ap);
3245 }
3246 
3247 /*
3248  * Called when refcount goes to 0, indicating that all references to this
3249  * node are gone.
3250  *
3251  * This does not unchain the action from the hash table.
3252  */
3253 void
3254 ipsec_action_free(ipsec_action_t *ap)
3255 {
3256         for (;;) {
3257                 ipsec_action_t *np = ap->ipa_next;
3258                 ASSERT(ap->ipa_refs == 0);
3259                 ASSERT(ap->ipa_hash.hash_pp == NULL);
3260                 kmem_cache_free(ipsec_action_cache, ap);
3261                 ap = np;
3262                 /* Inlined IPACT_REFRELE -- avoid recursion */
3263                 if (ap == NULL)
3264                         break;
3265                 membar_exit();
3266                 if (atomic_dec_32_nv(&(ap)->ipa_refs) != 0)
3267                         break;
3268                 /* End inlined IPACT_REFRELE */
3269         }
3270 }
3271 
3272 /*
3273  * Called when the action hash table goes away.
3274  *
3275  * The actions can be queued on an mblk with ipsec_in or
3276  * ipsec_out, hence the actions might still be around.
3277  * But we decrement ipa_refs here since we no longer have
3278  * a reference to the action from the hash table.
3279  */
3280 static void
3281 ipsec_action_free_table(ipsec_action_t *ap)
3282 {
3283         while (ap != NULL) {
3284                 ipsec_action_t *np = ap->ipa_next;
3285 
3286                 /* FIXME: remove? */
3287                 (void) printf("ipsec_action_free_table(%p) ref %d\n",
3288                     (void *)ap, ap->ipa_refs);
3289                 ASSERT(ap->ipa_refs > 0);
3290                 IPACT_REFRELE(ap);
3291                 ap = np;
3292         }
3293 }
3294 
3295 /*
3296  * Need to walk all stack instances since the reclaim function
3297  * is global for all instances
3298  */
3299 /* ARGSUSED */
3300 static void
3301 ipsec_action_reclaim(void *arg)
3302 {
3303         netstack_handle_t nh;
3304         netstack_t *ns;
3305         ipsec_stack_t *ipss;
3306 
3307         netstack_next_init(&nh);
3308         while ((ns = netstack_next(&nh)) != NULL) {
3309                 /*
3310                  * netstack_next() can return a netstack_t with a NULL
3311                  * netstack_ipsec at boot time.
3312                  */
3313                 if ((ipss = ns->netstack_ipsec) == NULL) {
3314                         netstack_rele(ns);
3315                         continue;
3316                 }
3317                 ipsec_action_reclaim_stack(ipss);
3318                 netstack_rele(ns);
3319         }
3320         netstack_next_fini(&nh);
3321 }
3322 
3323 /*
3324  * Periodically sweep action hash table for actions with refcount==1, and
3325  * nuke them.  We cannot do this "on demand" (i.e., from IPACT_REFRELE)
3326  * because we can't close the race between another thread finding the action
3327  * in the hash table without holding the bucket lock during IPACT_REFRELE.
3328  * Instead, we run this function sporadically to clean up after ourselves;
3329  * we also set it as the "reclaim" function for the action kmem_cache.
3330  *
3331  * Note that it may take several passes of ipsec_action_gc() to free all
3332  * "stale" actions.
3333  */
3334 static void
3335 ipsec_action_reclaim_stack(ipsec_stack_t *ipss)
3336 {
3337         int i;
3338 
3339         for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
3340                 ipsec_action_t *ap, *np;
3341 
3342                 /* skip the lock if nobody home */
3343                 if (ipss->ipsec_action_hash[i].hash_head == NULL)
3344                         continue;
3345 
3346                 HASH_LOCK(ipss->ipsec_action_hash, i);
3347                 for (ap = ipss->ipsec_action_hash[i].hash_head;
3348                     ap != NULL; ap = np) {
3349                         ASSERT(ap->ipa_refs > 0);
3350                         np = ap->ipa_hash.hash_next;
3351                         if (ap->ipa_refs > 1)
3352                                 continue;
3353                         HASH_UNCHAIN(ap, ipa_hash,
3354                             ipss->ipsec_action_hash, i);
3355                         IPACT_REFRELE(ap);
3356                 }
3357                 HASH_UNLOCK(ipss->ipsec_action_hash, i);
3358         }
3359 }
3360 
3361 /*
3362  * Intern a selector set into the selector set hash table.
3363  * This is simpler than the actions case..
3364  */
3365 static ipsec_sel_t *
3366 ipsec_find_sel(ipsec_selkey_t *selkey, netstack_t *ns)
3367 {
3368         ipsec_sel_t *sp;
3369         uint32_t hval, bucket;
3370         ipsec_stack_t   *ipss = ns->netstack_ipsec;
3371 
3372         /*
3373          * Exactly one AF bit should be set in selkey.
3374          */
3375         ASSERT(!(selkey->ipsl_valid & IPSL_IPV4) ^
3376             !(selkey->ipsl_valid & IPSL_IPV6));
3377 
3378         hval = selkey_hash(selkey, ns);
3379         /* Set pol_hval to uninitialized until we put it in a polhead. */
3380         selkey->ipsl_sel_hval = hval;
3381 
3382         bucket = (hval == IPSEC_SEL_NOHASH) ? 0 : hval;
3383 
3384         ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, bucket));
3385         HASH_LOCK(ipss->ipsec_sel_hash, bucket);
3386 
3387         for (HASH_ITERATE(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket)) {
3388                 if (bcmp(&sp->ipsl_key, selkey,
3389                     offsetof(ipsec_selkey_t, ipsl_pol_hval)) == 0)
3390                         break;
3391         }
3392         if (sp != NULL) {
3393                 sp->ipsl_refs++;
3394 
3395                 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3396                 return (sp);
3397         }
3398 
3399         sp = kmem_cache_alloc(ipsec_sel_cache, KM_NOSLEEP);
3400         if (sp == NULL) {
3401                 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3402                 return (NULL);
3403         }
3404 
3405         HASH_INSERT(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket);
3406         sp->ipsl_refs = 2;   /* one for hash table, one for caller */
3407         sp->ipsl_key = *selkey;
3408         /* Set to uninitalized and have insertion into polhead fix things. */
3409         if (selkey->ipsl_sel_hval != IPSEC_SEL_NOHASH)
3410                 sp->ipsl_key.ipsl_pol_hval = 0;
3411         else
3412                 sp->ipsl_key.ipsl_pol_hval = IPSEC_SEL_NOHASH;
3413 
3414         HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3415 
3416         return (sp);
3417 }
3418 
3419 static void
3420 ipsec_sel_rel(ipsec_sel_t **spp, netstack_t *ns)
3421 {
3422         ipsec_sel_t *sp = *spp;
3423         int hval = sp->ipsl_key.ipsl_sel_hval;
3424         ipsec_stack_t   *ipss = ns->netstack_ipsec;
3425 
3426         *spp = NULL;
3427 
3428         if (hval == IPSEC_SEL_NOHASH)
3429                 hval = 0;
3430 
3431         ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, hval));
3432         HASH_LOCK(ipss->ipsec_sel_hash, hval);
3433         if (--sp->ipsl_refs == 1) {
3434                 HASH_UNCHAIN(sp, ipsl_hash, ipss->ipsec_sel_hash, hval);
3435                 sp->ipsl_refs--;
3436                 HASH_UNLOCK(ipss->ipsec_sel_hash, hval);
3437                 ASSERT(sp->ipsl_refs == 0);
3438                 kmem_cache_free(ipsec_sel_cache, sp);
3439                 /* Caller unlocks */
3440                 return;
3441         }
3442 
3443         HASH_UNLOCK(ipss->ipsec_sel_hash, hval);
3444 }
3445 
3446 /*
3447  * Free a policy rule which we know is no longer being referenced.
3448  */
3449 void
3450 ipsec_policy_free(ipsec_policy_t *ipp)
3451 {
3452         ASSERT(ipp->ipsp_refs == 0);
3453         ASSERT(ipp->ipsp_sel != NULL);
3454         ASSERT(ipp->ipsp_act != NULL);
3455         ASSERT(ipp->ipsp_netstack != NULL);
3456 
3457         ipsec_sel_rel(&ipp->ipsp_sel, ipp->ipsp_netstack);
3458         IPACT_REFRELE(ipp->ipsp_act);
3459         kmem_cache_free(ipsec_pol_cache, ipp);
3460 }
3461 
3462 /*
3463  * Construction of new policy rules; construct a policy, and add it to
3464  * the appropriate tables.
3465  */
3466 ipsec_policy_t *
3467 ipsec_policy_create(ipsec_selkey_t *keys, const ipsec_act_t *a,
3468     int nacts, int prio, uint64_t *index_ptr, netstack_t *ns)
3469 {
3470         ipsec_action_t *ap;
3471         ipsec_sel_t *sp;
3472         ipsec_policy_t *ipp;
3473         ipsec_stack_t   *ipss = ns->netstack_ipsec;
3474 
3475         if (index_ptr == NULL)
3476                 index_ptr = &ipss->ipsec_next_policy_index;
3477 
3478         ipp = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
3479         ap = ipsec_act_find(a, nacts, ns);
3480         sp = ipsec_find_sel(keys, ns);
3481 
3482         if ((ap == NULL) || (sp == NULL) || (ipp == NULL)) {
3483                 if (ap != NULL) {
3484                         IPACT_REFRELE(ap);
3485                 }
3486                 if (sp != NULL)
3487                         ipsec_sel_rel(&sp, ns);
3488                 if (ipp != NULL)
3489                         kmem_cache_free(ipsec_pol_cache, ipp);
3490                 return (NULL);
3491         }
3492 
3493         HASH_NULL(ipp, ipsp_hash);
3494 
3495         ipp->ipsp_netstack = ns;     /* Needed for ipsec_policy_free */
3496         ipp->ipsp_refs = 1;  /* caller's reference */
3497         ipp->ipsp_sel = sp;
3498         ipp->ipsp_act = ap;
3499         ipp->ipsp_prio = prio;       /* rule priority */
3500         ipp->ipsp_index = *index_ptr;
3501         (*index_ptr)++;
3502 
3503         return (ipp);
3504 }
3505 
3506 static void
3507 ipsec_update_present_flags(ipsec_stack_t *ipss)
3508 {
3509         boolean_t hashpol;
3510 
3511         hashpol = (avl_numnodes(&ipss->ipsec_system_policy.iph_rulebyid) > 0);
3512 
3513         if (hashpol) {
3514                 ipss->ipsec_outbound_v4_policy_present = B_TRUE;
3515                 ipss->ipsec_outbound_v6_policy_present = B_TRUE;
3516                 ipss->ipsec_inbound_v4_policy_present = B_TRUE;
3517                 ipss->ipsec_inbound_v6_policy_present = B_TRUE;
3518                 return;
3519         }
3520 
3521         ipss->ipsec_outbound_v4_policy_present = (NULL !=
3522             ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3523             ipr_nonhash[IPSEC_AF_V4]);
3524         ipss->ipsec_outbound_v6_policy_present = (NULL !=
3525             ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3526             ipr_nonhash[IPSEC_AF_V6]);
3527         ipss->ipsec_inbound_v4_policy_present = (NULL !=
3528             ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND].
3529             ipr_nonhash[IPSEC_AF_V4]);
3530         ipss->ipsec_inbound_v6_policy_present = (NULL !=
3531             ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND].
3532             ipr_nonhash[IPSEC_AF_V6]);
3533 }
3534 
3535 boolean_t
3536 ipsec_policy_delete(ipsec_policy_head_t *php, ipsec_selkey_t *keys, int dir,
3537         netstack_t *ns)
3538 {
3539         ipsec_sel_t *sp;
3540         ipsec_policy_t *ip, *nip, *head;
3541         int af;
3542         ipsec_policy_root_t *pr = &php->iph_root[dir];
3543 
3544         sp = ipsec_find_sel(keys, ns);
3545 
3546         if (sp == NULL)
3547                 return (B_FALSE);
3548 
3549         af = (sp->ipsl_key.ipsl_valid & IPSL_IPV4) ? IPSEC_AF_V4 : IPSEC_AF_V6;
3550 
3551         rw_enter(&php->iph_lock, RW_WRITER);
3552 
3553         if (sp->ipsl_key.ipsl_pol_hval == IPSEC_SEL_NOHASH) {
3554                 head = pr->ipr_nonhash[af];
3555         } else {
3556                 head = pr->ipr_hash[sp->ipsl_key.ipsl_pol_hval].hash_head;
3557         }
3558 
3559         for (ip = head; ip != NULL; ip = nip) {
3560                 nip = ip->ipsp_hash.hash_next;
3561                 if (ip->ipsp_sel != sp) {
3562                         continue;
3563                 }
3564 
3565                 IPPOL_UNCHAIN(php, ip);
3566 
3567                 php->iph_gen++;
3568                 ipsec_update_present_flags(ns->netstack_ipsec);
3569 
3570                 rw_exit(&php->iph_lock);
3571 
3572                 ipsec_sel_rel(&sp, ns);
3573 
3574                 return (B_TRUE);
3575         }
3576 
3577         rw_exit(&php->iph_lock);
3578         ipsec_sel_rel(&sp, ns);
3579         return (B_FALSE);
3580 }
3581 
3582 int
3583 ipsec_policy_delete_index(ipsec_policy_head_t *php, uint64_t policy_index,
3584     netstack_t *ns)
3585 {
3586         boolean_t found = B_FALSE;
3587         ipsec_policy_t ipkey;
3588         ipsec_policy_t *ip;
3589         avl_index_t where;
3590 
3591         bzero(&ipkey, sizeof (ipkey));
3592         ipkey.ipsp_index = policy_index;
3593 
3594         rw_enter(&php->iph_lock, RW_WRITER);
3595 
3596         /*
3597          * We could be cleverer here about the walk.
3598          * but well, (k+1)*log(N) will do for now (k==number of matches,
3599          * N==number of table entries
3600          */
3601         for (;;) {
3602                 ip = (ipsec_policy_t *)avl_find(&php->iph_rulebyid,
3603                     (void *)&ipkey, &where);
3604                 ASSERT(ip == NULL);
3605 
3606                 ip = avl_nearest(&php->iph_rulebyid, where, AVL_AFTER);
3607 
3608                 if (ip == NULL)
3609                         break;
3610 
3611                 if (ip->ipsp_index != policy_index) {
3612                         ASSERT(ip->ipsp_index > policy_index);
3613                         break;
3614                 }
3615 
3616                 IPPOL_UNCHAIN(php, ip);
3617                 found = B_TRUE;
3618         }
3619 
3620         if (found) {
3621                 php->iph_gen++;
3622                 ipsec_update_present_flags(ns->netstack_ipsec);
3623         }
3624 
3625         rw_exit(&php->iph_lock);
3626 
3627         return (found ? 0 : ENOENT);
3628 }
3629 
3630 /*
3631  * Given a constructed ipsec_policy_t policy rule, see if it can be entered
3632  * into the correct policy ruleset.  As a side-effect, it sets the hash
3633  * entries on "ipp"'s ipsp_pol_hval.
3634  *
3635  * Returns B_TRUE if it can be entered, B_FALSE if it can't be (because a
3636  * duplicate policy exists with exactly the same selectors), or an icmp
3637  * rule exists with a different encryption/authentication action.
3638  */
3639 boolean_t
3640 ipsec_check_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction)
3641 {
3642         ipsec_policy_root_t *pr = &php->iph_root[direction];
3643         int af = -1;
3644         ipsec_policy_t *p2, *head;
3645         uint8_t check_proto;
3646         ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3647         uint32_t        valid = selkey->ipsl_valid;
3648 
3649         if (valid & IPSL_IPV6) {
3650                 ASSERT(!(valid & IPSL_IPV4));
3651                 af = IPSEC_AF_V6;
3652                 check_proto = IPPROTO_ICMPV6;
3653         } else {
3654                 ASSERT(valid & IPSL_IPV4);
3655                 af = IPSEC_AF_V4;
3656                 check_proto = IPPROTO_ICMP;
3657         }
3658 
3659         ASSERT(RW_WRITE_HELD(&php->iph_lock));
3660 
3661         /*
3662          * Double-check that we don't have any duplicate selectors here.
3663          * Because selectors are interned below, we need only compare pointers
3664          * for equality.
3665          */
3666         if (selkey->ipsl_sel_hval == IPSEC_SEL_NOHASH) {
3667                 head = pr->ipr_nonhash[af];
3668         } else {
3669                 selkey->ipsl_pol_hval =
3670                     (selkey->ipsl_valid & IPSL_IPV4) ?
3671                     IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
3672                     pr->ipr_nchains) :
3673                     IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
3674                     pr->ipr_nchains);
3675 
3676                 head = pr->ipr_hash[selkey->ipsl_pol_hval].hash_head;
3677         }
3678 
3679         for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3680                 if (p2->ipsp_sel == ipp->ipsp_sel)
3681                         return (B_FALSE);
3682         }
3683 
3684         /*
3685          * If it's ICMP and not a drop or pass rule, run through the ICMP
3686          * rules and make sure the action is either new or the same as any
3687          * other actions.  We don't have to check the full chain because
3688          * discard and bypass will override all other actions
3689          */
3690 
3691         if (valid & IPSL_PROTOCOL &&
3692             selkey->ipsl_proto == check_proto &&
3693             (ipp->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_APPLY)) {
3694 
3695                 for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3696 
3697                         if (p2->ipsp_sel->ipsl_key.ipsl_valid & IPSL_PROTOCOL &&
3698                             p2->ipsp_sel->ipsl_key.ipsl_proto == check_proto &&
3699                             (p2->ipsp_act->ipa_act.ipa_type ==
3700                             IPSEC_ACT_APPLY)) {
3701                                 return (ipsec_compare_action(p2, ipp));
3702                         }
3703                 }
3704         }
3705 
3706         return (B_TRUE);
3707 }
3708 
3709 /*
3710  * compare the action chains of two policies for equality
3711  * B_TRUE -> effective equality
3712  */
3713 
3714 static boolean_t
3715 ipsec_compare_action(ipsec_policy_t *p1, ipsec_policy_t *p2)
3716 {
3717 
3718         ipsec_action_t *act1, *act2;
3719 
3720         /* We have a valid rule. Let's compare the actions */
3721         if (p1->ipsp_act == p2->ipsp_act) {
3722                 /* same action. We are good */
3723                 return (B_TRUE);
3724         }
3725 
3726         /* we have to walk the chain */
3727 
3728         act1 = p1->ipsp_act;
3729         act2 = p2->ipsp_act;
3730 
3731         while (act1 != NULL && act2 != NULL) {
3732 
3733                 /* otherwise, Are we close enough? */
3734                 if (act1->ipa_allow_clear != act2->ipa_allow_clear ||
3735                     act1->ipa_want_ah != act2->ipa_want_ah ||
3736                     act1->ipa_want_esp != act2->ipa_want_esp ||
3737                     act1->ipa_want_se != act2->ipa_want_se) {
3738                         /* Nope, we aren't */
3739                         return (B_FALSE);
3740                 }
3741 
3742                 if (act1->ipa_want_ah) {
3743                         if (act1->ipa_act.ipa_apply.ipp_auth_alg !=
3744                             act2->ipa_act.ipa_apply.ipp_auth_alg) {
3745                                 return (B_FALSE);
3746                         }
3747 
3748                         if (act1->ipa_act.ipa_apply.ipp_ah_minbits !=
3749                             act2->ipa_act.ipa_apply.ipp_ah_minbits ||
3750                             act1->ipa_act.ipa_apply.ipp_ah_maxbits !=
3751                             act2->ipa_act.ipa_apply.ipp_ah_maxbits) {
3752                                 return (B_FALSE);
3753                         }
3754                 }
3755 
3756                 if (act1->ipa_want_esp) {
3757                         if (act1->ipa_act.ipa_apply.ipp_use_esp !=
3758                             act2->ipa_act.ipa_apply.ipp_use_esp ||
3759                             act1->ipa_act.ipa_apply.ipp_use_espa !=
3760                             act2->ipa_act.ipa_apply.ipp_use_espa) {
3761                                 return (B_FALSE);
3762                         }
3763 
3764                         if (act1->ipa_act.ipa_apply.ipp_use_esp) {
3765                                 if (act1->ipa_act.ipa_apply.ipp_encr_alg !=
3766                                     act2->ipa_act.ipa_apply.ipp_encr_alg) {
3767                                         return (B_FALSE);
3768                                 }
3769 
3770                                 if (act1->ipa_act.ipa_apply.ipp_espe_minbits !=
3771                                     act2->ipa_act.ipa_apply.ipp_espe_minbits ||
3772                                     act1->ipa_act.ipa_apply.ipp_espe_maxbits !=
3773                                     act2->ipa_act.ipa_apply.ipp_espe_maxbits) {
3774                                         return (B_FALSE);
3775                                 }
3776                         }
3777 
3778                         if (act1->ipa_act.ipa_apply.ipp_use_espa) {
3779                                 if (act1->ipa_act.ipa_apply.ipp_esp_auth_alg !=
3780                                     act2->ipa_act.ipa_apply.ipp_esp_auth_alg) {
3781                                         return (B_FALSE);
3782                                 }
3783 
3784                                 if (act1->ipa_act.ipa_apply.ipp_espa_minbits !=
3785                                     act2->ipa_act.ipa_apply.ipp_espa_minbits ||
3786                                     act1->ipa_act.ipa_apply.ipp_espa_maxbits !=
3787                                     act2->ipa_act.ipa_apply.ipp_espa_maxbits) {
3788                                         return (B_FALSE);
3789                                 }
3790                         }
3791 
3792                 }
3793 
3794                 act1 = act1->ipa_next;
3795                 act2 = act2->ipa_next;
3796         }
3797 
3798         if (act1 != NULL || act2 != NULL) {
3799                 return (B_FALSE);
3800         }
3801 
3802         return (B_TRUE);
3803 }
3804 
3805 
3806 /*
3807  * Given a constructed ipsec_policy_t policy rule, enter it into
3808  * the correct policy ruleset.
3809  *
3810  * ipsec_check_policy() is assumed to have succeeded first (to check for
3811  * duplicates).
3812  */
3813 void
3814 ipsec_enter_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction,
3815     netstack_t *ns)
3816 {
3817         ipsec_policy_root_t *pr = &php->iph_root[direction];
3818         ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3819         uint32_t valid = selkey->ipsl_valid;
3820         uint32_t hval = selkey->ipsl_pol_hval;
3821         int af = -1;
3822 
3823         ASSERT(RW_WRITE_HELD(&php->iph_lock));
3824 
3825         if (valid & IPSL_IPV6) {
3826                 ASSERT(!(valid & IPSL_IPV4));
3827                 af = IPSEC_AF_V6;
3828         } else {
3829                 ASSERT(valid & IPSL_IPV4);
3830                 af = IPSEC_AF_V4;
3831         }
3832 
3833         php->iph_gen++;
3834 
3835         if (hval == IPSEC_SEL_NOHASH) {
3836                 HASHLIST_INSERT(ipp, ipsp_hash, pr->ipr_nonhash[af]);
3837         } else {
3838                 HASH_LOCK(pr->ipr_hash, hval);
3839                 HASH_INSERT(ipp, ipsp_hash, pr->ipr_hash, hval);
3840                 HASH_UNLOCK(pr->ipr_hash, hval);
3841         }
3842 
3843         ipsec_insert_always(&php->iph_rulebyid, ipp);
3844 
3845         ipsec_update_present_flags(ns->netstack_ipsec);
3846 }
3847 
3848 static void
3849 ipsec_ipr_flush(ipsec_policy_head_t *php, ipsec_policy_root_t *ipr)
3850 {
3851         ipsec_policy_t *ip, *nip;
3852         int af, chain, nchain;
3853 
3854         for (af = 0; af < IPSEC_NAF; af++) {
3855                 for (ip = ipr->ipr_nonhash[af]; ip != NULL; ip = nip) {
3856                         nip = ip->ipsp_hash.hash_next;
3857                         IPPOL_UNCHAIN(php, ip);
3858                 }
3859                 ipr->ipr_nonhash[af] = NULL;
3860         }
3861         nchain = ipr->ipr_nchains;
3862 
3863         for (chain = 0; chain < nchain; chain++) {
3864                 for (ip = ipr->ipr_hash[chain].hash_head; ip != NULL;
3865                     ip = nip) {
3866                         nip = ip->ipsp_hash.hash_next;
3867                         IPPOL_UNCHAIN(php, ip);
3868                 }
3869                 ipr->ipr_hash[chain].hash_head = NULL;
3870         }
3871 }
3872 
3873 /*
3874  * Create and insert inbound or outbound policy associated with actp for the
3875  * address family fam into the policy head ph.  Returns B_TRUE if policy was
3876  * inserted, and B_FALSE otherwise.
3877  */
3878 boolean_t
3879 ipsec_polhead_insert(ipsec_policy_head_t *ph, ipsec_act_t *actp, uint_t nact,
3880     int fam, int ptype, netstack_t *ns)
3881 {
3882         ipsec_selkey_t          sel;
3883         ipsec_policy_t          *pol;
3884         ipsec_policy_root_t     *pr;
3885 
3886         bzero(&sel, sizeof (sel));
3887         sel.ipsl_valid = (fam == IPSEC_AF_V4 ? IPSL_IPV4 : IPSL_IPV6);
3888         if ((pol = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET,
3889             NULL, ns)) != NULL) {
3890                 pr = &ph->iph_root[ptype];
3891                 HASHLIST_INSERT(pol, ipsp_hash, pr->ipr_nonhash[fam]);
3892                 ipsec_insert_always(&ph->iph_rulebyid, pol);
3893         }
3894         return (pol != NULL);
3895 }
3896 
3897 void
3898 ipsec_polhead_flush(ipsec_policy_head_t *php, netstack_t *ns)
3899 {
3900         int dir;
3901 
3902         ASSERT(RW_WRITE_HELD(&php->iph_lock));
3903 
3904         for (dir = 0; dir < IPSEC_NTYPES; dir++)
3905                 ipsec_ipr_flush(php, &php->iph_root[dir]);
3906 
3907         php->iph_gen++;
3908         ipsec_update_present_flags(ns->netstack_ipsec);
3909 }
3910 
3911 void
3912 ipsec_polhead_free(ipsec_policy_head_t *php, netstack_t *ns)
3913 {
3914         int dir;
3915 
3916         ASSERT(php->iph_refs == 0);
3917 
3918         rw_enter(&php->iph_lock, RW_WRITER);
3919         ipsec_polhead_flush(php, ns);
3920         rw_exit(&php->iph_lock);
3921         rw_destroy(&php->iph_lock);
3922         for (dir = 0; dir < IPSEC_NTYPES; dir++) {
3923                 ipsec_policy_root_t *ipr = &php->iph_root[dir];
3924                 int chain;
3925 
3926                 for (chain = 0; chain < ipr->ipr_nchains; chain++)
3927                         mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
3928 
3929         }
3930         ipsec_polhead_free_table(php);
3931         kmem_free(php, sizeof (*php));
3932 }
3933 
3934 static void
3935 ipsec_ipr_init(ipsec_policy_root_t *ipr)
3936 {
3937         int af;
3938 
3939         ipr->ipr_nchains = 0;
3940         ipr->ipr_hash = NULL;
3941 
3942         for (af = 0; af < IPSEC_NAF; af++) {
3943                 ipr->ipr_nonhash[af] = NULL;
3944         }
3945 }
3946 
3947 ipsec_policy_head_t *
3948 ipsec_polhead_create(void)
3949 {
3950         ipsec_policy_head_t *php;
3951 
3952         php = kmem_alloc(sizeof (*php), KM_NOSLEEP);
3953         if (php == NULL)
3954                 return (php);
3955 
3956         rw_init(&php->iph_lock, NULL, RW_DEFAULT, NULL);
3957         php->iph_refs = 1;
3958         php->iph_gen = 0;
3959 
3960         ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_INBOUND]);
3961         ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_OUTBOUND]);
3962 
3963         avl_create(&php->iph_rulebyid, ipsec_policy_cmpbyid,
3964             sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
3965 
3966         return (php);
3967 }
3968 
3969 /*
3970  * Clone the policy head into a new polhead; release one reference to the
3971  * old one and return the only reference to the new one.
3972  * If the old one had a refcount of 1, just return it.
3973  */
3974 ipsec_policy_head_t *
3975 ipsec_polhead_split(ipsec_policy_head_t *php, netstack_t *ns)
3976 {
3977         ipsec_policy_head_t *nphp;
3978 
3979         if (php == NULL)
3980                 return (ipsec_polhead_create());
3981         else if (php->iph_refs == 1)
3982                 return (php);
3983 
3984         nphp = ipsec_polhead_create();
3985         if (nphp == NULL)
3986                 return (NULL);
3987 
3988         if (ipsec_copy_polhead(php, nphp, ns) != 0) {
3989                 ipsec_polhead_free(nphp, ns);
3990                 return (NULL);
3991         }
3992         IPPH_REFRELE(php, ns);
3993         return (nphp);
3994 }
3995 
3996 /*
3997  * When sending a response to a ICMP request or generating a RST
3998  * in the TCP case, the outbound packets need to go at the same level
3999  * of protection as the incoming ones i.e we associate our outbound
4000  * policy with how the packet came in. We call this after we have
4001  * accepted the incoming packet which may or may not have been in
4002  * clear and hence we are sending the reply back with the policy
4003  * matching the incoming datagram's policy.
4004  *
4005  * NOTE : This technology serves two purposes :
4006  *
4007  * 1) If we have multiple outbound policies, we send out a reply
4008  *    matching with how it came in rather than matching the outbound
4009  *    policy.
4010  *
4011  * 2) For assymetric policies, we want to make sure that incoming
4012  *    and outgoing has the same level of protection. Assymetric
4013  *    policies exist only with global policy where we may not have
4014  *    both outbound and inbound at the same time.
4015  *
4016  * NOTE2:       This function is called by cleartext cases, so it needs to be
4017  *              in IP proper.
4018  *
4019  * Note: the caller has moved other parts of ira into ixa already.
4020  */
4021 boolean_t
4022 ipsec_in_to_out(ip_recv_attr_t *ira, ip_xmit_attr_t *ixa, mblk_t *data_mp,
4023     ipha_t *ipha, ip6_t *ip6h)
4024 {
4025         ipsec_selector_t sel;
4026         ipsec_action_t  *reflect_action = NULL;
4027         netstack_t      *ns = ixa->ixa_ipst->ips_netstack;
4028 
4029         bzero((void*)&sel, sizeof (sel));
4030 
4031         if (ira->ira_ipsec_action != NULL) {
4032                 /* transfer reference.. */
4033                 reflect_action = ira->ira_ipsec_action;
4034                 ira->ira_ipsec_action = NULL;
4035         } else if (!(ira->ira_flags & IRAF_LOOPBACK))
4036                 reflect_action = ipsec_in_to_out_action(ira);
4037 
4038         /*
4039          * The caller is going to send the datagram out which might
4040          * go on the wire or delivered locally through ire_send_local.
4041          *
4042          * 1) If it goes out on the wire, new associations will be
4043          *    obtained.
4044          * 2) If it is delivered locally, ire_send_local will convert
4045          *    this ip_xmit_attr_t back to a ip_recv_attr_t looking at the
4046          *    requests.
4047          */
4048         ixa->ixa_ipsec_action = reflect_action;
4049 
4050         if (!ipsec_init_outbound_ports(&sel, data_mp, ipha, ip6h, 0,
4051             ns->netstack_ipsec)) {
4052                 /* Note: data_mp already consumed and ip_drop_packet done */
4053                 return (B_FALSE);
4054         }
4055         ixa->ixa_ipsec_src_port = sel.ips_local_port;
4056         ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4057         ixa->ixa_ipsec_proto = sel.ips_protocol;
4058         ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4059         ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4060 
4061         /*
4062          * Don't use global policy for this, as we want
4063          * to use the same protection that was applied to the inbound packet.
4064          * Thus we set IXAF_NO_IPSEC is it arrived in the clear to make
4065          * it be sent in the clear.
4066          */
4067         if (ira->ira_flags & IRAF_IPSEC_SECURE)
4068                 ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4069         else
4070                 ixa->ixa_flags |= IXAF_NO_IPSEC;
4071 
4072         return (B_TRUE);
4073 }
4074 
4075 void
4076 ipsec_out_release_refs(ip_xmit_attr_t *ixa)
4077 {
4078         if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
4079                 return;
4080 
4081         if (ixa->ixa_ipsec_ah_sa != NULL) {
4082                 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
4083                 ixa->ixa_ipsec_ah_sa = NULL;
4084         }
4085         if (ixa->ixa_ipsec_esp_sa != NULL) {
4086                 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
4087                 ixa->ixa_ipsec_esp_sa = NULL;
4088         }
4089         if (ixa->ixa_ipsec_policy != NULL) {
4090                 IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4091                 ixa->ixa_ipsec_policy = NULL;
4092         }
4093         if (ixa->ixa_ipsec_action != NULL) {
4094                 IPACT_REFRELE(ixa->ixa_ipsec_action);
4095                 ixa->ixa_ipsec_action = NULL;
4096         }
4097         if (ixa->ixa_ipsec_latch) {
4098                 IPLATCH_REFRELE(ixa->ixa_ipsec_latch);
4099                 ixa->ixa_ipsec_latch = NULL;
4100         }
4101         /* Clear the soft references to the SAs */
4102         ixa->ixa_ipsec_ref[0].ipsr_sa = NULL;
4103         ixa->ixa_ipsec_ref[0].ipsr_bucket = NULL;
4104         ixa->ixa_ipsec_ref[0].ipsr_gen = 0;
4105         ixa->ixa_ipsec_ref[1].ipsr_sa = NULL;
4106         ixa->ixa_ipsec_ref[1].ipsr_bucket = NULL;
4107         ixa->ixa_ipsec_ref[1].ipsr_gen = 0;
4108         ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4109 }
4110 
4111 void
4112 ipsec_in_release_refs(ip_recv_attr_t *ira)
4113 {
4114         if (!(ira->ira_flags & IRAF_IPSEC_SECURE))
4115                 return;
4116 
4117         if (ira->ira_ipsec_ah_sa != NULL) {
4118                 IPSA_REFRELE(ira->ira_ipsec_ah_sa);
4119                 ira->ira_ipsec_ah_sa = NULL;
4120         }
4121         if (ira->ira_ipsec_esp_sa != NULL) {
4122                 IPSA_REFRELE(ira->ira_ipsec_esp_sa);
4123                 ira->ira_ipsec_esp_sa = NULL;
4124         }
4125         ira->ira_flags &= ~IRAF_IPSEC_SECURE;
4126 }
4127 
4128 /*
4129  * This is called from ire_send_local when a packet
4130  * is looped back. We setup the ip_recv_attr_t "borrowing" the references
4131  * held by the callers.
4132  * Note that we don't do any IPsec but we carry the actions and IPSEC flags
4133  * across so that the fanout policy checks see that IPsec was applied.
4134  *
4135  * The caller should do ipsec_in_release_refs() on the ira by calling
4136  * ira_cleanup().
4137  */
4138 void
4139 ipsec_out_to_in(ip_xmit_attr_t *ixa, ill_t *ill, ip_recv_attr_t *ira)
4140 {
4141         ipsec_policy_t *pol;
4142         ipsec_action_t *act;
4143 
4144         /* Non-IPsec operations */
4145         ira->ira_free_flags = 0;
4146         ira->ira_zoneid = ixa->ixa_zoneid;
4147         ira->ira_cred = ixa->ixa_cred;
4148         ira->ira_cpid = ixa->ixa_cpid;
4149         ira->ira_tsl = ixa->ixa_tsl;
4150         ira->ira_ill = ira->ira_rill = ill;
4151         ira->ira_flags = ixa->ixa_flags & IAF_MASK;
4152         ira->ira_no_loop_zoneid = ixa->ixa_no_loop_zoneid;
4153         ira->ira_pktlen = ixa->ixa_pktlen;
4154         ira->ira_ip_hdr_length = ixa->ixa_ip_hdr_length;
4155         ira->ira_protocol = ixa->ixa_protocol;
4156         ira->ira_mhip = NULL;
4157 
4158         ira->ira_flags |= IRAF_LOOPBACK | IRAF_L2SRC_LOOPBACK;
4159 
4160         ira->ira_sqp = ixa->ixa_sqp;
4161         ira->ira_ring = NULL;
4162 
4163         ira->ira_ruifindex = ill->ill_phyint->phyint_ifindex;
4164         ira->ira_rifindex = ira->ira_ruifindex;
4165 
4166         if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
4167                 return;
4168 
4169         ira->ira_flags |= IRAF_IPSEC_SECURE;
4170 
4171         ira->ira_ipsec_ah_sa = NULL;
4172         ira->ira_ipsec_esp_sa = NULL;
4173 
4174         act = ixa->ixa_ipsec_action;
4175         if (act == NULL) {
4176                 pol = ixa->ixa_ipsec_policy;
4177                 if (pol != NULL) {
4178                         act = pol->ipsp_act;
4179                         IPACT_REFHOLD(act);
4180                 }
4181         }
4182         ixa->ixa_ipsec_action = NULL;
4183         ira->ira_ipsec_action = act;
4184 }
4185 
4186 /*
4187  * Consults global policy and per-socket policy to see whether this datagram
4188  * should go out secure. If so it updates the ip_xmit_attr_t
4189  * Should not be used when connecting, since then we want to latch the policy.
4190  *
4191  * If connp is NULL we just look at the global policy.
4192  *
4193  * Returns NULL if the packet was dropped, in which case the MIB has
4194  * been incremented and ip_drop_packet done.
4195  */
4196 mblk_t *
4197 ip_output_attach_policy(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4198     const conn_t *connp, ip_xmit_attr_t *ixa)
4199 {
4200         ipsec_selector_t sel;
4201         boolean_t       policy_present;
4202         ip_stack_t      *ipst = ixa->ixa_ipst;
4203         netstack_t      *ns = ipst->ips_netstack;
4204         ipsec_stack_t   *ipss = ns->netstack_ipsec;
4205         ipsec_policy_t  *p;
4206 
4207         ixa->ixa_ipsec_policy_gen = ipss->ipsec_system_policy.iph_gen;
4208         ASSERT((ipha != NULL && ip6h == NULL) ||
4209             (ip6h != NULL && ipha == NULL));
4210 
4211         if (ipha != NULL)
4212                 policy_present = ipss->ipsec_outbound_v4_policy_present;
4213         else
4214                 policy_present = ipss->ipsec_outbound_v6_policy_present;
4215 
4216         if (!policy_present && (connp == NULL || connp->conn_policy == NULL))
4217                 return (mp);
4218 
4219         bzero((void*)&sel, sizeof (sel));
4220 
4221         if (ipha != NULL) {
4222                 sel.ips_local_addr_v4 = ipha->ipha_src;
4223                 sel.ips_remote_addr_v4 = ip_get_dst(ipha);
4224                 sel.ips_isv4 = B_TRUE;
4225         } else {
4226                 sel.ips_isv4 = B_FALSE;
4227                 sel.ips_local_addr_v6 = ip6h->ip6_src;
4228                 sel.ips_remote_addr_v6 = ip_get_dst_v6(ip6h, mp, NULL);
4229         }
4230         sel.ips_protocol = ixa->ixa_protocol;
4231 
4232         if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0, ipss)) {
4233                 if (ipha != NULL) {
4234                         BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
4235                 } else {
4236                         BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards);
4237                 }
4238                 /* Note: mp already consumed and ip_drop_packet done */
4239                 return (NULL);
4240         }
4241 
4242         ASSERT(ixa->ixa_ipsec_policy == NULL);
4243         p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns);
4244         ixa->ixa_ipsec_policy = p;
4245         if (p != NULL) {
4246                 ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4247                 if (connp == NULL || connp->conn_policy == NULL)
4248                         ixa->ixa_flags |= IXAF_IPSEC_GLOBAL_POLICY;
4249         } else {
4250                 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4251         }
4252 
4253         /*
4254          * Copy the right port information.
4255          */
4256         ixa->ixa_ipsec_src_port = sel.ips_local_port;
4257         ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4258         ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4259         ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4260         ixa->ixa_ipsec_proto = sel.ips_protocol;
4261         return (mp);
4262 }
4263 
4264 /*
4265  * When appropriate, this function caches inbound and outbound policy
4266  * for this connection. The outbound policy is stored in conn_ixa.
4267  * Note that it can not be used for SCTP since conn_faddr isn't set for SCTP.
4268  *
4269  * XXX need to work out more details about per-interface policy and
4270  * caching here!
4271  *
4272  * XXX may want to split inbound and outbound caching for ill..
4273  */
4274 int
4275 ipsec_conn_cache_policy(conn_t *connp, boolean_t isv4)
4276 {
4277         boolean_t global_policy_present;
4278         netstack_t      *ns = connp->conn_netstack;
4279         ipsec_stack_t   *ipss = ns->netstack_ipsec;
4280 
4281         connp->conn_ixa->ixa_ipsec_policy_gen =
4282             ipss->ipsec_system_policy.iph_gen;
4283         /*
4284          * There is no policy latching for ICMP sockets because we can't
4285          * decide on which policy to use until we see the packet and get
4286          * type/code selectors.
4287          */
4288         if (connp->conn_proto == IPPROTO_ICMP ||
4289             connp->conn_proto == IPPROTO_ICMPV6) {
4290                 connp->conn_in_enforce_policy =
4291                     connp->conn_out_enforce_policy = B_TRUE;
4292                 if (connp->conn_latch != NULL) {
4293                         IPLATCH_REFRELE(connp->conn_latch);
4294                         connp->conn_latch = NULL;
4295                 }
4296                 if (connp->conn_latch_in_policy != NULL) {
4297                         IPPOL_REFRELE(connp->conn_latch_in_policy);
4298                         connp->conn_latch_in_policy = NULL;
4299                 }
4300                 if (connp->conn_latch_in_action != NULL) {
4301                         IPACT_REFRELE(connp->conn_latch_in_action);
4302                         connp->conn_latch_in_action = NULL;
4303                 }
4304                 if (connp->conn_ixa->ixa_ipsec_policy != NULL) {
4305                         IPPOL_REFRELE(connp->conn_ixa->ixa_ipsec_policy);
4306                         connp->conn_ixa->ixa_ipsec_policy = NULL;
4307                 }
4308                 if (connp->conn_ixa->ixa_ipsec_action != NULL) {
4309                         IPACT_REFRELE(connp->conn_ixa->ixa_ipsec_action);
4310                         connp->conn_ixa->ixa_ipsec_action = NULL;
4311                 }
4312                 connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4313                 return (0);
4314         }
4315 
4316         global_policy_present = isv4 ?
4317             (ipss->ipsec_outbound_v4_policy_present ||
4318             ipss->ipsec_inbound_v4_policy_present) :
4319             (ipss->ipsec_outbound_v6_policy_present ||
4320             ipss->ipsec_inbound_v6_policy_present);
4321 
4322         if ((connp->conn_policy != NULL) || global_policy_present) {
4323                 ipsec_selector_t sel;
4324                 ipsec_policy_t  *p;
4325 
4326                 if (connp->conn_latch == NULL &&
4327                     (connp->conn_latch = iplatch_create()) == NULL) {
4328                         return (ENOMEM);
4329                 }
4330 
4331                 bzero((void*)&sel, sizeof (sel));
4332 
4333                 sel.ips_protocol = connp->conn_proto;
4334                 sel.ips_local_port = connp->conn_lport;
4335                 sel.ips_remote_port = connp->conn_fport;
4336                 sel.ips_is_icmp_inv_acq = 0;
4337                 sel.ips_isv4 = isv4;
4338                 if (isv4) {
4339                         sel.ips_local_addr_v4 = connp->conn_laddr_v4;
4340                         sel.ips_remote_addr_v4 = connp->conn_faddr_v4;
4341                 } else {
4342                         sel.ips_local_addr_v6 = connp->conn_laddr_v6;
4343                         sel.ips_remote_addr_v6 = connp->conn_faddr_v6;
4344                 }
4345 
4346                 p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, &sel, ns);
4347                 if (connp->conn_latch_in_policy != NULL)
4348                         IPPOL_REFRELE(connp->conn_latch_in_policy);
4349                 connp->conn_latch_in_policy = p;
4350                 connp->conn_in_enforce_policy = (p != NULL);
4351 
4352                 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns);
4353                 if (connp->conn_ixa->ixa_ipsec_policy != NULL)
4354                         IPPOL_REFRELE(connp->conn_ixa->ixa_ipsec_policy);
4355                 connp->conn_ixa->ixa_ipsec_policy = p;
4356                 connp->conn_out_enforce_policy = (p != NULL);
4357                 if (p != NULL) {
4358                         connp->conn_ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4359                         if (connp->conn_policy == NULL) {
4360                                 connp->conn_ixa->ixa_flags |=
4361                                     IXAF_IPSEC_GLOBAL_POLICY;
4362                         }
4363                 } else {
4364                         connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4365                 }
4366                 /* Clear the latched actions too, in case we're recaching. */
4367                 if (connp->conn_ixa->ixa_ipsec_action != NULL) {
4368                         IPACT_REFRELE(connp->conn_ixa->ixa_ipsec_action);
4369                         connp->conn_ixa->ixa_ipsec_action = NULL;
4370                 }
4371                 if (connp->conn_latch_in_action != NULL) {
4372                         IPACT_REFRELE(connp->conn_latch_in_action);
4373                         connp->conn_latch_in_action = NULL;
4374                 }
4375                 connp->conn_ixa->ixa_ipsec_src_port = sel.ips_local_port;
4376                 connp->conn_ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4377                 connp->conn_ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4378                 connp->conn_ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4379                 connp->conn_ixa->ixa_ipsec_proto = sel.ips_protocol;
4380         } else {
4381                 connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4382         }
4383 
4384         /*
4385          * We may or may not have policy for this endpoint.  We still set
4386          * conn_policy_cached so that inbound datagrams don't have to look
4387          * at global policy as policy is considered latched for these
4388          * endpoints.  We should not set conn_policy_cached until the conn
4389          * reflects the actual policy. If we *set* this before inheriting
4390          * the policy there is a window where the check
4391          * CONN_INBOUND_POLICY_PRESENT, will neither check with the policy
4392          * on the conn (because we have not yet copied the policy on to
4393          * conn and hence not set conn_in_enforce_policy) nor with the
4394          * global policy (because conn_policy_cached is already set).
4395          */
4396         connp->conn_policy_cached = B_TRUE;
4397         return (0);
4398 }
4399 
4400 /*
4401  * When appropriate, this function caches outbound policy for faddr/fport.
4402  * It is used when we are not connected i.e., when we can not latch the
4403  * policy.
4404  */
4405 void
4406 ipsec_cache_outbound_policy(const conn_t *connp, const in6_addr_t *v6src,
4407     const in6_addr_t *v6dst, in_port_t dstport, ip_xmit_attr_t *ixa)
4408 {
4409         boolean_t       isv4 = (ixa->ixa_flags & IXAF_IS_IPV4) != 0;
4410         boolean_t       global_policy_present;
4411         netstack_t      *ns = connp->conn_netstack;
4412         ipsec_stack_t   *ipss = ns->netstack_ipsec;
4413 
4414         ixa->ixa_ipsec_policy_gen = ipss->ipsec_system_policy.iph_gen;
4415 
4416         /*
4417          * There is no policy caching for ICMP sockets because we can't
4418          * decide on which policy to use until we see the packet and get
4419          * type/code selectors.
4420          */
4421         if (connp->conn_proto == IPPROTO_ICMP ||
4422             connp->conn_proto == IPPROTO_ICMPV6) {
4423                 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4424                 if (ixa->ixa_ipsec_policy != NULL) {
4425                         IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4426                         ixa->ixa_ipsec_policy = NULL;
4427                 }
4428                 if (ixa->ixa_ipsec_action != NULL) {
4429                         IPACT_REFRELE(ixa->ixa_ipsec_action);
4430                         ixa->ixa_ipsec_action = NULL;
4431                 }
4432                 return;
4433         }
4434 
4435         global_policy_present = isv4 ?
4436             (ipss->ipsec_outbound_v4_policy_present ||
4437             ipss->ipsec_inbound_v4_policy_present) :
4438             (ipss->ipsec_outbound_v6_policy_present ||
4439             ipss->ipsec_inbound_v6_policy_present);
4440 
4441         if ((connp->conn_policy != NULL) || global_policy_present) {
4442                 ipsec_selector_t sel;
4443                 ipsec_policy_t  *p;
4444 
4445                 bzero((void*)&sel, sizeof (sel));
4446 
4447                 sel.ips_protocol = connp->conn_proto;
4448                 sel.ips_local_port = connp->conn_lport;
4449                 sel.ips_remote_port = dstport;
4450                 sel.ips_is_icmp_inv_acq = 0;
4451                 sel.ips_isv4 = isv4;
4452                 if (isv4) {
4453                         IN6_V4MAPPED_TO_IPADDR(v6src, sel.ips_local_addr_v4);
4454                         IN6_V4MAPPED_TO_IPADDR(v6dst, sel.ips_remote_addr_v4);
4455                 } else {
4456                         sel.ips_local_addr_v6 = *v6src;
4457                         sel.ips_remote_addr_v6 = *v6dst;
4458                 }
4459 
4460                 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns);
4461                 if (ixa->ixa_ipsec_policy != NULL)
4462                         IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4463                 ixa->ixa_ipsec_policy = p;
4464                 if (p != NULL) {
4465                         ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4466                         if (connp->conn_policy == NULL)
4467                                 ixa->ixa_flags |= IXAF_IPSEC_GLOBAL_POLICY;
4468                 } else {
4469                         ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4470                 }
4471                 /* Clear the latched actions too, in case we're recaching. */
4472                 if (ixa->ixa_ipsec_action != NULL) {
4473                         IPACT_REFRELE(ixa->ixa_ipsec_action);
4474                         ixa->ixa_ipsec_action = NULL;
4475                 }
4476 
4477                 ixa->ixa_ipsec_src_port = sel.ips_local_port;
4478                 ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4479                 ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4480                 ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4481                 ixa->ixa_ipsec_proto = sel.ips_protocol;
4482         } else {
4483                 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4484                 if (ixa->ixa_ipsec_policy != NULL) {
4485                         IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4486                         ixa->ixa_ipsec_policy = NULL;
4487                 }
4488                 if (ixa->ixa_ipsec_action != NULL) {
4489                         IPACT_REFRELE(ixa->ixa_ipsec_action);
4490                         ixa->ixa_ipsec_action = NULL;
4491                 }
4492         }
4493 }
4494 
4495 /*
4496  * Returns B_FALSE if the policy has gone stale.
4497  */
4498 boolean_t
4499 ipsec_outbound_policy_current(ip_xmit_attr_t *ixa)
4500 {
4501         ipsec_stack_t   *ipss = ixa->ixa_ipst->ips_netstack->netstack_ipsec;
4502 
4503         if (!(ixa->ixa_flags & IXAF_IPSEC_GLOBAL_POLICY))
4504                 return (B_TRUE);
4505 
4506         return (ixa->ixa_ipsec_policy_gen == ipss->ipsec_system_policy.iph_gen);
4507 }
4508 
4509 void
4510 iplatch_free(ipsec_latch_t *ipl)
4511 {
4512         if (ipl->ipl_local_cid != NULL)
4513                 IPSID_REFRELE(ipl->ipl_local_cid);
4514         if (ipl->ipl_remote_cid != NULL)
4515                 IPSID_REFRELE(ipl->ipl_remote_cid);
4516         mutex_destroy(&ipl->ipl_lock);
4517         kmem_free(ipl, sizeof (*ipl));
4518 }
4519 
4520 ipsec_latch_t *
4521 iplatch_create()
4522 {
4523         ipsec_latch_t *ipl = kmem_alloc(sizeof (*ipl), KM_NOSLEEP);
4524         if (ipl == NULL)
4525                 return (ipl);
4526         bzero(ipl, sizeof (*ipl));
4527         mutex_init(&ipl->ipl_lock, NULL, MUTEX_DEFAULT, NULL);
4528         ipl->ipl_refcnt = 1;
4529         return (ipl);
4530 }
4531 
4532 /*
4533  * Hash function for ID hash table.
4534  */
4535 static uint32_t
4536 ipsid_hash(int idtype, char *idstring)
4537 {
4538         uint32_t hval = idtype;
4539         unsigned char c;
4540 
4541         while ((c = *idstring++) != 0) {
4542                 hval = (hval << 4) | (hval >> 28);
4543                 hval ^= c;
4544         }
4545         hval = hval ^ (hval >> 16);
4546         return (hval & (IPSID_HASHSIZE-1));
4547 }
4548 
4549 /*
4550  * Look up identity string in hash table.  Return identity object
4551  * corresponding to the name -- either preexisting, or newly allocated.
4552  *
4553  * Return NULL if we need to allocate a new one and can't get memory.
4554  */
4555 ipsid_t *
4556 ipsid_lookup(int idtype, char *idstring, netstack_t *ns)
4557 {
4558         ipsid_t *retval;
4559         char *nstr;
4560         int idlen = strlen(idstring) + 1;
4561         ipsec_stack_t   *ipss = ns->netstack_ipsec;
4562         ipsif_t *bucket;
4563 
4564         bucket = &ipss->ipsec_ipsid_buckets[ipsid_hash(idtype, idstring)];
4565 
4566         mutex_enter(&bucket->ipsif_lock);
4567 
4568         for (retval = bucket->ipsif_head; retval != NULL;
4569             retval = retval->ipsid_next) {
4570                 if (idtype != retval->ipsid_type)
4571                         continue;
4572                 if (bcmp(idstring, retval->ipsid_cid, idlen) != 0)
4573                         continue;
4574 
4575                 IPSID_REFHOLD(retval);
4576                 mutex_exit(&bucket->ipsif_lock);
4577                 return (retval);
4578         }
4579 
4580         retval = kmem_alloc(sizeof (*retval), KM_NOSLEEP);
4581         if (!retval) {
4582                 mutex_exit(&bucket->ipsif_lock);
4583                 return (NULL);
4584         }
4585 
4586         nstr = kmem_alloc(idlen, KM_NOSLEEP);
4587         if (!nstr) {
4588                 mutex_exit(&bucket->ipsif_lock);
4589                 kmem_free(retval, sizeof (*retval));
4590                 return (NULL);
4591         }
4592 
4593         retval->ipsid_refcnt = 1;
4594         retval->ipsid_next = bucket->ipsif_head;
4595         if (retval->ipsid_next != NULL)
4596                 retval->ipsid_next->ipsid_ptpn = &retval->ipsid_next;
4597         retval->ipsid_ptpn = &bucket->ipsif_head;
4598         retval->ipsid_type = idtype;
4599         retval->ipsid_cid = nstr;
4600         bucket->ipsif_head = retval;
4601         bcopy(idstring, nstr, idlen);
4602         mutex_exit(&bucket->ipsif_lock);
4603 
4604         return (retval);
4605 }
4606 
4607 /*
4608  * Garbage collect the identity hash table.
4609  */
4610 void
4611 ipsid_gc(netstack_t *ns)
4612 {
4613         int i, len;
4614         ipsid_t *id, *nid;
4615         ipsif_t *bucket;
4616         ipsec_stack_t   *ipss = ns->netstack_ipsec;
4617 
4618         for (i = 0; i < IPSID_HASHSIZE; i++) {
4619                 bucket = &ipss->ipsec_ipsid_buckets[i];
4620                 mutex_enter(&bucket->ipsif_lock);
4621                 for (id = bucket->ipsif_head; id != NULL; id = nid) {
4622                         nid = id->ipsid_next;
4623                         if (id->ipsid_refcnt == 0) {
4624                                 *id->ipsid_ptpn = nid;
4625                                 if (nid != NULL)
4626                                         nid->ipsid_ptpn = id->ipsid_ptpn;
4627                                 len = strlen(id->ipsid_cid) + 1;
4628                                 kmem_free(id->ipsid_cid, len);
4629                                 kmem_free(id, sizeof (*id));
4630                         }
4631                 }
4632                 mutex_exit(&bucket->ipsif_lock);
4633         }
4634 }
4635 
4636 /*
4637  * Return true if two identities are the same.
4638  */
4639 boolean_t
4640 ipsid_equal(ipsid_t *id1, ipsid_t *id2)
4641 {
4642         if (id1 == id2)
4643                 return (B_TRUE);
4644 #ifdef DEBUG
4645         if ((id1 == NULL) || (id2 == NULL))
4646                 return (B_FALSE);
4647         /*
4648          * test that we're interning id's correctly..
4649          */
4650         ASSERT((strcmp(id1->ipsid_cid, id2->ipsid_cid) != 0) ||
4651             (id1->ipsid_type != id2->ipsid_type));
4652 #endif
4653         return (B_FALSE);
4654 }
4655 
4656 /*
4657  * Initialize identity table; called during module initialization.
4658  */
4659 static void
4660 ipsid_init(netstack_t *ns)
4661 {
4662         ipsif_t *bucket;
4663         int i;
4664         ipsec_stack_t   *ipss = ns->netstack_ipsec;
4665 
4666         for (i = 0; i < IPSID_HASHSIZE; i++) {
4667                 bucket = &ipss->ipsec_ipsid_buckets[i];
4668                 mutex_init(&bucket->ipsif_lock, NULL, MUTEX_DEFAULT, NULL);
4669         }
4670 }
4671 
4672 /*
4673  * Free identity table (preparatory to module unload)
4674  */
4675 static void
4676 ipsid_fini(netstack_t *ns)
4677 {
4678         ipsif_t *bucket;
4679         int i;
4680         ipsec_stack_t   *ipss = ns->netstack_ipsec;
4681 
4682         for (i = 0; i < IPSID_HASHSIZE; i++) {
4683                 bucket = &ipss->ipsec_ipsid_buckets[i];
4684                 ASSERT(bucket->ipsif_head == NULL);
4685                 mutex_destroy(&bucket->ipsif_lock);
4686         }
4687 }
4688 
4689 /*
4690  * Update the minimum and maximum supported key sizes for the
4691  * specified algorithm. Must be called while holding the algorithms lock.
4692  */
4693 void
4694 ipsec_alg_fix_min_max(ipsec_alginfo_t *alg, ipsec_algtype_t alg_type,
4695     netstack_t *ns)
4696 {
4697         size_t crypto_min = (size_t)-1, crypto_max = 0;
4698         size_t cur_crypto_min, cur_crypto_max;
4699         boolean_t is_valid;
4700         crypto_mechanism_info_t *mech_infos;
4701         uint_t nmech_infos;
4702         int crypto_rc, i;
4703         crypto_mech_usage_t mask;
4704         ipsec_stack_t   *ipss = ns->netstack_ipsec;
4705 
4706         ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
4707 
4708         /*
4709          * Compute the min, max, and default key sizes (in number of
4710          * increments to the default key size in bits) as defined
4711          * by the algorithm mappings. This range of key sizes is used
4712          * for policy related operations. The effective key sizes
4713          * supported by the framework could be more limited than
4714          * those defined for an algorithm.
4715          */
4716         alg->alg_default_bits = alg->alg_key_sizes[0];
4717         alg->alg_default = 0;
4718         if (alg->alg_increment != 0) {
4719                 /* key sizes are defined by range & increment */
4720                 alg->alg_minbits = alg->alg_key_sizes[1];
4721                 alg->alg_maxbits = alg->alg_key_sizes[2];
4722         } else if (alg->alg_nkey_sizes == 0) {
4723                 /* no specified key size for algorithm */
4724                 alg->alg_minbits = alg->alg_maxbits = 0;
4725         } else {
4726                 /* key sizes are defined by enumeration */
4727                 alg->alg_minbits = (uint16_t)-1;
4728                 alg->alg_maxbits = 0;
4729 
4730                 for (i = 0; i < alg->alg_nkey_sizes; i++) {
4731                         if (alg->alg_key_sizes[i] < alg->alg_minbits)
4732                                 alg->alg_minbits = alg->alg_key_sizes[i];
4733                         if (alg->alg_key_sizes[i] > alg->alg_maxbits)
4734                                 alg->alg_maxbits = alg->alg_key_sizes[i];
4735                 }
4736         }
4737 
4738         if (!(alg->alg_flags & ALG_FLAG_VALID))
4739                 return;
4740 
4741         /*
4742          * Mechanisms do not apply to the NULL encryption
4743          * algorithm, so simply return for this case.
4744          */
4745         if (alg->alg_id == SADB_EALG_NULL)
4746                 return;
4747 
4748         /*
4749          * Find the min and max key sizes supported by the cryptographic
4750          * framework providers.
4751          */
4752 
4753         /* get the key sizes supported by the framework */
4754         crypto_rc = crypto_get_all_mech_info(alg->alg_mech_type,
4755             &mech_infos, &nmech_infos, KM_SLEEP);
4756         if (crypto_rc != CRYPTO_SUCCESS || nmech_infos == 0) {
4757                 alg->alg_flags &= ~ALG_FLAG_VALID;
4758                 return;
4759         }
4760 
4761         /* min and max key sizes supported by framework */
4762         for (i = 0, is_valid = B_FALSE; i < nmech_infos; i++) {
4763                 int unit_bits;
4764 
4765                 /*
4766                  * Ignore entries that do not support the operations
4767                  * needed for the algorithm type.
4768                  */
4769                 if (alg_type == IPSEC_ALG_AUTH) {
4770                         mask = CRYPTO_MECH_USAGE_MAC;
4771                 } else {
4772                         mask = CRYPTO_MECH_USAGE_ENCRYPT |
4773                             CRYPTO_MECH_USAGE_DECRYPT;
4774                 }
4775                 if ((mech_infos[i].mi_usage & mask) != mask)
4776                         continue;
4777 
4778                 unit_bits = (mech_infos[i].mi_keysize_unit ==
4779                     CRYPTO_KEYSIZE_UNIT_IN_BYTES)  ? 8 : 1;
4780                 /* adjust min/max supported by framework */
4781                 cur_crypto_min = mech_infos[i].mi_min_key_size * unit_bits;
4782                 cur_crypto_max = mech_infos[i].mi_max_key_size * unit_bits;
4783 
4784                 if (cur_crypto_min < crypto_min)
4785                         crypto_min = cur_crypto_min;
4786 
4787                 /*
4788                  * CRYPTO_EFFECTIVELY_INFINITE is a special value of
4789                  * the crypto framework which means "no upper limit".
4790                  */
4791                 if (mech_infos[i].mi_max_key_size ==
4792                     CRYPTO_EFFECTIVELY_INFINITE) {
4793                         crypto_max = (size_t)-1;
4794                 } else if (cur_crypto_max > crypto_max) {
4795                         crypto_max = cur_crypto_max;
4796                 }
4797 
4798                 is_valid = B_TRUE;
4799         }
4800 
4801         kmem_free(mech_infos, sizeof (crypto_mechanism_info_t) *
4802             nmech_infos);
4803 
4804         if (!is_valid) {
4805                 /* no key sizes supported by framework */
4806                 alg->alg_flags &= ~ALG_FLAG_VALID;
4807                 return;
4808         }
4809 
4810         /*
4811          * Determine min and max key sizes from alg_key_sizes[].
4812          * defined for the algorithm entry. Adjust key sizes based on
4813          * those supported by the framework.
4814          */
4815         alg->alg_ef_default_bits = alg->alg_key_sizes[0];
4816 
4817         /*
4818          * For backwards compatability, assume that the IV length
4819          * is the same as the data length.
4820          */
4821         alg->alg_ivlen = alg->alg_datalen;
4822 
4823         /*
4824          * Copy any algorithm parameters (if provided) into dedicated
4825          * elements in the ipsec_alginfo_t structure.
4826          * There may be a better place to put this code.
4827          */
4828         for (i = 0; i < alg->alg_nparams; i++) {
4829                 switch (i) {
4830                 case 0:
4831                         /* Initialisation Vector length (bytes) */
4832                         alg->alg_ivlen =  alg->alg_params[0];
4833                         break;
4834                 case 1:
4835                         /* Integrity Check Vector length (bytes) */
4836                         alg->alg_icvlen = alg->alg_params[1];
4837                         break;
4838                 case 2:
4839                         /* Salt length (bytes) */
4840                         alg->alg_saltlen = (uint8_t)alg->alg_params[2];
4841                         break;
4842                 default:
4843                         break;
4844                 }
4845         }
4846 
4847         /* Default if the IV length is not specified. */
4848         if (alg_type == IPSEC_ALG_ENCR && alg->alg_ivlen == 0)
4849                 alg->alg_ivlen = alg->alg_datalen;
4850 
4851         alg_flag_check(alg);
4852 
4853         if (alg->alg_increment != 0) {
4854                 /* supported key sizes are defined by range  & increment */
4855                 crypto_min = ALGBITS_ROUND_UP(crypto_min, alg->alg_increment);
4856                 crypto_max = ALGBITS_ROUND_DOWN(crypto_max, alg->alg_increment);
4857 
4858                 alg->alg_ef_minbits = MAX(alg->alg_minbits,
4859                     (uint16_t)crypto_min);
4860                 alg->alg_ef_maxbits = MIN(alg->alg_maxbits,
4861                     (uint16_t)crypto_max);
4862 
4863                 /*
4864                  * If the sizes supported by the framework are outside
4865                  * the range of sizes defined by the algorithm mappings,
4866                  * the algorithm cannot be used. Check for this
4867                  * condition here.
4868                  */
4869                 if (alg->alg_ef_minbits > alg->alg_ef_maxbits) {
4870                         alg->alg_flags &= ~ALG_FLAG_VALID;
4871                         return;
4872                 }
4873                 if (alg->alg_ef_default_bits < alg->alg_ef_minbits)
4874                         alg->alg_ef_default_bits = alg->alg_ef_minbits;
4875                 if (alg->alg_ef_default_bits > alg->alg_ef_maxbits)
4876                         alg->alg_ef_default_bits = alg->alg_ef_maxbits;
4877         } else if (alg->alg_nkey_sizes == 0) {
4878                 /* no specified key size for algorithm */
4879                 alg->alg_ef_minbits = alg->alg_ef_maxbits = 0;
4880         } else {
4881                 /* supported key sizes are defined by enumeration */
4882                 alg->alg_ef_minbits = (uint16_t)-1;
4883                 alg->alg_ef_maxbits = 0;
4884 
4885                 for (i = 0, is_valid = B_FALSE; i < alg->alg_nkey_sizes; i++) {
4886                         /*
4887                          * Ignore the current key size if it is not in the
4888                          * range of sizes supported by the framework.
4889                          */
4890                         if (alg->alg_key_sizes[i] < crypto_min ||
4891                             alg->alg_key_sizes[i] > crypto_max)
4892                                 continue;
4893                         if (alg->alg_key_sizes[i] < alg->alg_ef_minbits)
4894                                 alg->alg_ef_minbits = alg->alg_key_sizes[i];
4895                         if (alg->alg_key_sizes[i] > alg->alg_ef_maxbits)
4896                                 alg->alg_ef_maxbits = alg->alg_key_sizes[i];
4897                         is_valid = B_TRUE;
4898                 }
4899 
4900                 if (!is_valid) {
4901                         alg->alg_flags &= ~ALG_FLAG_VALID;
4902                         return;
4903                 }
4904                 alg->alg_ef_default = 0;
4905         }
4906 }
4907 
4908 /*
4909  * Sanity check parameters provided by ipsecalgs(1m). Assume that
4910  * the algoritm is marked as valid, there is a check at the top
4911  * of this function. If any of the checks below fail, the algorithm
4912  * entry is invalid.
4913  */
4914 void
4915 alg_flag_check(ipsec_alginfo_t *alg)
4916 {
4917         alg->alg_flags &= ~ALG_FLAG_VALID;
4918 
4919         /*
4920          * Can't have the algorithm marked as CCM and GCM.
4921          * Check the ALG_FLAG_COMBINED and ALG_FLAG_COUNTERMODE
4922          * flags are set for CCM & GCM.
4923          */
4924         if ((alg->alg_flags & (ALG_FLAG_CCM|ALG_FLAG_GCM)) ==
4925             (ALG_FLAG_CCM|ALG_FLAG_GCM))
4926                 return;
4927         if (alg->alg_flags & (ALG_FLAG_CCM|ALG_FLAG_GCM)) {
4928                 if (!(alg->alg_flags & ALG_FLAG_COUNTERMODE))
4929                         return;
4930                 if (!(alg->alg_flags & ALG_FLAG_COMBINED))
4931                         return;
4932         }
4933 
4934         /*
4935          * For ALG_FLAG_COUNTERMODE, check the parameters
4936          * fit in the ipsec_nonce_t structure.
4937          */
4938         if (alg->alg_flags & ALG_FLAG_COUNTERMODE) {
4939                 if (alg->alg_ivlen != sizeof (((ipsec_nonce_t *)NULL)->iv))
4940                         return;
4941                 if (alg->alg_saltlen > sizeof (((ipsec_nonce_t *)NULL)->salt))
4942                         return;
4943         }
4944         if ((alg->alg_flags & ALG_FLAG_COMBINED) &&
4945             (alg->alg_icvlen == 0))
4946                 return;
4947 
4948         /* all is well. */
4949         alg->alg_flags |= ALG_FLAG_VALID;
4950 }
4951 
4952 /*
4953  * Free the memory used by the specified algorithm.
4954  */
4955 void
4956 ipsec_alg_free(ipsec_alginfo_t *alg)
4957 {
4958         if (alg == NULL)
4959                 return;
4960 
4961         if (alg->alg_key_sizes != NULL) {
4962                 kmem_free(alg->alg_key_sizes,
4963                     (alg->alg_nkey_sizes + 1) * sizeof (uint16_t));
4964                 alg->alg_key_sizes = NULL;
4965         }
4966         if (alg->alg_block_sizes != NULL) {
4967                 kmem_free(alg->alg_block_sizes,
4968                     (alg->alg_nblock_sizes + 1) * sizeof (uint16_t));
4969                 alg->alg_block_sizes = NULL;
4970         }
4971         if (alg->alg_params != NULL) {
4972                 kmem_free(alg->alg_params,
4973                     (alg->alg_nparams + 1) * sizeof (uint16_t));
4974                 alg->alg_params = NULL;
4975         }
4976         kmem_free(alg, sizeof (*alg));
4977 }
4978 
4979 /*
4980  * Check the validity of the specified key size for an algorithm.
4981  * Returns B_TRUE if key size is valid, B_FALSE otherwise.
4982  */
4983 boolean_t
4984 ipsec_valid_key_size(uint16_t key_size, ipsec_alginfo_t *alg)
4985 {
4986         if (key_size < alg->alg_ef_minbits || key_size > alg->alg_ef_maxbits)
4987                 return (B_FALSE);
4988 
4989         if (alg->alg_increment == 0 && alg->alg_nkey_sizes != 0) {
4990                 /*
4991                  * If the key sizes are defined by enumeration, the new
4992                  * key size must be equal to one of the supported values.
4993                  */
4994                 int i;
4995 
4996                 for (i = 0; i < alg->alg_nkey_sizes; i++)
4997                         if (key_size == alg->alg_key_sizes[i])
4998                                 break;
4999                 if (i == alg->alg_nkey_sizes)
5000                         return (B_FALSE);
5001         }
5002 
5003         return (B_TRUE);
5004 }
5005 
5006 /*
5007  * Callback function invoked by the crypto framework when a provider
5008  * registers or unregisters. This callback updates the algorithms
5009  * tables when a crypto algorithm is no longer available or becomes
5010  * available, and triggers the freeing/creation of context templates
5011  * associated with existing SAs, if needed.
5012  *
5013  * Need to walk all stack instances since the callback is global
5014  * for all instances
5015  */
5016 void
5017 ipsec_prov_update_callback(uint32_t event, void *event_arg)
5018 {
5019         netstack_handle_t nh;
5020         netstack_t *ns;
5021 
5022         netstack_next_init(&nh);
5023         while ((ns = netstack_next(&nh)) != NULL) {
5024                 ipsec_prov_update_callback_stack(event, event_arg, ns);
5025                 netstack_rele(ns);
5026         }
5027         netstack_next_fini(&nh);
5028 }
5029 
5030 static void
5031 ipsec_prov_update_callback_stack(uint32_t event, void *event_arg,
5032     netstack_t *ns)
5033 {
5034         crypto_notify_event_change_t *prov_change =
5035             (crypto_notify_event_change_t *)event_arg;
5036         uint_t algidx, algid, algtype, mech_count, mech_idx;
5037         ipsec_alginfo_t *alg;
5038         ipsec_alginfo_t oalg;
5039         crypto_mech_name_t *mechs;
5040         boolean_t alg_changed = B_FALSE;
5041         ipsec_stack_t   *ipss = ns->netstack_ipsec;
5042 
5043         /* ignore events for which we didn't register */
5044         if (event != CRYPTO_EVENT_MECHS_CHANGED) {
5045                 ip1dbg(("ipsec_prov_update_callback: unexpected event 0x%x "
5046                     " received from crypto framework\n", event));
5047                 return;
5048         }
5049 
5050         mechs = crypto_get_mech_list(&mech_count, KM_SLEEP);
5051         if (mechs == NULL)
5052                 return;
5053 
5054         /*
5055          * Walk the list of currently defined IPsec algorithm. Update
5056          * the algorithm valid flag and trigger an update of the
5057          * SAs that depend on that algorithm.
5058          */
5059         mutex_enter(&ipss->ipsec_alg_lock);
5060         for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) {
5061                 for (algidx = 0; algidx < ipss->ipsec_nalgs[algtype];
5062                     algidx++) {
5063 
5064                         algid = ipss->ipsec_sortlist[algtype][algidx];
5065                         alg = ipss->ipsec_alglists[algtype][algid];
5066                         ASSERT(alg != NULL);
5067 
5068                         /*
5069                          * Skip the algorithms which do not map to the
5070                          * crypto framework provider being added or removed.
5071                          */
5072                         if (strncmp(alg->alg_mech_name,
5073                             prov_change->ec_mech_name,
5074                             CRYPTO_MAX_MECH_NAME) != 0)
5075                                 continue;
5076 
5077                         /*
5078                          * Determine if the mechanism is valid. If it
5079                          * is not, mark the algorithm as being invalid. If
5080                          * it is, mark the algorithm as being valid.
5081                          */
5082                         for (mech_idx = 0; mech_idx < mech_count; mech_idx++)
5083                                 if (strncmp(alg->alg_mech_name,
5084                                     mechs[mech_idx], CRYPTO_MAX_MECH_NAME) == 0)
5085                                         break;
5086                         if (mech_idx == mech_count &&
5087                             alg->alg_flags & ALG_FLAG_VALID) {
5088                                 alg->alg_flags &= ~ALG_FLAG_VALID;
5089                                 alg_changed = B_TRUE;
5090                         } else if (mech_idx < mech_count &&
5091                             !(alg->alg_flags & ALG_FLAG_VALID)) {
5092                                 alg->alg_flags |= ALG_FLAG_VALID;
5093                                 alg_changed = B_TRUE;
5094                         }
5095 
5096                         /*
5097                          * Update the supported key sizes, regardless
5098                          * of whether a crypto provider was added or
5099                          * removed.
5100                          */
5101                         oalg = *alg;
5102                         ipsec_alg_fix_min_max(alg, algtype, ns);
5103                         if (!alg_changed &&
5104                             alg->alg_ef_minbits != oalg.alg_ef_minbits ||
5105                             alg->alg_ef_maxbits != oalg.alg_ef_maxbits ||
5106                             alg->alg_ef_default != oalg.alg_ef_default ||
5107                             alg->alg_ef_default_bits !=
5108                             oalg.alg_ef_default_bits)
5109                                 alg_changed = B_TRUE;
5110 
5111                         /*
5112                          * Update the affected SAs if a software provider is
5113                          * being added or removed.
5114                          */
5115                         if (prov_change->ec_provider_type ==
5116                             CRYPTO_SW_PROVIDER)
5117                                 sadb_alg_update(algtype, alg->alg_id,
5118                                     prov_change->ec_change ==
5119                                     CRYPTO_MECH_ADDED, ns);
5120                 }
5121         }
5122         mutex_exit(&ipss->ipsec_alg_lock);
5123         crypto_free_mech_list(mechs, mech_count);
5124 
5125         if (alg_changed) {
5126                 /*
5127                  * An algorithm has changed, i.e. it became valid or
5128                  * invalid, or its support key sizes have changed.
5129                  * Notify ipsecah and ipsecesp of this change so
5130                  * that they can send a SADB_REGISTER to their consumers.
5131                  */
5132                 ipsecah_algs_changed(ns);
5133                 ipsecesp_algs_changed(ns);
5134         }
5135 }
5136 
5137 /*
5138  * Registers with the crypto framework to be notified of crypto
5139  * providers changes. Used to update the algorithm tables and
5140  * to free or create context templates if needed. Invoked after IPsec
5141  * is loaded successfully.
5142  *
5143  * This is called separately for each IP instance, so we ensure we only
5144  * register once.
5145  */
5146 void
5147 ipsec_register_prov_update(void)
5148 {
5149         if (prov_update_handle != NULL)
5150                 return;
5151 
5152         prov_update_handle = crypto_notify_events(
5153             ipsec_prov_update_callback, CRYPTO_EVENT_MECHS_CHANGED);
5154 }
5155 
5156 /*
5157  * Unregisters from the framework to be notified of crypto providers
5158  * changes. Called from ipsec_policy_g_destroy().
5159  */
5160 static void
5161 ipsec_unregister_prov_update(void)
5162 {
5163         if (prov_update_handle != NULL)
5164                 crypto_unnotify_events(prov_update_handle);
5165 }
5166 
5167 /*
5168  * Tunnel-mode support routines.
5169  */
5170 
5171 /*
5172  * Returns an mblk chain suitable for putnext() if policies match and IPsec
5173  * SAs are available.  If there's no per-tunnel policy, or a match comes back
5174  * with no match, then still return the packet and have global policy take
5175  * a crack at it in IP.
5176  * This updates the ip_xmit_attr with the IPsec policy.
5177  *
5178  * Remember -> we can be forwarding packets.  Keep that in mind w.r.t.
5179  * inner-packet contents.
5180  */
5181 mblk_t *
5182 ipsec_tun_outbound(mblk_t *mp, iptun_t *iptun, ipha_t *inner_ipv4,
5183     ip6_t *inner_ipv6, ipha_t *outer_ipv4, ip6_t *outer_ipv6, int outer_hdr_len,
5184     ip_xmit_attr_t *ixa)
5185 {
5186         ipsec_policy_head_t *polhead;
5187         ipsec_selector_t sel;
5188         mblk_t *nmp;
5189         boolean_t is_fragment;
5190         ipsec_policy_t *pol;
5191         ipsec_tun_pol_t *itp = iptun->iptun_itp;
5192         netstack_t *ns = iptun->iptun_ns;
5193         ipsec_stack_t *ipss = ns->netstack_ipsec;
5194 
5195         ASSERT(outer_ipv6 != NULL && outer_ipv4 == NULL ||
5196             outer_ipv4 != NULL && outer_ipv6 == NULL);
5197         /* We take care of inners in a bit. */
5198 
5199         /* Are the IPsec fields initialized at all? */
5200         if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) {
5201                 ASSERT(ixa->ixa_ipsec_policy == NULL);
5202                 ASSERT(ixa->ixa_ipsec_latch == NULL);
5203                 ASSERT(ixa->ixa_ipsec_action == NULL);
5204                 ASSERT(ixa->ixa_ipsec_ah_sa == NULL);
5205                 ASSERT(ixa->ixa_ipsec_esp_sa == NULL);
5206         }
5207 
5208         ASSERT(itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE));
5209         polhead = itp->itp_policy;
5210 
5211         bzero(&sel, sizeof (sel));
5212         if (inner_ipv4 != NULL) {
5213                 ASSERT(inner_ipv6 == NULL);
5214                 sel.ips_isv4 = B_TRUE;
5215                 sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5216                 sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5217                 sel.ips_protocol = (uint8_t)inner_ipv4->ipha_protocol;
5218         } else {
5219                 ASSERT(inner_ipv6 != NULL);
5220                 sel.ips_isv4 = B_FALSE;
5221                 sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5222                 /*
5223                  * We don't care about routing-header dests in the
5224                  * forwarding/tunnel path, so just grab ip6_dst.
5225                  */
5226                 sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5227         }
5228 
5229         if (itp->itp_flags & ITPF_P_PER_PORT_SECURITY) {
5230                 /*
5231                  * Caller can prepend the outer header, which means
5232                  * inner_ipv[46] may be stuck in the middle.  Pullup the whole
5233                  * mess now if need-be, for easier processing later.  Don't
5234                  * forget to rewire the outer header too.
5235                  */
5236                 if (mp->b_cont != NULL) {
5237                         nmp = msgpullup(mp, -1);
5238                         if (nmp == NULL) {
5239                                 ip_drop_packet(mp, B_FALSE, NULL,
5240                                     DROPPER(ipss, ipds_spd_nomem),
5241                                     &ipss->ipsec_spd_dropper);
5242                                 return (NULL);
5243                         }
5244                         freemsg(mp);
5245                         mp = nmp;
5246                         if (outer_ipv4 != NULL)
5247                                 outer_ipv4 = (ipha_t *)mp->b_rptr;
5248                         else
5249                                 outer_ipv6 = (ip6_t *)mp->b_rptr;
5250                         if (inner_ipv4 != NULL) {
5251                                 inner_ipv4 =
5252                                     (ipha_t *)(mp->b_rptr + outer_hdr_len);
5253                         } else {
5254                                 inner_ipv6 =
5255                                     (ip6_t *)(mp->b_rptr + outer_hdr_len);
5256                         }
5257                 }
5258                 if (inner_ipv4 != NULL) {
5259                         is_fragment = IS_V4_FRAGMENT(
5260                             inner_ipv4->ipha_fragment_offset_and_flags);
5261                 } else {
5262                         sel.ips_remote_addr_v6 = ip_get_dst_v6(inner_ipv6, mp,
5263                             &is_fragment);
5264                 }
5265 
5266                 if (is_fragment) {
5267                         ipha_t *oiph;
5268                         ipha_t *iph = NULL;
5269                         ip6_t *ip6h = NULL;
5270                         int hdr_len;
5271                         uint16_t ip6_hdr_length;
5272                         uint8_t v6_proto;
5273                         uint8_t *v6_proto_p;
5274 
5275                         /*
5276                          * We have a fragment we need to track!
5277                          */
5278                         mp = ipsec_fragcache_add(&itp->itp_fragcache, NULL, mp,
5279                             outer_hdr_len, ipss);
5280                         if (mp == NULL)
5281                                 return (NULL);
5282                         ASSERT(mp->b_cont == NULL);
5283 
5284                         /*
5285                          * If we get here, we have a full fragment chain
5286                          */
5287 
5288                         oiph = (ipha_t *)mp->b_rptr;
5289                         if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
5290                                 hdr_len = ((outer_hdr_len != 0) ?
5291                                     IPH_HDR_LENGTH(oiph) : 0);
5292                                 iph = (ipha_t *)(mp->b_rptr + hdr_len);
5293                         } else {
5294                                 ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
5295                                 ip6h = (ip6_t *)mp->b_rptr;
5296                                 if (!ip_hdr_length_nexthdr_v6(mp, ip6h,
5297                                     &ip6_hdr_length, &v6_proto_p)) {
5298                                         ip_drop_packet_chain(mp, B_FALSE, NULL,
5299                                             DROPPER(ipss,
5300                                             ipds_spd_malformed_packet),
5301                                             &ipss->ipsec_spd_dropper);
5302                                         return (NULL);
5303                                 }
5304                                 hdr_len = ip6_hdr_length;
5305                         }
5306                         outer_hdr_len = hdr_len;
5307 
5308                         if (sel.ips_isv4) {
5309                                 if (iph == NULL) {
5310                                         /* Was v6 outer */
5311                                         iph = (ipha_t *)(mp->b_rptr + hdr_len);
5312                                 }
5313                                 inner_ipv4 = iph;
5314                                 sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5315                                 sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5316                                 sel.ips_protocol =
5317                                     (uint8_t)inner_ipv4->ipha_protocol;
5318                         } else {
5319                                 inner_ipv6 = (ip6_t *)(mp->b_rptr +
5320                                     hdr_len);
5321                                 sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5322                                 sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5323                                 if (!ip_hdr_length_nexthdr_v6(mp,
5324                                     inner_ipv6, &ip6_hdr_length, &v6_proto_p)) {
5325                                         ip_drop_packet_chain(mp, B_FALSE, NULL,
5326                                             DROPPER(ipss,
5327                                             ipds_spd_malformed_frag),
5328                                             &ipss->ipsec_spd_dropper);
5329                                         return (NULL);
5330                                 }
5331                                 v6_proto = *v6_proto_p;
5332                                 sel.ips_protocol = v6_proto;
5333 #ifdef FRAGCACHE_DEBUG
5334                                 cmn_err(CE_WARN, "v6_sel.ips_protocol = %d\n",
5335                                     sel.ips_protocol);
5336 #endif
5337                         }
5338                         /* Ports are extracted below */
5339                 }
5340 
5341                 /* Get ports... */
5342                 if (!ipsec_init_outbound_ports(&sel, mp,
5343                     inner_ipv4, inner_ipv6, outer_hdr_len, ipss)) {
5344                         /* callee did ip_drop_packet_chain() on mp. */
5345                         return (NULL);
5346                 }
5347 #ifdef FRAGCACHE_DEBUG
5348                 if (inner_ipv4 != NULL)
5349                         cmn_err(CE_WARN,
5350                             "(v4) sel.ips_protocol = %d, "
5351                             "sel.ips_local_port = %d, "
5352                             "sel.ips_remote_port = %d\n",
5353                             sel.ips_protocol, ntohs(sel.ips_local_port),
5354                             ntohs(sel.ips_remote_port));
5355                 if (inner_ipv6 != NULL)
5356                         cmn_err(CE_WARN,
5357                             "(v6) sel.ips_protocol = %d, "
5358                             "sel.ips_local_port = %d, "
5359                             "sel.ips_remote_port = %d\n",
5360                             sel.ips_protocol, ntohs(sel.ips_local_port),
5361                             ntohs(sel.ips_remote_port));
5362 #endif
5363                 /* Success so far! */
5364         }
5365         rw_enter(&polhead->iph_lock, RW_READER);
5366         pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_OUTBOUND, &sel);
5367         rw_exit(&polhead->iph_lock);
5368         if (pol == NULL) {
5369                 /*
5370                  * No matching policy on this tunnel, drop the packet.
5371                  *
5372                  * NOTE:  Tunnel-mode tunnels are different from the
5373                  * IP global transport mode policy head.  For a tunnel-mode
5374                  * tunnel, we drop the packet in lieu of passing it
5375                  * along accepted the way a global-policy miss would.
5376                  *
5377                  * NOTE2:  "negotiate transport" tunnels should match ALL
5378                  * inbound packets, but we do not uncomment the ASSERT()
5379                  * below because if/when we open PF_POLICY, a user can
5380                  * shoot him/her-self in the foot with a 0 priority.
5381                  */
5382 
5383                 /* ASSERT(itp->itp_flags & ITPF_P_TUNNEL); */
5384 #ifdef FRAGCACHE_DEBUG
5385                 cmn_err(CE_WARN, "ipsec_tun_outbound(): No matching tunnel "
5386                     "per-port policy\n");
5387 #endif
5388                 ip_drop_packet_chain(mp, B_FALSE, NULL,
5389                     DROPPER(ipss, ipds_spd_explicit),
5390                     &ipss->ipsec_spd_dropper);
5391                 return (NULL);
5392         }
5393 
5394 #ifdef FRAGCACHE_DEBUG
5395         cmn_err(CE_WARN, "Having matching tunnel per-port policy\n");
5396 #endif
5397 
5398         /*
5399          * NOTE: ixa_cleanup() function will release pol references.
5400          */
5401         ixa->ixa_ipsec_policy = pol;
5402         /*
5403          * NOTE: There is a subtle difference between iptun_zoneid and
5404          * iptun_connp->conn_zoneid explained in iptun_conn_create().  When
5405          * interacting with the ip module, we must use conn_zoneid.
5406          */
5407         ixa->ixa_zoneid = iptun->iptun_connp->conn_zoneid;
5408 
5409         ASSERT((outer_ipv4 != NULL) ? (ixa->ixa_flags & IXAF_IS_IPV4) :
5410             !(ixa->ixa_flags & IXAF_IS_IPV4));
5411         ASSERT(ixa->ixa_ipsec_policy != NULL);
5412         ixa->ixa_flags |= IXAF_IPSEC_SECURE;
5413 
5414         if (!(itp->itp_flags & ITPF_P_TUNNEL)) {
5415                 /* Set up transport mode for tunnelled packets. */
5416                 ixa->ixa_ipsec_proto = (inner_ipv4 != NULL) ? IPPROTO_ENCAP :
5417                     IPPROTO_IPV6;
5418                 return (mp);
5419         }
5420 
5421         /* Fill in tunnel-mode goodies here. */
5422         ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
5423         /* XXX Do I need to fill in all of the goodies here? */
5424         if (inner_ipv4) {
5425                 ixa->ixa_ipsec_inaf = AF_INET;
5426                 ixa->ixa_ipsec_insrc[0] =
5427                     pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v4;
5428                 ixa->ixa_ipsec_indst[0] =
5429                     pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v4;
5430         } else {
5431                 ixa->ixa_ipsec_inaf = AF_INET6;
5432                 ixa->ixa_ipsec_insrc[0] =
5433                     pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[0];
5434                 ixa->ixa_ipsec_insrc[1] =
5435                     pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[1];
5436                 ixa->ixa_ipsec_insrc[2] =
5437                     pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[2];
5438                 ixa->ixa_ipsec_insrc[3] =
5439                     pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[3];
5440                 ixa->ixa_ipsec_indst[0] =
5441                     pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[0];
5442                 ixa->ixa_ipsec_indst[1] =
5443                     pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[1];
5444                 ixa->ixa_ipsec_indst[2] =
5445                     pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[2];
5446                 ixa->ixa_ipsec_indst[3] =
5447                     pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[3];
5448         }
5449         ixa->ixa_ipsec_insrcpfx = pol->ipsp_sel->ipsl_key.ipsl_local_pfxlen;
5450         ixa->ixa_ipsec_indstpfx = pol->ipsp_sel->ipsl_key.ipsl_remote_pfxlen;
5451         /* NOTE:  These are used for transport mode too. */
5452         ixa->ixa_ipsec_src_port = pol->ipsp_sel->ipsl_key.ipsl_lport;
5453         ixa->ixa_ipsec_dst_port = pol->ipsp_sel->ipsl_key.ipsl_rport;
5454         ixa->ixa_ipsec_proto = pol->ipsp_sel->ipsl_key.ipsl_proto;
5455 
5456         return (mp);
5457 }
5458 
5459 /*
5460  * NOTE: The following releases pol's reference and
5461  * calls ip_drop_packet() for me on NULL returns.
5462  */
5463 mblk_t *
5464 ipsec_check_ipsecin_policy_reasm(mblk_t *attr_mp, ipsec_policy_t *pol,
5465     ipha_t *inner_ipv4, ip6_t *inner_ipv6, uint64_t pkt_unique, netstack_t *ns)
5466 {
5467         /* Assume attr_mp is a chain of b_next-linked ip_recv_attr mblk. */
5468         mblk_t *data_chain = NULL, *data_tail = NULL;
5469         mblk_t *next;
5470         mblk_t *data_mp;
5471         ip_recv_attr_t  iras;
5472 
5473         while (attr_mp != NULL) {
5474                 ASSERT(ip_recv_attr_is_mblk(attr_mp));
5475                 next = attr_mp->b_next;
5476                 attr_mp->b_next = NULL;  /* No tripping asserts. */
5477 
5478                 data_mp = attr_mp->b_cont;
5479                 attr_mp->b_cont = NULL;
5480                 if (!ip_recv_attr_from_mblk(attr_mp, &iras)) {
5481                         /* The ill or ip_stack_t disappeared on us */
5482                         freemsg(data_mp);       /* ip_drop_packet?? */
5483                         ira_cleanup(&iras, B_TRUE);
5484                         goto fail;
5485                 }
5486 
5487                 /*
5488                  * Need IPPOL_REFHOLD(pol) for extras because
5489                  * ipsecin_policy does the refrele.
5490                  */
5491                 IPPOL_REFHOLD(pol);
5492 
5493                 data_mp = ipsec_check_ipsecin_policy(data_mp, pol, inner_ipv4,
5494                     inner_ipv6, pkt_unique, &iras, ns);
5495                 ira_cleanup(&iras, B_TRUE);
5496 
5497                 if (data_mp == NULL)
5498                         goto fail;
5499 
5500                 if (data_tail == NULL) {
5501                         /* First one */
5502                         data_chain = data_tail = data_mp;
5503                 } else {
5504                         data_tail->b_next = data_mp;
5505                         data_tail = data_mp;
5506                 }
5507                 attr_mp = next;
5508         }
5509         /*
5510          * One last release because either the loop bumped it up, or we never
5511          * called ipsec_check_ipsecin_policy().
5512          */
5513         IPPOL_REFRELE(pol);
5514 
5515         /* data_chain is ready for return to tun module. */
5516         return (data_chain);
5517 
5518 fail:
5519         /*
5520          * Need to get rid of any extra pol
5521          * references, and any remaining bits as well.
5522          */
5523         IPPOL_REFRELE(pol);
5524         ipsec_freemsg_chain(data_chain);
5525         ipsec_freemsg_chain(next);      /* ipdrop stats? */
5526         return (NULL);
5527 }
5528 
5529 /*
5530  * Return a message if the inbound packet passed an IPsec policy check.  Returns
5531  * NULL if it failed or if it is a fragment needing its friends before a
5532  * policy check can be performed.
5533  *
5534  * Expects a non-NULL data_mp, and a non-NULL polhead.
5535  * The returned mblk may be a b_next chain of packets if fragments
5536  * neeeded to be collected for a proper policy check.
5537  *
5538  * This function calls ip_drop_packet() on data_mp if need be.
5539  *
5540  * NOTE:  outer_hdr_len is signed.  If it's a negative value, the caller
5541  * is inspecting an ICMP packet.
5542  */
5543 mblk_t *
5544 ipsec_tun_inbound(ip_recv_attr_t *ira, mblk_t *data_mp, ipsec_tun_pol_t *itp,
5545     ipha_t *inner_ipv4, ip6_t *inner_ipv6, ipha_t *outer_ipv4,
5546     ip6_t *outer_ipv6, int outer_hdr_len, netstack_t *ns)
5547 {
5548         ipsec_policy_head_t *polhead;
5549         ipsec_selector_t sel;
5550         ipsec_policy_t *pol;
5551         uint16_t tmpport;
5552         selret_t rc;
5553         boolean_t port_policy_present, is_icmp, global_present;
5554         in6_addr_t tmpaddr;
5555         ipaddr_t tmp4;
5556         uint8_t flags, *inner_hdr;
5557         ipsec_stack_t *ipss = ns->netstack_ipsec;
5558 
5559         sel.ips_is_icmp_inv_acq = 0;
5560 
5561         if (outer_ipv4 != NULL) {
5562                 ASSERT(outer_ipv6 == NULL);
5563                 global_present = ipss->ipsec_inbound_v4_policy_present;
5564         } else {
5565                 ASSERT(outer_ipv6 != NULL);
5566                 global_present = ipss->ipsec_inbound_v6_policy_present;
5567         }
5568 
5569         ASSERT(inner_ipv4 != NULL && inner_ipv6 == NULL ||
5570             inner_ipv4 == NULL && inner_ipv6 != NULL);
5571 
5572         if (outer_hdr_len < 0) {
5573                 outer_hdr_len = (-outer_hdr_len);
5574                 is_icmp = B_TRUE;
5575         } else {
5576                 is_icmp = B_FALSE;
5577         }
5578 
5579         if (itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE)) {
5580                 mblk_t *mp = data_mp;
5581 
5582                 polhead = itp->itp_policy;
5583                 /*
5584                  * We need to perform full Tunnel-Mode enforcement,
5585                  * and we need to have inner-header data for such enforcement.
5586                  *
5587                  * See ipsec_init_inbound_sel() for the 0x80000000 on inbound
5588                  * and on return.
5589                  */
5590 
5591                 port_policy_present = ((itp->itp_flags &
5592                     ITPF_P_PER_PORT_SECURITY) ? B_TRUE : B_FALSE);
5593                 /*
5594                  * NOTE:  Even if our policy is transport mode, set the
5595                  * SEL_TUNNEL_MODE flag so ipsec_init_inbound_sel() can
5596                  * do the right thing w.r.t. outer headers.
5597                  */
5598                 flags = ((port_policy_present ? SEL_PORT_POLICY : SEL_NONE) |
5599                     (is_icmp ? SEL_IS_ICMP : SEL_NONE) | SEL_TUNNEL_MODE);
5600 
5601                 rc = ipsec_init_inbound_sel(&sel, data_mp, inner_ipv4,
5602                     inner_ipv6, flags);
5603 
5604                 switch (rc) {
5605                 case SELRET_NOMEM:
5606                         ip_drop_packet(data_mp, B_TRUE, NULL,
5607                             DROPPER(ipss, ipds_spd_nomem),
5608                             &ipss->ipsec_spd_dropper);
5609                         return (NULL);
5610                 case SELRET_TUNFRAG:
5611                         /*
5612                          * At this point, if we're cleartext, we don't want
5613                          * to go there.
5614                          */
5615                         if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
5616                                 ip_drop_packet(data_mp, B_TRUE, NULL,
5617                                     DROPPER(ipss, ipds_spd_got_clear),
5618                                     &ipss->ipsec_spd_dropper);
5619                                 return (NULL);
5620                         }
5621 
5622                         /*
5623                          * Inner and outer headers may not be contiguous.
5624                          * Pullup the data_mp now to satisfy assumptions of
5625                          * ipsec_fragcache_add()
5626                          */
5627                         if (data_mp->b_cont != NULL) {
5628                                 mblk_t *nmp;
5629 
5630                                 nmp = msgpullup(data_mp, -1);
5631                                 if (nmp == NULL) {
5632                                         ip_drop_packet(data_mp, B_TRUE, NULL,
5633                                             DROPPER(ipss, ipds_spd_nomem),
5634                                             &ipss->ipsec_spd_dropper);
5635                                         return (NULL);
5636                                 }
5637                                 freemsg(data_mp);
5638                                 data_mp = nmp;
5639                                 if (outer_ipv4 != NULL)
5640                                         outer_ipv4 =
5641                                             (ipha_t *)data_mp->b_rptr;
5642                                 else
5643                                         outer_ipv6 =
5644                                             (ip6_t *)data_mp->b_rptr;
5645                                 if (inner_ipv4 != NULL) {
5646                                         inner_ipv4 =
5647                                             (ipha_t *)(data_mp->b_rptr +
5648                                             outer_hdr_len);
5649                                 } else {
5650                                         inner_ipv6 =
5651                                             (ip6_t *)(data_mp->b_rptr +
5652                                             outer_hdr_len);
5653                                 }
5654                         }
5655 
5656                         /*
5657                          * If we need to queue the packet. First we
5658                          * get an mblk with the attributes. ipsec_fragcache_add
5659                          * will prepend that to the queued data and return
5660                          * a list of b_next messages each of which starts with
5661                          * the attribute mblk.
5662                          */
5663                         mp = ip_recv_attr_to_mblk(ira);
5664                         if (mp == NULL) {
5665                                 ip_drop_packet(data_mp, B_TRUE, NULL,
5666                                     DROPPER(ipss, ipds_spd_nomem),
5667                                     &ipss->ipsec_spd_dropper);
5668                                 return (NULL);
5669                         }
5670 
5671                         mp = ipsec_fragcache_add(&itp->itp_fragcache,
5672                             mp, data_mp, outer_hdr_len, ipss);
5673 
5674                         if (mp == NULL) {
5675                                 /*
5676                                  * Data is cached, fragment chain is not
5677                                  * complete.
5678                                  */
5679                                 return (NULL);
5680                         }
5681 
5682                         /*
5683                          * If we get here, we have a full fragment chain.
5684                          * Reacquire headers and selectors from first fragment.
5685                          */
5686                         ASSERT(ip_recv_attr_is_mblk(mp));
5687                         data_mp = mp->b_cont;
5688                         inner_hdr = data_mp->b_rptr;
5689                         if (outer_ipv4 != NULL) {
5690                                 inner_hdr += IPH_HDR_LENGTH(
5691                                     (ipha_t *)data_mp->b_rptr);
5692                         } else {
5693                                 inner_hdr += ip_hdr_length_v6(data_mp,
5694                                     (ip6_t *)data_mp->b_rptr);
5695                         }
5696                         ASSERT(inner_hdr <= data_mp->b_wptr);
5697 
5698                         if (inner_ipv4 != NULL) {
5699                                 inner_ipv4 = (ipha_t *)inner_hdr;
5700                                 inner_ipv6 = NULL;
5701                         } else {
5702                                 inner_ipv6 = (ip6_t *)inner_hdr;
5703                                 inner_ipv4 = NULL;
5704                         }
5705 
5706                         /*
5707                          * Use SEL_TUNNEL_MODE to take into account the outer
5708                          * header.  Use SEL_POST_FRAG so we always get ports.
5709                          */
5710                         rc = ipsec_init_inbound_sel(&sel, data_mp,
5711                             inner_ipv4, inner_ipv6,
5712                             SEL_TUNNEL_MODE | SEL_POST_FRAG);
5713                         switch (rc) {
5714                         case SELRET_SUCCESS:
5715                                 /*
5716                                  * Get to same place as first caller's
5717                                  * SELRET_SUCCESS case.
5718                                  */
5719                                 break;
5720                         case SELRET_NOMEM:
5721                                 ip_drop_packet_chain(mp, B_TRUE, NULL,
5722                                     DROPPER(ipss, ipds_spd_nomem),
5723                                     &ipss->ipsec_spd_dropper);
5724                                 return (NULL);
5725                         case SELRET_BADPKT:
5726                                 ip_drop_packet_chain(mp, B_TRUE, NULL,
5727                                     DROPPER(ipss, ipds_spd_malformed_frag),
5728                                     &ipss->ipsec_spd_dropper);
5729                                 return (NULL);
5730                         case SELRET_TUNFRAG:
5731                                 cmn_err(CE_WARN, "(TUNFRAG on 2nd call...)");
5732                                 /* FALLTHRU */
5733                         default:
5734                                 cmn_err(CE_WARN, "ipsec_init_inbound_sel(mark2)"
5735                                     " returns bizarro 0x%x", rc);
5736                                 /* Guaranteed panic! */
5737                                 ASSERT(rc == SELRET_NOMEM);
5738                                 return (NULL);
5739                         }
5740                         /* FALLTHRU */
5741                 case SELRET_SUCCESS:
5742                         /*
5743                          * Common case:
5744                          * No per-port policy or a non-fragment.  Keep going.
5745                          */
5746                         break;
5747                 case SELRET_BADPKT:
5748                         /*
5749                          * We may receive ICMP (with IPv6 inner) packets that
5750                          * trigger this return value.  Send 'em in for
5751                          * enforcement checking.
5752                          */
5753                         cmn_err(CE_NOTE, "ipsec_tun_inbound(): "
5754                             "sending 'bad packet' in for enforcement");
5755                         break;
5756                 default:
5757                         cmn_err(CE_WARN,
5758                             "ipsec_init_inbound_sel() returns bizarro 0x%x",
5759                             rc);
5760                         ASSERT(rc == SELRET_NOMEM);     /* Guaranteed panic! */
5761                         return (NULL);
5762                 }
5763 
5764                 if (is_icmp) {
5765                         /*
5766                          * Swap local/remote because this is an ICMP packet.
5767                          */
5768                         tmpaddr = sel.ips_local_addr_v6;
5769                         sel.ips_local_addr_v6 = sel.ips_remote_addr_v6;
5770                         sel.ips_remote_addr_v6 = tmpaddr;
5771                         tmpport = sel.ips_local_port;
5772                         sel.ips_local_port = sel.ips_remote_port;
5773                         sel.ips_remote_port = tmpport;
5774                 }
5775 
5776                 /* find_policy_head() */
5777                 rw_enter(&polhead->iph_lock, RW_READER);
5778                 pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_INBOUND,
5779                     &sel);
5780                 rw_exit(&polhead->iph_lock);
5781                 if (pol != NULL) {
5782                         uint64_t pkt_unique;
5783 
5784                         if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
5785                                 if (!pol->ipsp_act->ipa_allow_clear) {
5786                                         /*
5787                                          * XXX should never get here with
5788                                          * tunnel reassembled fragments?
5789                                          */
5790                                         ASSERT(mp == data_mp);
5791                                         ip_drop_packet(data_mp, B_TRUE, NULL,
5792                                             DROPPER(ipss, ipds_spd_got_clear),
5793                                             &ipss->ipsec_spd_dropper);
5794                                         IPPOL_REFRELE(pol);
5795                                         return (NULL);
5796                                 } else {
5797                                         IPPOL_REFRELE(pol);
5798                                         return (mp);
5799                                 }
5800                         }
5801                         pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port,
5802                             sel.ips_local_port,
5803                             (inner_ipv4 == NULL) ? IPPROTO_IPV6 :
5804                             IPPROTO_ENCAP, sel.ips_protocol);
5805 
5806                         /*
5807                          * NOTE: The following releases pol's reference and
5808                          * calls ip_drop_packet() for me on NULL returns.
5809                          *
5810                          * "sel" is still good here, so let's use it!
5811                          */
5812                         if (data_mp == mp) {
5813                                 /* A single packet without attributes */
5814                                 data_mp = ipsec_check_ipsecin_policy(data_mp,
5815                                     pol, inner_ipv4, inner_ipv6, pkt_unique,
5816                                     ira, ns);
5817                         } else {
5818                                 /*
5819                                  * We pass in the b_next chain of attr_mp's
5820                                  * and get back a b_next chain of data_mp's.
5821                                  */
5822                                 data_mp = ipsec_check_ipsecin_policy_reasm(mp,
5823                                     pol, inner_ipv4, inner_ipv6, pkt_unique,
5824                                     ns);
5825                         }
5826                         return (data_mp);
5827                 }
5828 
5829                 /*
5830                  * Else fallthru and check the global policy on the outer
5831                  * header(s) if this tunnel is an old-style transport-mode
5832                  * one.  Drop the packet explicitly (no policy entry) for
5833                  * a new-style tunnel-mode tunnel.
5834                  */
5835                 if ((itp->itp_flags & ITPF_P_TUNNEL) && !is_icmp) {
5836                         ip_drop_packet_chain(data_mp, B_TRUE, NULL,
5837                             DROPPER(ipss, ipds_spd_explicit),
5838                             &ipss->ipsec_spd_dropper);
5839                         return (NULL);
5840                 }
5841         }
5842 
5843         /*
5844          * NOTE:  If we reach here, we will not have packet chains from
5845          * fragcache_add(), because the only way I get chains is on a
5846          * tunnel-mode tunnel, which either returns with a pass, or gets
5847          * hit by the ip_drop_packet_chain() call right above here.
5848          */
5849         ASSERT(data_mp->b_next == NULL);
5850 
5851         /* If no per-tunnel security, check global policy now. */
5852         if ((ira->ira_flags & IRAF_IPSEC_SECURE) && !global_present) {
5853                 if (ira->ira_flags & IRAF_TRUSTED_ICMP) {
5854                         /*
5855                          * This is an ICMP message that was geenrated locally.
5856                          * We should accept it.
5857                          */
5858                         return (data_mp);
5859                 }
5860 
5861                 ip_drop_packet(data_mp, B_TRUE, NULL,
5862                     DROPPER(ipss, ipds_spd_got_secure),
5863                     &ipss->ipsec_spd_dropper);
5864                 return (NULL);
5865         }
5866 
5867         if (is_icmp) {
5868                 /*
5869                  * For ICMP packets, "outer_ipvN" is set to the outer header
5870                  * that is *INSIDE* the ICMP payload.  For global policy
5871                  * checking, we need to reverse src/dst on the payload in
5872                  * order to construct selectors appropriately.  See "ripha"
5873                  * constructions in ip.c.  To avoid a bug like 6478464 (see
5874                  * earlier in this file), we will actually exchange src/dst
5875                  * in the packet, and reverse if after the call to
5876                  * ipsec_check_global_policy().
5877                  */
5878                 if (outer_ipv4 != NULL) {
5879                         tmp4 = outer_ipv4->ipha_src;
5880                         outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
5881                         outer_ipv4->ipha_dst = tmp4;
5882                 } else {
5883                         ASSERT(outer_ipv6 != NULL);
5884                         tmpaddr = outer_ipv6->ip6_src;
5885                         outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
5886                         outer_ipv6->ip6_dst = tmpaddr;
5887                 }
5888         }
5889 
5890         data_mp = ipsec_check_global_policy(data_mp, NULL, outer_ipv4,
5891             outer_ipv6, ira, ns);
5892         if (data_mp == NULL)
5893                 return (NULL);
5894 
5895         if (is_icmp) {
5896                 /* Set things back to normal. */
5897                 if (outer_ipv4 != NULL) {
5898                         tmp4 = outer_ipv4->ipha_src;
5899                         outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
5900                         outer_ipv4->ipha_dst = tmp4;
5901                 } else {
5902                         /* No need for ASSERT()s now. */
5903                         tmpaddr = outer_ipv6->ip6_src;
5904                         outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
5905                         outer_ipv6->ip6_dst = tmpaddr;
5906                 }
5907         }
5908 
5909         /*
5910          * At this point, we pretend it's a cleartext accepted
5911          * packet.
5912          */
5913         return (data_mp);
5914 }
5915 
5916 /*
5917  * AVL comparison routine for our list of tunnel polheads.
5918  */
5919 static int
5920 tunnel_compare(const void *arg1, const void *arg2)
5921 {
5922         ipsec_tun_pol_t *left, *right;
5923         int rc;
5924 
5925         left = (ipsec_tun_pol_t *)arg1;
5926         right = (ipsec_tun_pol_t *)arg2;
5927 
5928         rc = strncmp(left->itp_name, right->itp_name, LIFNAMSIZ);
5929         return (rc == 0 ? rc : (rc > 0 ? 1 : -1));
5930 }
5931 
5932 /*
5933  * Free a tunnel policy node.
5934  */
5935 void
5936 itp_free(ipsec_tun_pol_t *node, netstack_t *ns)
5937 {
5938         if (node->itp_policy != NULL) {
5939                 IPPH_REFRELE(node->itp_policy, ns);
5940                 node->itp_policy = NULL;
5941         }
5942         if (node->itp_inactive != NULL) {
5943                 IPPH_REFRELE(node->itp_inactive, ns);
5944                 node->itp_inactive = NULL;
5945         }
5946         mutex_destroy(&node->itp_lock);
5947         kmem_free(node, sizeof (*node));
5948 }
5949 
5950 void
5951 itp_unlink(ipsec_tun_pol_t *node, netstack_t *ns)
5952 {
5953         ipsec_stack_t *ipss = ns->netstack_ipsec;
5954 
5955         rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
5956         ipss->ipsec_tunnel_policy_gen++;
5957         ipsec_fragcache_uninit(&node->itp_fragcache, ipss);
5958         avl_remove(&ipss->ipsec_tunnel_policies, node);
5959         rw_exit(&ipss->ipsec_tunnel_policy_lock);
5960         ITP_REFRELE(node, ns);
5961 }
5962 
5963 /*
5964  * Public interface to look up a tunnel security policy by name.  Used by
5965  * spdsock mostly.  Returns "node" with a bumped refcnt.
5966  */
5967 ipsec_tun_pol_t *
5968 get_tunnel_policy(char *name, netstack_t *ns)
5969 {
5970         ipsec_tun_pol_t *node, lookup;
5971         ipsec_stack_t *ipss = ns->netstack_ipsec;
5972 
5973         (void) strncpy(lookup.itp_name, name, LIFNAMSIZ);
5974 
5975         rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER);
5976         node = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies,
5977             &lookup, NULL);
5978         if (node != NULL) {
5979                 ITP_REFHOLD(node);
5980         }
5981         rw_exit(&ipss->ipsec_tunnel_policy_lock);
5982 
5983         return (node);
5984 }
5985 
5986 /*
5987  * Public interface to walk all tunnel security polcies.  Useful for spdsock
5988  * DUMP operations.  iterator() will not consume a reference.
5989  */
5990 void
5991 itp_walk(void (*iterator)(ipsec_tun_pol_t *, void *, netstack_t *),
5992     void *arg, netstack_t *ns)
5993 {
5994         ipsec_tun_pol_t *node;
5995         ipsec_stack_t *ipss = ns->netstack_ipsec;
5996 
5997         rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER);
5998         for (node = avl_first(&ipss->ipsec_tunnel_policies); node != NULL;
5999             node = AVL_NEXT(&ipss->ipsec_tunnel_policies, node)) {
6000                 iterator(node, arg, ns);
6001         }
6002         rw_exit(&ipss->ipsec_tunnel_policy_lock);
6003 }
6004 
6005 /*
6006  * Initialize policy head.  This can only fail if there's a memory problem.
6007  */
6008 static boolean_t
6009 tunnel_polhead_init(ipsec_policy_head_t *iph, netstack_t *ns)
6010 {
6011         ipsec_stack_t *ipss = ns->netstack_ipsec;
6012 
6013         rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
6014         iph->iph_refs = 1;
6015         iph->iph_gen = 0;
6016         if (ipsec_alloc_table(iph, ipss->ipsec_tun_spd_hashsize,
6017             KM_SLEEP, B_FALSE, ns) != 0) {
6018                 ipsec_polhead_free_table(iph);
6019                 return (B_FALSE);
6020         }
6021         ipsec_polhead_init(iph, ipss->ipsec_tun_spd_hashsize);
6022         return (B_TRUE);
6023 }
6024 
6025 /*
6026  * Create a tunnel policy node with "name".  Set errno with
6027  * ENOMEM if there's a memory problem, and EEXIST if there's an existing
6028  * node.
6029  */
6030 ipsec_tun_pol_t *
6031 create_tunnel_policy(char *name, int *errno, uint64_t *gen, netstack_t *ns)
6032 {
6033         ipsec_tun_pol_t *newbie, *existing;
6034         avl_index_t where;
6035         ipsec_stack_t *ipss = ns->netstack_ipsec;
6036 
6037         newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP);
6038         if (newbie == NULL) {
6039                 *errno = ENOMEM;
6040                 return (NULL);
6041         }
6042         if (!ipsec_fragcache_init(&newbie->itp_fragcache)) {
6043                 kmem_free(newbie, sizeof (*newbie));
6044                 *errno = ENOMEM;
6045                 return (NULL);
6046         }
6047 
6048         (void) strncpy(newbie->itp_name, name, LIFNAMSIZ);
6049 
6050         rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
6051         existing = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies,
6052             newbie, &where);
6053         if (existing != NULL) {
6054                 itp_free(newbie, ns);
6055                 *errno = EEXIST;
6056                 rw_exit(&ipss->ipsec_tunnel_policy_lock);
6057                 return (NULL);
6058         }
6059         ipss->ipsec_tunnel_policy_gen++;
6060         *gen = ipss->ipsec_tunnel_policy_gen;
6061         newbie->itp_refcnt = 2;      /* One for the caller, one for the tree. */
6062         newbie->itp_next_policy_index = 1;
6063         avl_insert(&ipss->ipsec_tunnel_policies, newbie, where);
6064         mutex_init(&newbie->itp_lock, NULL, MUTEX_DEFAULT, NULL);
6065         newbie->itp_policy = kmem_zalloc(sizeof (ipsec_policy_head_t),
6066             KM_NOSLEEP);
6067         if (newbie->itp_policy == NULL)
6068                 goto nomem;
6069         newbie->itp_inactive = kmem_zalloc(sizeof (ipsec_policy_head_t),
6070             KM_NOSLEEP);
6071         if (newbie->itp_inactive == NULL) {
6072                 kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
6073                 goto nomem;
6074         }
6075 
6076         if (!tunnel_polhead_init(newbie->itp_policy, ns)) {
6077                 kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
6078                 kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
6079                 goto nomem;
6080         } else if (!tunnel_polhead_init(newbie->itp_inactive, ns)) {
6081                 IPPH_REFRELE(newbie->itp_policy, ns);
6082                 kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
6083                 goto nomem;
6084         }
6085         rw_exit(&ipss->ipsec_tunnel_policy_lock);
6086 
6087         return (newbie);
6088 nomem:
6089         *errno = ENOMEM;
6090         kmem_free(newbie, sizeof (*newbie));
6091         return (NULL);
6092 }
6093 
6094 /*
6095  * Given two addresses, find a tunnel instance's IPsec policy heads.
6096  * Returns NULL on failure.
6097  */
6098 ipsec_tun_pol_t *
6099 itp_get_byaddr(uint32_t *laddr, uint32_t *faddr, int af, ip_stack_t *ipst)
6100 {
6101         conn_t *connp;
6102         iptun_t *iptun;
6103         ipsec_tun_pol_t *itp = NULL;
6104 
6105         /* Classifiers are used to "src" being foreign. */
6106         if (af == AF_INET) {
6107                 connp = ipcl_iptun_classify_v4((ipaddr_t *)faddr,
6108                     (ipaddr_t *)laddr, ipst);
6109         } else {
6110                 ASSERT(af == AF_INET6);
6111                 ASSERT(!IN6_IS_ADDR_V4MAPPED((in6_addr_t *)laddr));
6112                 ASSERT(!IN6_IS_ADDR_V4MAPPED((in6_addr_t *)faddr));
6113                 connp = ipcl_iptun_classify_v6((in6_addr_t *)faddr,
6114                     (in6_addr_t *)laddr, ipst);
6115         }
6116 
6117         if (connp == NULL)
6118                 return (NULL);
6119 
6120         if (IPCL_IS_IPTUN(connp)) {
6121                 iptun = connp->conn_iptun;
6122                 if (iptun != NULL) {
6123                         itp = iptun->iptun_itp;
6124                         if (itp != NULL) {
6125                                 /* Braces due to the macro's nature... */
6126                                 ITP_REFHOLD(itp);
6127                         }
6128                 }  /* Else itp is already NULL. */
6129         }
6130 
6131         CONN_DEC_REF(connp);
6132         return (itp);
6133 }
6134 
6135 /*
6136  * Frag cache code, based on SunScreen 3.2 source
6137  *      screen/kernel/common/screen_fragcache.c
6138  */
6139 
6140 #define IPSEC_FRAG_TTL_MAX      5
6141 /*
6142  * Note that the following parameters create 256 hash buckets
6143  * with 1024 free entries to be distributed.  Things are cleaned
6144  * periodically and are attempted to be cleaned when there is no
6145  * free space, but this system errs on the side of dropping packets
6146  * over creating memory exhaustion.  We may decide to make hash
6147  * factor a tunable if this proves to be a bad decision.
6148  */
6149 #define IPSEC_FRAG_HASH_SLOTS   (1<<8)
6150 #define IPSEC_FRAG_HASH_FACTOR  4
6151 #define IPSEC_FRAG_HASH_SIZE    (IPSEC_FRAG_HASH_SLOTS * IPSEC_FRAG_HASH_FACTOR)
6152 
6153 #define IPSEC_FRAG_HASH_MASK            (IPSEC_FRAG_HASH_SLOTS - 1)
6154 #define IPSEC_FRAG_HASH_FUNC(id)        (((id) & IPSEC_FRAG_HASH_MASK) ^ \
6155                                             (((id) / \
6156                                             (ushort_t)IPSEC_FRAG_HASH_SLOTS) & \
6157                                             IPSEC_FRAG_HASH_MASK))
6158 
6159 /* Maximum fragments per packet.  48 bytes payload x 1366 packets > 64KB */
6160 #define IPSEC_MAX_FRAGS         1366
6161 
6162 #define V4_FRAG_OFFSET(ipha) ((ntohs(ipha->ipha_fragment_offset_and_flags) & \
6163                                     IPH_OFFSET) << 3)
6164 #define V4_MORE_FRAGS(ipha) (ntohs(ipha->ipha_fragment_offset_and_flags) & \
6165                 IPH_MF)
6166 
6167 /*
6168  * Initialize an ipsec fragcache instance.
6169  * Returns B_FALSE if memory allocation fails.
6170  */
6171 boolean_t
6172 ipsec_fragcache_init(ipsec_fragcache_t *frag)
6173 {
6174         ipsec_fragcache_entry_t *ftemp;
6175         int i;
6176 
6177         mutex_init(&frag->itpf_lock, NULL, MUTEX_DEFAULT, NULL);
6178         frag->itpf_ptr = (ipsec_fragcache_entry_t **)
6179             kmem_zalloc(sizeof (ipsec_fragcache_entry_t *) *
6180             IPSEC_FRAG_HASH_SLOTS, KM_NOSLEEP);
6181         if (frag->itpf_ptr == NULL)
6182                 return (B_FALSE);
6183 
6184         ftemp = (ipsec_fragcache_entry_t *)
6185             kmem_zalloc(sizeof (ipsec_fragcache_entry_t) *
6186             IPSEC_FRAG_HASH_SIZE, KM_NOSLEEP);
6187         if (ftemp == NULL) {
6188                 kmem_free(frag->itpf_ptr, sizeof (ipsec_fragcache_entry_t *) *
6189                     IPSEC_FRAG_HASH_SLOTS);
6190                 return (B_FALSE);
6191         }
6192 
6193         frag->itpf_freelist = NULL;
6194 
6195         for (i = 0; i < IPSEC_FRAG_HASH_SIZE; i++) {
6196                 ftemp->itpfe_next = frag->itpf_freelist;
6197                 frag->itpf_freelist = ftemp;
6198                 ftemp++;
6199         }
6200 
6201         frag->itpf_expire_hint = 0;
6202 
6203         return (B_TRUE);
6204 }
6205 
6206 void
6207 ipsec_fragcache_uninit(ipsec_fragcache_t *frag, ipsec_stack_t *ipss)
6208 {
6209         ipsec_fragcache_entry_t *fep;
6210         int i;
6211 
6212         mutex_enter(&frag->itpf_lock);
6213         if (frag->itpf_ptr) {
6214                 /* Delete any existing fragcache entry chains */
6215                 for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6216                         fep = (frag->itpf_ptr)[i];
6217                         while (fep != NULL) {
6218                                 /* Returned fep is next in chain or NULL */
6219                                 fep = fragcache_delentry(i, fep, frag, ipss);
6220                         }
6221                 }
6222                 /*
6223                  * Chase the pointers back to the beginning
6224                  * of the memory allocation and then
6225                  * get rid of the allocated freelist
6226                  */
6227                 while (frag->itpf_freelist->itpfe_next != NULL)
6228                         frag->itpf_freelist = frag->itpf_freelist->itpfe_next;
6229                 /*
6230                  * XXX - If we ever dynamically grow the freelist
6231                  * then we'll have to free entries individually
6232                  * or determine how many entries or chunks we have
6233                  * grown since the initial allocation.
6234                  */
6235                 kmem_free(frag->itpf_freelist,
6236                     sizeof (ipsec_fragcache_entry_t) *
6237                     IPSEC_FRAG_HASH_SIZE);
6238                 /* Free the fragcache structure */
6239                 kmem_free(frag->itpf_ptr,
6240                     sizeof (ipsec_fragcache_entry_t *) *
6241                     IPSEC_FRAG_HASH_SLOTS);
6242         }
6243         mutex_exit(&frag->itpf_lock);
6244         mutex_destroy(&frag->itpf_lock);
6245 }
6246 
6247 /*
6248  * Add a fragment to the fragment cache.   Consumes mp if NULL is returned.
6249  * Returns mp if a whole fragment has been assembled, NULL otherwise
6250  * The returned mp could be a b_next chain of fragments.
6251  *
6252  * The iramp argument is set on inbound; NULL if outbound.
6253  */
6254 mblk_t *
6255 ipsec_fragcache_add(ipsec_fragcache_t *frag, mblk_t *iramp, mblk_t *mp,
6256     int outer_hdr_len, ipsec_stack_t *ipss)
6257 {
6258         boolean_t is_v4;
6259         time_t itpf_time;
6260         ipha_t *iph;
6261         ipha_t *oiph;
6262         ip6_t *ip6h = NULL;
6263         uint8_t v6_proto;
6264         uint8_t *v6_proto_p;
6265         uint16_t ip6_hdr_length;
6266         ip_pkt_t ipp;
6267         ip6_frag_t *fraghdr;
6268         ipsec_fragcache_entry_t *fep;
6269         int i;
6270         mblk_t *nmp, *prevmp;
6271         int firstbyte, lastbyte;
6272         int offset;
6273         int last;
6274         boolean_t inbound = (iramp != NULL);
6275 
6276 #ifdef FRAGCACHE_DEBUG
6277         cmn_err(CE_WARN, "Fragcache: %s\n", inbound ? "INBOUND" : "OUTBOUND");
6278 #endif
6279         /*
6280          * You're on the slow path, so insure that every packet in the
6281          * cache is a single-mblk one.
6282          */
6283         if (mp->b_cont != NULL) {
6284                 nmp = msgpullup(mp, -1);
6285                 if (nmp == NULL) {
6286                         ip_drop_packet(mp, inbound, NULL,
6287                             DROPPER(ipss, ipds_spd_nomem),
6288                             &ipss->ipsec_spd_dropper);
6289                         if (inbound)
6290                                 (void) ip_recv_attr_free_mblk(iramp);
6291                         return (NULL);
6292                 }
6293                 freemsg(mp);
6294                 mp = nmp;
6295         }
6296 
6297         mutex_enter(&frag->itpf_lock);
6298 
6299         oiph  = (ipha_t *)mp->b_rptr;
6300         iph  = (ipha_t *)(mp->b_rptr + outer_hdr_len);
6301 
6302         if (IPH_HDR_VERSION(iph) == IPV4_VERSION) {
6303                 is_v4 = B_TRUE;
6304         } else {
6305                 ASSERT(IPH_HDR_VERSION(iph) == IPV6_VERSION);
6306                 ip6h = (ip6_t *)(mp->b_rptr + outer_hdr_len);
6307 
6308                 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip6_hdr_length,
6309                     &v6_proto_p)) {
6310                         /*
6311                          * Find upper layer protocol.
6312                          * If it fails we have a malformed packet
6313                          */
6314                         mutex_exit(&frag->itpf_lock);
6315                         ip_drop_packet(mp, inbound, NULL,
6316                             DROPPER(ipss, ipds_spd_malformed_packet),
6317                             &ipss->ipsec_spd_dropper);
6318                         if (inbound)
6319                                 (void) ip_recv_attr_free_mblk(iramp);
6320                         return (NULL);
6321                 } else {
6322                         v6_proto = *v6_proto_p;
6323                 }
6324 
6325 
6326                 bzero(&ipp, sizeof (ipp));
6327                 (void) ip_find_hdr_v6(mp, ip6h, B_FALSE, &ipp, NULL);
6328                 if (!(ipp.ipp_fields & IPPF_FRAGHDR)) {
6329                         /*
6330                          * We think this is a fragment, but didn't find
6331                          * a fragment header.  Something is wrong.
6332                          */
6333                         mutex_exit(&frag->itpf_lock);
6334                         ip_drop_packet(mp, inbound, NULL,
6335                             DROPPER(ipss, ipds_spd_malformed_frag),
6336                             &ipss->ipsec_spd_dropper);
6337                         if (inbound)
6338                                 (void) ip_recv_attr_free_mblk(iramp);
6339                         return (NULL);
6340                 }
6341                 fraghdr = ipp.ipp_fraghdr;
6342                 is_v4 = B_FALSE;
6343         }
6344 
6345         /* Anything to cleanup? */
6346 
6347         /*
6348          * This cleanup call could be put in a timer loop
6349          * but it may actually be just as reasonable a decision to
6350          * leave it here.  The disadvantage is this only gets called when
6351          * frags are added.  The advantage is that it is not
6352          * susceptible to race conditions like a time-based cleanup
6353          * may be.
6354          */
6355         itpf_time = gethrestime_sec();
6356         if (itpf_time >= frag->itpf_expire_hint)
6357                 ipsec_fragcache_clean(frag, ipss);
6358 
6359         /* Lookup to see if there is an existing entry */
6360 
6361         if (is_v4)
6362                 i = IPSEC_FRAG_HASH_FUNC(iph->ipha_ident);
6363         else
6364                 i = IPSEC_FRAG_HASH_FUNC(fraghdr->ip6f_ident);
6365 
6366         for (fep = (frag->itpf_ptr)[i]; fep; fep = fep->itpfe_next) {
6367                 if (is_v4) {
6368                         ASSERT(iph != NULL);
6369                         if ((fep->itpfe_id == iph->ipha_ident) &&
6370                             (fep->itpfe_src == iph->ipha_src) &&
6371                             (fep->itpfe_dst == iph->ipha_dst) &&
6372                             (fep->itpfe_proto == iph->ipha_protocol))
6373                                 break;
6374                 } else {
6375                         ASSERT(fraghdr != NULL);
6376                         ASSERT(fep != NULL);
6377                         if ((fep->itpfe_id == fraghdr->ip6f_ident) &&
6378                             IN6_ARE_ADDR_EQUAL(&fep->itpfe_src6,
6379                             &ip6h->ip6_src) &&
6380                             IN6_ARE_ADDR_EQUAL(&fep->itpfe_dst6,
6381                             &ip6h->ip6_dst) && (fep->itpfe_proto == v6_proto))
6382                                 break;
6383                 }
6384         }
6385 
6386         if (is_v4) {
6387                 firstbyte = V4_FRAG_OFFSET(iph);
6388                 lastbyte  = firstbyte + ntohs(iph->ipha_length) -
6389                     IPH_HDR_LENGTH(iph);
6390                 last = (V4_MORE_FRAGS(iph) == 0);
6391 #ifdef FRAGCACHE_DEBUG
6392                 cmn_err(CE_WARN, "V4 fragcache: firstbyte = %d, lastbyte = %d, "
6393                     "is_last_frag = %d, id = %d, mp = %p\n", firstbyte,
6394                     lastbyte, last, iph->ipha_ident, mp);
6395 #endif
6396         } else {
6397                 firstbyte = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
6398                 lastbyte  = firstbyte + ntohs(ip6h->ip6_plen) +
6399                     sizeof (ip6_t) - ip6_hdr_length;
6400                 last = (fraghdr->ip6f_offlg & IP6F_MORE_FRAG) == 0;
6401 #ifdef FRAGCACHE_DEBUG
6402                 cmn_err(CE_WARN, "V6 fragcache: firstbyte = %d, lastbyte = %d, "
6403                     "is_last_frag = %d, id = %d, fraghdr = %p, mp = %p\n",
6404                     firstbyte, lastbyte, last, fraghdr->ip6f_ident, fraghdr,
6405                     mp);
6406 #endif
6407         }
6408 
6409         /* check for bogus fragments and delete the entry */
6410         if (firstbyte > 0 && firstbyte <= 8) {
6411                 if (fep != NULL)
6412                         (void) fragcache_delentry(i, fep, frag, ipss);
6413                 mutex_exit(&frag->itpf_lock);
6414                 ip_drop_packet(mp, inbound, NULL,
6415                     DROPPER(ipss, ipds_spd_malformed_frag),
6416                     &ipss->ipsec_spd_dropper);
6417                 if (inbound)
6418                         (void) ip_recv_attr_free_mblk(iramp);
6419                 return (NULL);
6420         }
6421 
6422         /* Not found, allocate a new entry */
6423         if (fep == NULL) {
6424                 if (frag->itpf_freelist == NULL) {
6425                         /* see if there is some space */
6426                         ipsec_fragcache_clean(frag, ipss);
6427                         if (frag->itpf_freelist == NULL) {
6428                                 mutex_exit(&frag->itpf_lock);
6429                                 ip_drop_packet(mp, inbound, NULL,
6430                                     DROPPER(ipss, ipds_spd_nomem),
6431                                     &ipss->ipsec_spd_dropper);
6432                                 if (inbound)
6433                                         (void) ip_recv_attr_free_mblk(iramp);
6434                                 return (NULL);
6435                         }
6436                 }
6437 
6438                 fep = frag->itpf_freelist;
6439                 frag->itpf_freelist = fep->itpfe_next;
6440 
6441                 if (is_v4) {
6442                         bcopy((caddr_t)&iph->ipha_src, (caddr_t)&fep->itpfe_src,
6443                             sizeof (struct in_addr));
6444                         bcopy((caddr_t)&iph->ipha_dst, (caddr_t)&fep->itpfe_dst,
6445                             sizeof (struct in_addr));
6446                         fep->itpfe_id = iph->ipha_ident;
6447                         fep->itpfe_proto = iph->ipha_protocol;
6448                         i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6449                 } else {
6450                         bcopy((in6_addr_t *)&ip6h->ip6_src,
6451                             (in6_addr_t *)&fep->itpfe_src6,
6452                             sizeof (struct in6_addr));
6453                         bcopy((in6_addr_t *)&ip6h->ip6_dst,
6454                             (in6_addr_t *)&fep->itpfe_dst6,
6455                             sizeof (struct in6_addr));
6456                         fep->itpfe_id = fraghdr->ip6f_ident;
6457                         fep->itpfe_proto = v6_proto;
6458                         i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6459                 }
6460                 itpf_time = gethrestime_sec();
6461                 fep->itpfe_exp = itpf_time + IPSEC_FRAG_TTL_MAX + 1;
6462                 fep->itpfe_last = 0;
6463                 fep->itpfe_fraglist = NULL;
6464                 fep->itpfe_depth = 0;
6465                 fep->itpfe_next = (frag->itpf_ptr)[i];
6466                 (frag->itpf_ptr)[i] = fep;
6467 
6468                 if (frag->itpf_expire_hint > fep->itpfe_exp)
6469                         frag->itpf_expire_hint = fep->itpfe_exp;
6470 
6471         }
6472 
6473         /* Insert it in the frag list */
6474         /* List is in order by starting offset of fragments */
6475 
6476         prevmp = NULL;
6477         for (nmp = fep->itpfe_fraglist; nmp; nmp = nmp->b_next) {
6478                 ipha_t *niph;
6479                 ipha_t *oniph;
6480                 ip6_t *nip6h;
6481                 ip_pkt_t nipp;
6482                 ip6_frag_t *nfraghdr;
6483                 uint16_t nip6_hdr_length;
6484                 uint8_t *nv6_proto_p;
6485                 int nfirstbyte, nlastbyte;
6486                 char *data, *ndata;
6487                 mblk_t *ndata_mp = (inbound ? nmp->b_cont : nmp);
6488                 int hdr_len;
6489 
6490                 oniph  = (ipha_t *)mp->b_rptr;
6491                 nip6h = NULL;
6492                 niph = NULL;
6493 
6494                 /*
6495                  * Determine outer header type and length and set
6496                  * pointers appropriately
6497                  */
6498 
6499                 if (IPH_HDR_VERSION(oniph) == IPV4_VERSION) {
6500                         hdr_len = ((outer_hdr_len != 0) ?
6501                             IPH_HDR_LENGTH(oiph) : 0);
6502                         niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6503                 } else {
6504                         ASSERT(IPH_HDR_VERSION(oniph) == IPV6_VERSION);
6505                         ASSERT(ndata_mp->b_cont == NULL);
6506                         nip6h = (ip6_t *)ndata_mp->b_rptr;
6507                         (void) ip_hdr_length_nexthdr_v6(ndata_mp, nip6h,
6508                             &nip6_hdr_length, &v6_proto_p);
6509                         hdr_len = ((outer_hdr_len != 0) ? nip6_hdr_length : 0);
6510                 }
6511 
6512                 /*
6513                  * Determine inner header type and length and set
6514                  * pointers appropriately
6515                  */
6516 
6517                 if (is_v4) {
6518                         if (niph == NULL) {
6519                                 /* Was v6 outer */
6520                                 niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6521                         }
6522                         nfirstbyte = V4_FRAG_OFFSET(niph);
6523                         nlastbyte = nfirstbyte + ntohs(niph->ipha_length) -
6524                             IPH_HDR_LENGTH(niph);
6525                 } else {
6526                         ASSERT(ndata_mp->b_cont == NULL);
6527                         nip6h = (ip6_t *)(ndata_mp->b_rptr + hdr_len);
6528                         if (!ip_hdr_length_nexthdr_v6(ndata_mp, nip6h,
6529                             &nip6_hdr_length, &nv6_proto_p)) {
6530                                 mutex_exit(&frag->itpf_lock);
6531                                 ip_drop_packet_chain(nmp, inbound, NULL,
6532                                     DROPPER(ipss, ipds_spd_malformed_frag),
6533                                     &ipss->ipsec_spd_dropper);
6534                                 ipsec_freemsg_chain(ndata_mp);
6535                                 if (inbound)
6536                                         (void) ip_recv_attr_free_mblk(iramp);
6537                                 return (NULL);
6538                         }
6539                         bzero(&nipp, sizeof (nipp));
6540                         (void) ip_find_hdr_v6(ndata_mp, nip6h, B_FALSE, &nipp,
6541                             NULL);
6542                         nfraghdr = nipp.ipp_fraghdr;
6543                         nfirstbyte = ntohs(nfraghdr->ip6f_offlg &
6544                             IP6F_OFF_MASK);
6545                         nlastbyte  = nfirstbyte + ntohs(nip6h->ip6_plen) +
6546                             sizeof (ip6_t) - nip6_hdr_length;
6547                 }
6548 
6549                 /* Check for overlapping fragments */
6550                 if (firstbyte >= nfirstbyte && firstbyte < nlastbyte) {
6551                         /*
6552                          * Overlap Check:
6553                          *  ~~~~---------               # Check if the newly
6554                          * ~    ndata_mp|               # received fragment
6555                          *  ~~~~---------               # overlaps with the
6556                          *       ---------~~~~~~        # current fragment.
6557                          *      |    mp         ~
6558                          *       ---------~~~~~~
6559                          */
6560                         if (is_v4) {
6561                                 data  = (char *)iph  + IPH_HDR_LENGTH(iph) +
6562                                     firstbyte - nfirstbyte;
6563                                 ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6564                         } else {
6565                                 data  = (char *)ip6h  +
6566                                     nip6_hdr_length + firstbyte -
6567                                     nfirstbyte;
6568                                 ndata = (char *)nip6h + nip6_hdr_length;
6569                         }
6570                         if (bcmp(data, ndata, MIN(lastbyte, nlastbyte) -
6571                             firstbyte)) {
6572                                 /* Overlapping data does not match */
6573                                 (void) fragcache_delentry(i, fep, frag, ipss);
6574                                 mutex_exit(&frag->itpf_lock);
6575                                 ip_drop_packet(mp, inbound, NULL,
6576                                     DROPPER(ipss, ipds_spd_overlap_frag),
6577                                     &ipss->ipsec_spd_dropper);
6578                                 if (inbound)
6579                                         (void) ip_recv_attr_free_mblk(iramp);
6580                                 return (NULL);
6581                         }
6582                         /* Part of defense for jolt2.c fragmentation attack */
6583                         if (firstbyte >= nfirstbyte && lastbyte <= nlastbyte) {
6584                                 /*
6585                                  * Check for identical or subset fragments:
6586                                  *  ----------      ~~~~--------~~~~~
6587                                  * |    nmp   | or  ~      nmp      ~
6588                                  *  ----------      ~~~~--------~~~~~
6589                                  *  ----------            ------
6590                                  * |    mp    |          |  mp  |
6591                                  *  ----------            ------
6592                                  */
6593                                 mutex_exit(&frag->itpf_lock);
6594                                 ip_drop_packet(mp, inbound, NULL,
6595                                     DROPPER(ipss, ipds_spd_evil_frag),
6596                                     &ipss->ipsec_spd_dropper);
6597                                 if (inbound)
6598                                         (void) ip_recv_attr_free_mblk(iramp);
6599                                 return (NULL);
6600                         }
6601 
6602                 }
6603 
6604                 /* Correct location for this fragment? */
6605                 if (firstbyte <= nfirstbyte) {
6606                         /*
6607                          * Check if the tail end of the new fragment overlaps
6608                          * with the head of the current fragment.
6609                          *        --------~~~~~~~
6610                          *       |    nmp       ~
6611                          *        --------~~~~~~~
6612                          *  ~~~~~--------
6613                          *  ~   mp       |
6614                          *  ~~~~~--------
6615                          */
6616                         if (lastbyte > nfirstbyte) {
6617                                 /* Fragments overlap */
6618                                 data  = (char *)iph  + IPH_HDR_LENGTH(iph) +
6619                                     firstbyte - nfirstbyte;
6620                                 ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6621                                 if (is_v4) {
6622                                         data  = (char *)iph +
6623                                             IPH_HDR_LENGTH(iph) + firstbyte -
6624                                             nfirstbyte;
6625                                         ndata = (char *)niph +
6626                                             IPH_HDR_LENGTH(niph);
6627                                 } else {
6628                                         data  = (char *)ip6h  +
6629                                             nip6_hdr_length + firstbyte -
6630                                             nfirstbyte;
6631                                         ndata = (char *)nip6h + nip6_hdr_length;
6632                                 }
6633                                 if (bcmp(data, ndata, MIN(lastbyte, nlastbyte)
6634                                     - nfirstbyte)) {
6635                                         /* Overlap mismatch */
6636                                         (void) fragcache_delentry(i, fep, frag,
6637                                             ipss);
6638                                         mutex_exit(&frag->itpf_lock);
6639                                         ip_drop_packet(mp, inbound, NULL,
6640                                             DROPPER(ipss,
6641                                             ipds_spd_overlap_frag),
6642                                             &ipss->ipsec_spd_dropper);
6643                                         if (inbound) {
6644                                                 (void) ip_recv_attr_free_mblk(
6645                                                     iramp);
6646                                         }
6647                                         return (NULL);
6648                                 }
6649                         }
6650 
6651                         /*
6652                          * Fragment does not illegally overlap and can now
6653                          * be inserted into the chain
6654                          */
6655                         break;
6656                 }
6657 
6658                 prevmp = nmp;
6659         }
6660         /* Prepend the attributes before we link it in */
6661         if (iramp != NULL) {
6662                 ASSERT(iramp->b_cont == NULL);
6663                 iramp->b_cont = mp;
6664                 mp = iramp;
6665                 iramp = NULL;
6666         }
6667         mp->b_next = nmp;
6668 
6669         if (prevmp == NULL) {
6670                 fep->itpfe_fraglist = mp;
6671         } else {
6672                 prevmp->b_next = mp;
6673         }
6674         if (last)
6675                 fep->itpfe_last = 1;
6676 
6677         /* Part of defense for jolt2.c fragmentation attack */
6678         if (++(fep->itpfe_depth) > IPSEC_MAX_FRAGS) {
6679                 (void) fragcache_delentry(i, fep, frag, ipss);
6680                 mutex_exit(&frag->itpf_lock);
6681                 if (inbound)
6682                         mp = ip_recv_attr_free_mblk(mp);
6683 
6684                 ip_drop_packet(mp, inbound, NULL,
6685                     DROPPER(ipss, ipds_spd_max_frags),
6686                     &ipss->ipsec_spd_dropper);
6687                 return (NULL);
6688         }
6689 
6690         /* Check for complete packet */
6691 
6692         if (!fep->itpfe_last) {
6693                 mutex_exit(&frag->itpf_lock);
6694 #ifdef FRAGCACHE_DEBUG
6695                 cmn_err(CE_WARN, "Fragment cached, last not yet seen.\n");
6696 #endif
6697                 return (NULL);
6698         }
6699 
6700         offset = 0;
6701         for (mp = fep->itpfe_fraglist; mp; mp = mp->b_next) {
6702                 mblk_t *data_mp = (inbound ? mp->b_cont : mp);
6703                 int hdr_len;
6704 
6705                 oiph  = (ipha_t *)data_mp->b_rptr;
6706                 ip6h = NULL;
6707                 iph = NULL;
6708 
6709                 if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
6710                         hdr_len = ((outer_hdr_len != 0) ?
6711                             IPH_HDR_LENGTH(oiph) : 0);
6712                         iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6713                 } else {
6714                         ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
6715                         ASSERT(data_mp->b_cont == NULL);
6716                         ip6h = (ip6_t *)data_mp->b_rptr;
6717                         (void) ip_hdr_length_nexthdr_v6(data_mp, ip6h,
6718                             &ip6_hdr_length, &v6_proto_p);
6719                         hdr_len = ((outer_hdr_len != 0) ? ip6_hdr_length : 0);
6720                 }
6721 
6722                 /* Calculate current fragment start/end */
6723                 if (is_v4) {
6724                         if (iph == NULL) {
6725                                 /* Was v6 outer */
6726                                 iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6727                         }
6728                         firstbyte = V4_FRAG_OFFSET(iph);
6729                         lastbyte = firstbyte + ntohs(iph->ipha_length) -
6730                             IPH_HDR_LENGTH(iph);
6731                 } else {
6732                         ASSERT(data_mp->b_cont == NULL);
6733                         ip6h = (ip6_t *)(data_mp->b_rptr + hdr_len);
6734                         if (!ip_hdr_length_nexthdr_v6(data_mp, ip6h,
6735                             &ip6_hdr_length, &v6_proto_p)) {
6736                                 mutex_exit(&frag->itpf_lock);
6737                                 ip_drop_packet_chain(mp, inbound, NULL,
6738                                     DROPPER(ipss, ipds_spd_malformed_frag),
6739                                     &ipss->ipsec_spd_dropper);
6740                                 return (NULL);
6741                         }
6742                         v6_proto = *v6_proto_p;
6743                         bzero(&ipp, sizeof (ipp));
6744                         (void) ip_find_hdr_v6(data_mp, ip6h, B_FALSE, &ipp,
6745                             NULL);
6746                         fraghdr = ipp.ipp_fraghdr;
6747                         firstbyte = ntohs(fraghdr->ip6f_offlg &
6748                             IP6F_OFF_MASK);
6749                         lastbyte  = firstbyte + ntohs(ip6h->ip6_plen) +
6750                             sizeof (ip6_t) - ip6_hdr_length;
6751                 }
6752 
6753                 /*
6754                  * If this fragment is greater than current offset,
6755                  * we have a missing fragment so return NULL
6756                  */
6757                 if (firstbyte > offset) {
6758                         mutex_exit(&frag->itpf_lock);
6759 #ifdef FRAGCACHE_DEBUG
6760                         /*
6761                          * Note, this can happen when the last frag
6762                          * gets sent through because it is smaller
6763                          * than the MTU.  It is not necessarily an
6764                          * error condition.
6765                          */
6766                         cmn_err(CE_WARN, "Frag greater than offset! : "
6767                             "missing fragment: firstbyte = %d, offset = %d, "
6768                             "mp = %p\n", firstbyte, offset, mp);
6769 #endif
6770                         return (NULL);
6771                 }
6772 #ifdef FRAGCACHE_DEBUG
6773                 cmn_err(CE_WARN, "Frag offsets : "
6774                     "firstbyte = %d, offset = %d, mp = %p\n",
6775                     firstbyte, offset, mp);
6776 #endif
6777 
6778                 /*
6779                  * If we are at the last fragment, we have the complete
6780                  * packet, so rechain things and return it to caller
6781                  * for processing
6782                  */
6783 
6784                 if ((is_v4 && !V4_MORE_FRAGS(iph)) ||
6785                     (!is_v4 && !(fraghdr->ip6f_offlg & IP6F_MORE_FRAG))) {
6786                         mp = fep->itpfe_fraglist;
6787                         fep->itpfe_fraglist = NULL;
6788                         (void) fragcache_delentry(i, fep, frag, ipss);
6789                         mutex_exit(&frag->itpf_lock);
6790 
6791                         if ((is_v4 && (firstbyte + ntohs(iph->ipha_length) >
6792                             65535)) || (!is_v4 && (firstbyte +
6793                             ntohs(ip6h->ip6_plen) > 65535))) {
6794                                 /* It is an invalid "ping-o-death" packet */
6795                                 /* Discard it */
6796                                 ip_drop_packet_chain(mp, inbound, NULL,
6797                                     DROPPER(ipss, ipds_spd_evil_frag),
6798                                     &ipss->ipsec_spd_dropper);
6799                                 return (NULL);
6800                         }
6801 #ifdef FRAGCACHE_DEBUG
6802                         cmn_err(CE_WARN, "Fragcache returning mp = %p, "
6803                             "mp->b_next = %p", mp, mp->b_next);
6804 #endif
6805                         /*
6806                          * For inbound case, mp has attrmp b_next'd chain
6807                          * For outbound case, it is just data mp chain
6808                          */
6809                         return (mp);
6810                 }
6811 
6812                 /*
6813                  * Update new ending offset if this
6814                  * fragment extends the packet
6815                  */
6816                 if (offset < lastbyte)
6817                         offset = lastbyte;
6818         }
6819 
6820         mutex_exit(&frag->itpf_lock);
6821 
6822         /* Didn't find last fragment, so return NULL */
6823         return (NULL);
6824 }
6825 
6826 static void
6827 ipsec_fragcache_clean(ipsec_fragcache_t *frag, ipsec_stack_t *ipss)
6828 {
6829         ipsec_fragcache_entry_t *fep;
6830         int i;
6831         ipsec_fragcache_entry_t *earlyfep = NULL;
6832         time_t itpf_time;
6833         int earlyexp;
6834         int earlyi = 0;
6835 
6836         ASSERT(MUTEX_HELD(&frag->itpf_lock));
6837 
6838         itpf_time = gethrestime_sec();
6839         earlyexp = itpf_time + 10000;
6840 
6841         for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6842                 fep = (frag->itpf_ptr)[i];
6843                 while (fep) {
6844                         if (fep->itpfe_exp < itpf_time) {
6845                                 /* found */
6846                                 fep = fragcache_delentry(i, fep, frag, ipss);
6847                         } else {
6848                                 if (fep->itpfe_exp < earlyexp) {
6849                                         earlyfep = fep;
6850                                         earlyexp = fep->itpfe_exp;
6851                                         earlyi = i;
6852                                 }
6853                                 fep = fep->itpfe_next;
6854                         }
6855                 }
6856         }
6857 
6858         frag->itpf_expire_hint = earlyexp;
6859 
6860         /* if (!found) */
6861         if (frag->itpf_freelist == NULL)
6862                 (void) fragcache_delentry(earlyi, earlyfep, frag, ipss);
6863 }
6864 
6865 static ipsec_fragcache_entry_t *
6866 fragcache_delentry(int slot, ipsec_fragcache_entry_t *fep,
6867     ipsec_fragcache_t *frag, ipsec_stack_t *ipss)
6868 {
6869         ipsec_fragcache_entry_t *targp;
6870         ipsec_fragcache_entry_t *nextp = fep->itpfe_next;
6871 
6872         ASSERT(MUTEX_HELD(&frag->itpf_lock));
6873 
6874         /* Free up any fragment list still in cache entry */
6875         if (fep->itpfe_fraglist != NULL) {
6876                 ip_drop_packet_chain(fep->itpfe_fraglist,
6877                     ip_recv_attr_is_mblk(fep->itpfe_fraglist), NULL,
6878                     DROPPER(ipss, ipds_spd_expired_frags),
6879                     &ipss->ipsec_spd_dropper);
6880         }
6881         fep->itpfe_fraglist = NULL;
6882 
6883         targp = (frag->itpf_ptr)[slot];
6884         ASSERT(targp != 0);
6885 
6886         if (targp == fep) {
6887                 /* unlink from head of hash chain */
6888                 (frag->itpf_ptr)[slot] = nextp;
6889                 /* link into free list */
6890                 fep->itpfe_next = frag->itpf_freelist;
6891                 frag->itpf_freelist = fep;
6892                 return (nextp);
6893         }
6894 
6895         /* maybe should use double linked list to make update faster */
6896         /* must be past front of chain */
6897         while (targp) {
6898                 if (targp->itpfe_next == fep) {
6899                         /* unlink from hash chain */
6900                         targp->itpfe_next = nextp;
6901                         /* link into free list */
6902                         fep->itpfe_next = frag->itpf_freelist;
6903                         frag->itpf_freelist = fep;
6904                         return (nextp);
6905                 }
6906                 targp = targp->itpfe_next;
6907                 ASSERT(targp != 0);
6908         }
6909         /* NOTREACHED */
6910         return (NULL);
6911 }
--- EOF ---