
new/usr/src/uts/armv6/bcm2835/ml/locore.s 1

**
 811 Sat Feb 7 18:57:48 2015
new/usr/src/uts/armv6/bcm2835/ml/locore.s
armv6: bcm2835 & qvpb have nearly identical locore _start
It makes sense to common-ize _start for all armv6 machines. They will all
have to do the same basic setup. If there is any machine specific setup
they need to do, they can do so in the new _mach_start function.
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2013 (c) Joyent, Inc. All rights reserved.
14 * Copyright 2015 (c) Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
15 */

17 #include <sys/asm_linkage.h>
18 #include <sys/machparam.h>
19 #include <sys/cpu_asm.h>

21 ENTRY(_mach_start)
21 /*
22 * Every story needs a beginning. This is ours.
23 */

25 /*
26 * We are in a primordial world here. The BMC2835 is going to come along and
27 * boot us at _start. Normally we would go ahead and use a main() function, but
28 * for now, we’ll do that ourselves. As we’ve started the world, we also need to
29 * set up a few things about us, for example our stack pointer. To help us out,
30 * it’s useful to remember the rough memory map. Remember, this is for physcial
31 * addresses. There is no virtual memory here. These sizes are often manipulated
32 * by the ’configuration’ in the bootloader.
33 *
34 * +----------------+ <---- Max physical memory
35 * | |
36 * | |
37 * | |
38 * +----------------+
39 * | |
40 * | I/O |
41 * | Peripherals |
42 * | |
43 * +----------------+ <---- I/O base 0x20000000 (corresponds to 0x7E000000)
44 * | |
45 * | Main |
46 * | Memory |
47 * | |
48 * +----------------+ <---- Top of SDRAM
49 * | |
50 * | VC |
51 * | SDRAM |
52 * | |
53 * +----------------+ <---- Split determined by bootloader config
54 * | |
55 * | ARM |
56 * | SDRAM |
57 * | |

new/usr/src/uts/armv6/bcm2835/ml/locore.s 2

58 * +----------------+ <---- Bottom of physical memory 0x00000000
59 *
60 * With the Raspberry Pi Model B, we have 512 MB of SDRAM. That means we have a
61 * range of addresses from [0, 0x20000000). If we assume that the minimum amount
62 * of DRAM is given to the GPU - 32 MB, that means we really have the following
63 * range: [0, 0x1e000000).
64 *
65 * By default, this binary will be loaded into 0x8000. For now, that means we
66 * will set our initial stack to 0x10000000.
67 */

69 /*
70 * Recall that _start is the traditional entry point for an ELF binary.
71 */
72 ENTRY(_start)
73 ldr sp, =t0stack
74 ldr r4, =DEFAULTSTKSZ
75 add sp, r4
76 bic sp, sp, #0xff

78 /*
79 * establish bogus stacks for exceptional CPU states, our exception
80 * code should never make use of these, and we want loud and violent
81 * failure should we accidentally try.
82 */
83 cps #(CPU_MODE_UND)
84 mov sp, #-1
85 cps #(CPU_MODE_ABT)
86 mov sp, #-1
87 cps #(CPU_MODE_FIQ)
88 mov sp, #-1
89 cps #(CPU_MODE_IRQ)
90 mov sp, #-1
91 cps #(CPU_MODE_SVC)

93 /* Enable highvecs (moves the base of the exception vector) */
94 mrc p15, 0, r3, c1, c0, 0
95 mov r4, #1
96 lsl r4, r4, #13
97 orr r3, r3, r4
98 mcr p15, 0, r3, c1, c0, 0

22 /* Enable access to p10 and p11 (privileged mode only) */
23 mrc p15, 0, r0, c1, c0, 2
24 orr r0, #0x00500000
25 mcr p15, 0, r0, c1, c0, 2

27 bx r14
28 SET_SIZE(_mach_start)
105 bl _fakebop_start
106 SET_SIZE(_start)

108 ENTRY(arm_reg_read)
109 ldr r0, [r0]
110 bx lr
111 SET_SIZE(arm_reg_read)

113 ENTRY(arm_reg_write)
114 str r1, [r0]
115 bx lr
116 SET_SIZE(arm_reg_write)

new/usr/src/uts/armv6/ml/glocore.s 1

**
 4958 Sat Feb 7 18:57:48 2015
new/usr/src/uts/armv6/ml/glocore.s
armv6: bcm2835 & qvpb have nearly identical locore _start
It makes sense to common-ize _start for all armv6 machines. They will all
have to do the same basic setup. If there is any machine specific setup
they need to do, they can do so in the new _mach_start function.
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2013 (c) Joyent, Inc. All rights reserved.
14 * Copyright (c) 2015 Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
15 */

17 #include <sys/asm_linkage.h>
18 #include <sys/machparam.h>
19 #include <sys/cpu_asm.h>

21 #include "assym.h"

23 /*
24 * Every story needs a beginning. This is ours.
25 */
23 #if defined(__lint)

27 /*
28 * Each of the different machines has its own locore.s to take care of getting
29 * the machine specific setup done. Just before jumping into fakebop the
30 * first time, we call this machine specific code.
31 */
25 #endif

33 /*
34 * We are in a primordial world here. The loader is going to come along and
35 * boot us at _start. As we’ve started the world, we also need to set up a
36 * few things about us, for example our stack pointer. To help us out, it’s
37 * useful to remember what the loader set up for us:
38 *
39 * - unaligned access are allowed (A = 0, U = 1)
40 * - virtual memory is enabled
41 * - we (unix) are mapped right were we want to be
42 * - a UART has been enabled & any memory mapped registers have been 1:1
43 * mapped
44 * - ATAGs have been updated to tell us what the mappings are
45 * - I/D L1 caches have been enabled
28 * Each of the different machines has its own locore.s to take care of getting
29 * us into fakebop for the first time. After that, they all return here to a
30 * generic locore to take us into mlsetup and then to main forever more.
46 */

48 /*
49 * External globals
50 */
51 .globl _locore_start
52 .globl mlsetup
53 .globl sysp

new/usr/src/uts/armv6/ml/glocore.s 2

54 .globl bootops
55 .globl bootopsp
56 .globl t0

58 .data
59 .comm t0stack, DEFAULTSTKSZ, 32
60 .comm t0, 4094, 32

63 /*
64 * Recall that _start is the traditional entry point for an ELF binary.
65 */
66 ENTRY(_start)
67 ldr sp, =t0stack
68 ldr r4, =DEFAULTSTKSZ
69 add sp, r4
70 bic sp, sp, #0xff

72 /*
73 * establish bogus stacks for exceptional CPU states, our exception
74 * code should never make use of these, and we want loud and violent
75 * failure should we accidentally try.
76 */
77 cps #(CPU_MODE_UND)
78 mov sp, #-1
79 cps #(CPU_MODE_ABT)
80 mov sp, #-1
81 cps #(CPU_MODE_FIQ)
82 mov sp, #-1
83 cps #(CPU_MODE_IRQ)
84 mov sp, #-1
85 cps #(CPU_MODE_SVC)

87 /* Enable highvecs (moves the base of the exception vector) */
88 mrc p15, 0, r3, c1, c0, 0
89 mov r4, #1
90 lsl r4, r4, #13
91 orr r3, r3, r4
92 mcr p15, 0, r3, c1, c0, 0

94 /* invoke machine specific setup */
95 bl _mach_start

97 bl _fakebop_start
98 SET_SIZE(_start)

101 #endif /* ! codereview */
102 #if defined(__lint)

104 /* ARGSUSED */
105 void
106 _locore_start(struct boot_syscalls *sysp, struct bootops *bop)
107 {}

109 #else /* __lint */

111 /*
112 * We got here from _kobj_init() via exitto(). We have a few different
113 * tasks that we need to take care of before we hop into mlsetup and
114 * then main. We’re never going back so we shouldn’t feel compelled to
115 * preserve any registers.
116 *
117 * o Enable our I/D-caches
118 * o Save the boot syscalls and bootops for later
119 * o Set up our stack to be the real stack of t0stack.

new/usr/src/uts/armv6/ml/glocore.s 3

120 * o Save t0 as curthread
121 * o Set up a struct REGS for mlsetup
122 * o Make sure that we’re 8 byte aligned for the call
123 */

125 ENTRY(_locore_start)

128 /*
129 * We’ve been running in t0stack anyway, up to this point, but
130 * _locore_start represents what is in effect a fresh start in the
131 * real kernel -- We’ll never return back through here.
132 *
133 * So reclaim those few bytes
134 */
135 ldr sp, =t0stack
136 ldr r4, =(DEFAULTSTKSZ - REGSIZE)
137 add sp, r4
138 bic sp, sp, #0xff

140 /*
141 * Save flags and arguments for potential debugging
142 */
143 str r0, [sp, #REGOFF_R0]
144 str r1, [sp, #REGOFF_R1]
145 str r2, [sp, #REGOFF_R2]
146 str r3, [sp, #REGOFF_R3]
147 mrs r4, CPSR
148 str r4, [sp, #REGOFF_CPSR]

150 /*
151 * Save back the bootops and boot_syscalls.
152 */
153 ldr r2, =sysp
154 str r0, [r2]
155 ldr r2, =bootops
156 str r1, [r2]
157 ldr r2, =bootopsp
158 ldr r2, [r2]
159 str r1, [r2]

161 /*
162 * Set up our curthread pointer
163 */
164 ldr r0, =t0
165 mcr p15, 0, r0, c13, c0, 4

167 /*
168 * Go ahead now and enable the L1 I/D caches.
169 */
170 mrc p15, 0, r0, c1, c0, 0
171 orr r0, #0x04 /* D-cache */
172 orr r0, #0x1000 /* I-cache */
173 mcr p15, 0, r0, c1, c0, 0

175 /*
176 * mlsetup() takes the struct regs as an argument. main doesn’t take
177 * any and should never return. Currently, we have an 8-byte aligned
178 * stack. We want to push a zero frame pointer to terminate any
179 * stack walking, but that would cause us to end up with only a
180 * 4-byte aligned stack. So, to keep things nice and correct, we
181 * push a zero value twice - it’s similar to a typical function
182 * entry:
183 * push { r9, lr }
184 */
185 mov r9,#0

new/usr/src/uts/armv6/ml/glocore.s 4

186 push { r9 } /* link register */
187 push { r9 } /* frame pointer */
188 mov r0, sp
189 bl mlsetup
190 bl main
191 /* NOTREACHED */
192 ldr r0,=__return_from_main
193 ldr r0,[r0]
194 bl panic
195 SET_SIZE(_locore_start)

197 __return_from_main:
198 .string "main() returned"
199 #endif /* __lint */

201 ENTRY(arm_reg_read)
202 ldr r0, [r0]
203 bx lr
204 SET_SIZE(arm_reg_read)

206 ENTRY(arm_reg_write)
207 str r1, [r0]
208 bx lr
209 SET_SIZE(arm_reg_write)
210 #endif /* ! codereview */

new/usr/src/uts/armv6/qvpb/ml/locore.s 1

**
 697 Sat Feb 7 18:57:48 2015
new/usr/src/uts/armv6/qvpb/ml/locore.s
armv6: bcm2835 & qvpb have nearly identical locore _start
It makes sense to common-ize _start for all armv6 machines. They will all
have to do the same basic setup. If there is any machine specific setup
they need to do, they can do so in the new _mach_start function.
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2013 (c) Joyent, Inc. All rights reserved.
14 * Copyright 2015 (c) Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
15 #endif /* ! codereview */
16 */

18 #include <sys/asm_linkage.h>
19 #include <sys/machparam.h>
20 #include <sys/cpu_asm.h>

22 ENTRY(_mach_start)
23 /* nothing to do */
24 bx r14
25 SET_SIZE(_mach_start)
14 /*
15 * Every story needs a beginning. This is ours.
16 */

18 /*
19 * We are in a primordial world here. The BMC2835 is going to come along and
20 * boot us at _start. Normally we would go ahead and use a main() function, but
21 * for now, we’ll do that ourselves. As we’ve started the world, we also need to
22 * set up a few things about us, for example our stack pointer. To help us out,
23 * it’s useful to remember the rough memory map. Remember, this is for physcial
24 * addresses. There is no virtual memory here. These sizes are often manipulated
25 * by the ’configuration’ in the bootloader.
26 *
27 * +----------------+ <---- Max physical memory
28 * | |
29 * | |
30 * | |
31 * +----------------+
32 * | |
33 * | I/O |
34 * | Peripherals |
35 * | |
36 * +----------------+ <---- I/O base 0x20000000 (corresponds to 0x7E000000)
37 * | |
38 * | Main |
39 * | Memory |
40 * | |
41 * +----------------+ <---- Top of SDRAM
42 * | |
43 * | VC |
44 * | SDRAM |
45 * | |
46 * +----------------+ <---- Split determined by bootloader config

new/usr/src/uts/armv6/qvpb/ml/locore.s 2

47 * | |
48 * | ARM |
49 * | SDRAM |
50 * | |
51 * +----------------+ <---- Bottom of physical memory 0x00000000
52 *
53 * With the Raspberry Pi Model B, we have 512 MB of SDRAM. That means we have a
54 * range of addresses from [0, 0x20000000). If we assume that the minimum amount
55 * of DRAM is given to the GPU - 32 MB, that means we really have the following
56 * range: [0, 0x1e000000).
57 *
58 * By default, this binary will be loaded into 0x8000. For now, that means we
59 * will set our initial stack to 0x10000000.
60 */

62 /*
63 * Recall that _start is the traditional entry point for an ELF binary.
64 */
65 ENTRY(_start)
66 ldr sp, =t0stack
67 ldr r4, =DEFAULTSTKSZ
68 add sp, r4
69 bic sp, sp, #0xff

71 /*
72 * establish bogus stacks for exceptional CPU states, our exception
73 * code should never make use of these, and we want loud and violent
74 * failure should we accidentally try.
75 */
76 cps #(CPU_MODE_UND)
77 mov sp, #-1
78 cps #(CPU_MODE_ABT)
79 mov sp, #-1
80 cps #(CPU_MODE_FIQ)
81 mov sp, #-1
82 cps #(CPU_MODE_IRQ)
83 mov sp, #-1
84 cps #(CPU_MODE_SVC)

86 /* Enable highvecs (moves the base of the exception vector) */
87 mrc p15, 0, r3, c1, c0, 0
88 mov r4, #1
89 lsl r4, r4, #13
90 orr r3, r3, r4
91 mcr p15, 0, r3, c1, c0, 0

93 bl _fakebop_start
94 SET_SIZE(_start)

96 ENTRY(arm_reg_read)
97 ldr r0, [r0]
98 bx lr
99 SET_SIZE(arm_reg_read)

101 ENTRY(arm_reg_write)
102 str r1, [r0]
103 bx lr
104 SET_SIZE(arm_reg_write)

