1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright 2013, Joyent, Inc. All rights reserved.
  25  */
  26 
  27 #include <sys/types.h>
  28 #include <sys/param.h>
  29 #include <sys/sysmacros.h>
  30 #include <sys/cred.h>
  31 #include <sys/proc.h>
  32 #include <sys/strsubr.h>
  33 #include <sys/priocntl.h>
  34 #include <sys/class.h>
  35 #include <sys/disp.h>
  36 #include <sys/procset.h>
  37 #include <sys/debug.h>
  38 #include <sys/kmem.h>
  39 #include <sys/errno.h>
  40 #include <sys/systm.h>
  41 #include <sys/schedctl.h>
  42 #include <sys/vmsystm.h>
  43 #include <sys/atomic.h>
  44 #include <sys/project.h>
  45 #include <sys/modctl.h>
  46 #include <sys/fss.h>
  47 #include <sys/fsspriocntl.h>
  48 #include <sys/cpupart.h>
  49 #include <sys/zone.h>
  50 #include <vm/rm.h>
  51 #include <vm/seg_kmem.h>
  52 #include <sys/tnf_probe.h>
  53 #include <sys/policy.h>
  54 #include <sys/sdt.h>
  55 #include <sys/cpucaps.h>
  56 
  57 /*
  58  * FSS Data Structures:
  59  *
  60  *                 fsszone
  61  *                  -----           -----
  62  *  -----          |     |         |     |
  63  * |     |-------->|     |<------->|     |<---->...
  64  * |     |          -----           -----
  65  * |     |          ^    ^            ^
  66  * |     |---       |     \            \
  67  *  -----    |      |      \            \
  68  * fsspset   |      |       \            \
  69  *           |      |        \            \
  70  *           |    -----       -----       -----
  71  *            -->|     |<--->|     |<--->|     |
  72  *               |     |     |     |     |     |
  73  *                -----       -----       -----
  74  *               fssproj
  75  *
  76  *
  77  * That is, fsspsets contain a list of fsszone's that are currently active in
  78  * the pset, and a list of fssproj's, corresponding to projects with runnable
  79  * threads on the pset.  fssproj's in turn point to the fsszone which they
  80  * are a member of.
  81  *
  82  * An fssproj_t is removed when there are no threads in it.
  83  *
  84  * An fsszone_t is removed when there are no projects with threads in it.
  85  *
  86  * Projects in a zone compete with each other for cpu time, receiving cpu
  87  * allocation within a zone proportional to fssproj->fssp_shares
  88  * (project.cpu-shares); at a higher level zones compete with each other,
  89  * receiving allocation in a pset proportional to fsszone->fssz_shares
  90  * (zone.cpu-shares).  See fss_decay_usage() for the precise formula.
  91  */
  92 
  93 static pri_t fss_init(id_t, int, classfuncs_t **);
  94 
  95 static struct sclass fss = {
  96         "FSS",
  97         fss_init,
  98         0
  99 };
 100 
 101 extern struct mod_ops mod_schedops;
 102 
 103 /*
 104  * Module linkage information for the kernel.
 105  */
 106 static struct modlsched modlsched = {
 107         &mod_schedops, "fair share scheduling class", &fss
 108 };
 109 
 110 static struct modlinkage modlinkage = {
 111         MODREV_1, (void *)&modlsched, NULL
 112 };
 113 
 114 #define FSS_MAXUPRI     60
 115 
 116 /*
 117  * The fssproc_t structures are kept in an array of circular doubly linked
 118  * lists.  A hash on the thread pointer is used to determine which list each
 119  * thread should be placed in.  Each list has a dummy "head" which is never
 120  * removed, so the list is never empty.  fss_update traverses these lists to
 121  * update the priorities of threads that have been waiting on the run queue.
 122  */
 123 #define FSS_LISTS               16 /* number of lists, must be power of 2 */
 124 #define FSS_LIST_HASH(t)        (((uintptr_t)(t) >> 9) & (FSS_LISTS - 1))
 125 #define FSS_LIST_NEXT(i)        (((i) + 1) & (FSS_LISTS - 1))
 126 
 127 #define FSS_LIST_INSERT(fssproc)                                \
 128 {                                                               \
 129         int index = FSS_LIST_HASH(fssproc->fss_tp);          \
 130         kmutex_t *lockp = &fss_listlock[index];                     \
 131         fssproc_t *headp = &fss_listhead[index];            \
 132         mutex_enter(lockp);                                     \
 133         fssproc->fss_next = headp->fss_next;                      \
 134         fssproc->fss_prev = headp;                           \
 135         headp->fss_next->fss_prev = fssproc;                      \
 136         headp->fss_next = fssproc;                           \
 137         mutex_exit(lockp);                                      \
 138 }
 139 
 140 #define FSS_LIST_DELETE(fssproc)                                \
 141 {                                                               \
 142         int index = FSS_LIST_HASH(fssproc->fss_tp);          \
 143         kmutex_t *lockp = &fss_listlock[index];                     \
 144         mutex_enter(lockp);                                     \
 145         fssproc->fss_prev->fss_next = fssproc->fss_next;       \
 146         fssproc->fss_next->fss_prev = fssproc->fss_prev;       \
 147         mutex_exit(lockp);                                      \
 148 }
 149 
 150 #define FSS_TICK_COST   1000    /* tick cost for threads with nice level = 0 */
 151 
 152 /*
 153  * Decay rate percentages are based on n/128 rather than n/100 so  that
 154  * calculations can avoid having to do an integer divide by 100 (divide
 155  * by FSS_DECAY_BASE == 128 optimizes to an arithmetic shift).
 156  *
 157  * FSS_DECAY_MIN        =  83/128 ~= 65%
 158  * FSS_DECAY_MAX        = 108/128 ~= 85%
 159  * FSS_DECAY_USG        =  96/128 ~= 75%
 160  */
 161 #define FSS_DECAY_MIN   83      /* fsspri decay pct for threads w/ nice -20 */
 162 #define FSS_DECAY_MAX   108     /* fsspri decay pct for threads w/ nice +19 */
 163 #define FSS_DECAY_USG   96      /* fssusage decay pct for projects */
 164 #define FSS_DECAY_BASE  128     /* base for decay percentages above */
 165 
 166 #define FSS_NICE_MIN    0
 167 #define FSS_NICE_MAX    (2 * NZERO - 1)
 168 #define FSS_NICE_RANGE  (FSS_NICE_MAX - FSS_NICE_MIN + 1)
 169 
 170 static int      fss_nice_tick[FSS_NICE_RANGE];
 171 static int      fss_nice_decay[FSS_NICE_RANGE];
 172 
 173 static pri_t    fss_maxupri = FSS_MAXUPRI; /* maximum FSS user priority */
 174 static pri_t    fss_maxumdpri; /* maximum user mode fss priority */
 175 static pri_t    fss_maxglobpri; /* maximum global priority used by fss class */
 176 static pri_t    fss_minglobpri; /* minimum global priority */
 177 
 178 static fssproc_t fss_listhead[FSS_LISTS];
 179 static kmutex_t fss_listlock[FSS_LISTS];
 180 
 181 static fsspset_t *fsspsets;
 182 static kmutex_t fsspsets_lock;  /* protects fsspsets */
 183 
 184 static id_t     fss_cid;
 185 
 186 static time_t   fss_minrun = 2; /* t_pri becomes 59 within 2 secs */
 187 static time_t   fss_minslp = 2; /* min time on sleep queue for hardswap */
 188 static int      fss_quantum = 11;
 189 
 190 static void     fss_newpri(fssproc_t *);
 191 static void     fss_update(void *);
 192 static int      fss_update_list(int);
 193 static void     fss_change_priority(kthread_t *, fssproc_t *);
 194 
 195 static int      fss_admin(caddr_t, cred_t *);
 196 static int      fss_getclinfo(void *);
 197 static int      fss_parmsin(void *);
 198 static int      fss_parmsout(void *, pc_vaparms_t *);
 199 static int      fss_vaparmsin(void *, pc_vaparms_t *);
 200 static int      fss_vaparmsout(void *, pc_vaparms_t *);
 201 static int      fss_getclpri(pcpri_t *);
 202 static int      fss_alloc(void **, int);
 203 static void     fss_free(void *);
 204 
 205 static int      fss_enterclass(kthread_t *, id_t, void *, cred_t *, void *);
 206 static void     fss_exitclass(void *);
 207 static int      fss_canexit(kthread_t *, cred_t *);
 208 static int      fss_fork(kthread_t *, kthread_t *, void *);
 209 static void     fss_forkret(kthread_t *, kthread_t *);
 210 static void     fss_parmsget(kthread_t *, void *);
 211 static int      fss_parmsset(kthread_t *, void *, id_t, cred_t *);
 212 static void     fss_stop(kthread_t *, int, int);
 213 static void     fss_exit(kthread_t *);
 214 static void     fss_active(kthread_t *);
 215 static void     fss_inactive(kthread_t *);
 216 static void     fss_trapret(kthread_t *);
 217 static void     fss_preempt(kthread_t *);
 218 static void     fss_setrun(kthread_t *);
 219 static void     fss_sleep(kthread_t *);
 220 static void     fss_tick(kthread_t *);
 221 static void     fss_wakeup(kthread_t *);
 222 static int      fss_donice(kthread_t *, cred_t *, int, int *);
 223 static int      fss_doprio(kthread_t *, cred_t *, int, int *);
 224 static pri_t    fss_globpri(kthread_t *);
 225 static void     fss_yield(kthread_t *);
 226 static void     fss_nullsys();
 227 
 228 static struct classfuncs fss_classfuncs = {
 229         /* class functions */
 230         fss_admin,
 231         fss_getclinfo,
 232         fss_parmsin,
 233         fss_parmsout,
 234         fss_vaparmsin,
 235         fss_vaparmsout,
 236         fss_getclpri,
 237         fss_alloc,
 238         fss_free,
 239 
 240         /* thread functions */
 241         fss_enterclass,
 242         fss_exitclass,
 243         fss_canexit,
 244         fss_fork,
 245         fss_forkret,
 246         fss_parmsget,
 247         fss_parmsset,
 248         fss_stop,
 249         fss_exit,
 250         fss_active,
 251         fss_inactive,
 252         fss_trapret,
 253         fss_preempt,
 254         fss_setrun,
 255         fss_sleep,
 256         fss_tick,
 257         fss_wakeup,
 258         fss_donice,
 259         fss_globpri,
 260         fss_nullsys,    /* set_process_group */
 261         fss_yield,
 262         fss_doprio,
 263 };
 264 
 265 int
 266 _init()
 267 {
 268         return (mod_install(&modlinkage));
 269 }
 270 
 271 int
 272 _fini()
 273 {
 274         return (EBUSY);
 275 }
 276 
 277 int
 278 _info(struct modinfo *modinfop)
 279 {
 280         return (mod_info(&modlinkage, modinfop));
 281 }
 282 
 283 /*ARGSUSED*/
 284 static int
 285 fss_project_walker(kproject_t *kpj, void *buf)
 286 {
 287         return (0);
 288 }
 289 
 290 void *
 291 fss_allocbuf(int op, int type)
 292 {
 293         fssbuf_t *fssbuf;
 294         void **fsslist;
 295         int cnt;
 296         int i;
 297         size_t size;
 298 
 299         ASSERT(op == FSS_NPSET_BUF || op == FSS_NPROJ_BUF || op == FSS_ONE_BUF);
 300         ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE);
 301         ASSERT(MUTEX_HELD(&cpu_lock));
 302 
 303         fssbuf = kmem_zalloc(sizeof (fssbuf_t), KM_SLEEP);
 304         switch (op) {
 305         case FSS_NPSET_BUF:
 306                 cnt = cpupart_list(NULL, 0, CP_NONEMPTY);
 307                 break;
 308         case FSS_NPROJ_BUF:
 309                 cnt = project_walk_all(ALL_ZONES, fss_project_walker, NULL);
 310                 break;
 311         case FSS_ONE_BUF:
 312                 cnt = 1;
 313                 break;
 314         }
 315 
 316         switch (type) {
 317         case FSS_ALLOC_PROJ:
 318                 size = sizeof (fssproj_t);
 319                 break;
 320         case FSS_ALLOC_ZONE:
 321                 size = sizeof (fsszone_t);
 322                 break;
 323         }
 324         fsslist = kmem_zalloc(cnt * sizeof (void *), KM_SLEEP);
 325         fssbuf->fssb_size = cnt;
 326         fssbuf->fssb_list = fsslist;
 327         for (i = 0; i < cnt; i++)
 328                 fsslist[i] = kmem_zalloc(size, KM_SLEEP);
 329         return (fssbuf);
 330 }
 331 
 332 void
 333 fss_freebuf(fssbuf_t *fssbuf, int type)
 334 {
 335         void **fsslist;
 336         int i;
 337         size_t size;
 338 
 339         ASSERT(fssbuf != NULL);
 340         ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE);
 341         fsslist = fssbuf->fssb_list;
 342 
 343         switch (type) {
 344         case FSS_ALLOC_PROJ:
 345                 size = sizeof (fssproj_t);
 346                 break;
 347         case FSS_ALLOC_ZONE:
 348                 size = sizeof (fsszone_t);
 349                 break;
 350         }
 351 
 352         for (i = 0; i < fssbuf->fssb_size; i++) {
 353                 if (fsslist[i] != NULL)
 354                         kmem_free(fsslist[i], size);
 355         }
 356         kmem_free(fsslist, sizeof (void *) * fssbuf->fssb_size);
 357         kmem_free(fssbuf, sizeof (fssbuf_t));
 358 }
 359 
 360 static fsspset_t *
 361 fss_find_fsspset(cpupart_t *cpupart)
 362 {
 363         int i;
 364         fsspset_t *fsspset = NULL;
 365         int found = 0;
 366 
 367         ASSERT(cpupart != NULL);
 368         ASSERT(MUTEX_HELD(&fsspsets_lock));
 369 
 370         /*
 371          * Search for the cpupart pointer in the array of fsspsets.
 372          */
 373         for (i = 0; i < max_ncpus; i++) {
 374                 fsspset = &fsspsets[i];
 375                 if (fsspset->fssps_cpupart == cpupart) {
 376                         ASSERT(fsspset->fssps_nproj > 0);
 377                         found = 1;
 378                         break;
 379                 }
 380         }
 381         if (found == 0) {
 382                 /*
 383                  * If we didn't find anything, then use the first
 384                  * available slot in the fsspsets array.
 385                  */
 386                 for (i = 0; i < max_ncpus; i++) {
 387                         fsspset = &fsspsets[i];
 388                         if (fsspset->fssps_cpupart == NULL) {
 389                                 ASSERT(fsspset->fssps_nproj == 0);
 390                                 found = 1;
 391                                 break;
 392                         }
 393                 }
 394                 fsspset->fssps_cpupart = cpupart;
 395         }
 396         ASSERT(found == 1);
 397         return (fsspset);
 398 }
 399 
 400 static void
 401 fss_del_fsspset(fsspset_t *fsspset)
 402 {
 403         ASSERT(MUTEX_HELD(&fsspsets_lock));
 404         ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
 405         ASSERT(fsspset->fssps_nproj == 0);
 406         ASSERT(fsspset->fssps_list == NULL);
 407         ASSERT(fsspset->fssps_zones == NULL);
 408         fsspset->fssps_cpupart = NULL;
 409         fsspset->fssps_maxfsspri = 0;
 410         fsspset->fssps_shares = 0;
 411 }
 412 
 413 /*
 414  * The following routine returns a pointer to the fsszone structure which
 415  * belongs to zone "zone" and cpu partition fsspset, if such structure exists.
 416  */
 417 static fsszone_t *
 418 fss_find_fsszone(fsspset_t *fsspset, zone_t *zone)
 419 {
 420         fsszone_t *fsszone;
 421 
 422         ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
 423 
 424         if (fsspset->fssps_list != NULL) {
 425                 /*
 426                  * There are projects/zones active on this cpu partition
 427                  * already.  Try to find our zone among them.
 428                  */
 429                 fsszone = fsspset->fssps_zones;
 430                 do {
 431                         if (fsszone->fssz_zone == zone) {
 432                                 return (fsszone);
 433                         }
 434                         fsszone = fsszone->fssz_next;
 435                 } while (fsszone != fsspset->fssps_zones);
 436         }
 437         return (NULL);
 438 }
 439 
 440 /*
 441  * The following routine links new fsszone structure into doubly linked list of
 442  * zones active on the specified cpu partition.
 443  */
 444 static void
 445 fss_insert_fsszone(fsspset_t *fsspset, zone_t *zone, fsszone_t *fsszone)
 446 {
 447         ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
 448 
 449         fsszone->fssz_zone = zone;
 450         fsszone->fssz_rshares = zone->zone_shares;
 451 
 452         if (fsspset->fssps_zones == NULL) {
 453                 /*
 454                  * This will be the first fsszone for this fsspset
 455                  */
 456                 fsszone->fssz_next = fsszone->fssz_prev = fsszone;
 457                 fsspset->fssps_zones = fsszone;
 458         } else {
 459                 /*
 460                  * Insert this fsszone to the doubly linked list.
 461                  */
 462                 fsszone_t *fssz_head = fsspset->fssps_zones;
 463 
 464                 fsszone->fssz_next = fssz_head;
 465                 fsszone->fssz_prev = fssz_head->fssz_prev;
 466                 fssz_head->fssz_prev->fssz_next = fsszone;
 467                 fssz_head->fssz_prev = fsszone;
 468                 fsspset->fssps_zones = fsszone;
 469         }
 470 }
 471 
 472 /*
 473  * The following routine removes a single fsszone structure from the doubly
 474  * linked list of zones active on the specified cpu partition.  Note that
 475  * global fsspsets_lock must be held in case this fsszone structure is the last
 476  * on the above mentioned list.  Also note that the fsszone structure is not
 477  * freed here, it is the responsibility of the caller to call kmem_free for it.
 478  */
 479 static void
 480 fss_remove_fsszone(fsspset_t *fsspset, fsszone_t *fsszone)
 481 {
 482         ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
 483         ASSERT(fsszone->fssz_nproj == 0);
 484         ASSERT(fsszone->fssz_shares == 0);
 485         ASSERT(fsszone->fssz_runnable == 0);
 486 
 487         if (fsszone->fssz_next != fsszone) {
 488                 /*
 489                  * This is not the last zone in the list.
 490                  */
 491                 fsszone->fssz_prev->fssz_next = fsszone->fssz_next;
 492                 fsszone->fssz_next->fssz_prev = fsszone->fssz_prev;
 493                 if (fsspset->fssps_zones == fsszone)
 494                         fsspset->fssps_zones = fsszone->fssz_next;
 495         } else {
 496                 /*
 497                  * This was the last zone active in this cpu partition.
 498                  */
 499                 fsspset->fssps_zones = NULL;
 500         }
 501 }
 502 
 503 /*
 504  * The following routine returns a pointer to the fssproj structure
 505  * which belongs to project kpj and cpu partition fsspset, if such structure
 506  * exists.
 507  */
 508 static fssproj_t *
 509 fss_find_fssproj(fsspset_t *fsspset, kproject_t *kpj)
 510 {
 511         fssproj_t *fssproj;
 512 
 513         ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
 514 
 515         if (fsspset->fssps_list != NULL) {
 516                 /*
 517                  * There are projects running on this cpu partition already.
 518                  * Try to find our project among them.
 519                  */
 520                 fssproj = fsspset->fssps_list;
 521                 do {
 522                         if (fssproj->fssp_proj == kpj) {
 523                                 ASSERT(fssproj->fssp_pset == fsspset);
 524                                 return (fssproj);
 525                         }
 526                         fssproj = fssproj->fssp_next;
 527                 } while (fssproj != fsspset->fssps_list);
 528         }
 529         return (NULL);
 530 }
 531 
 532 /*
 533  * The following routine links new fssproj structure into doubly linked list
 534  * of projects running on the specified cpu partition.
 535  */
 536 static void
 537 fss_insert_fssproj(fsspset_t *fsspset, kproject_t *kpj, fsszone_t *fsszone,
 538     fssproj_t *fssproj)
 539 {
 540         ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
 541 
 542         fssproj->fssp_pset = fsspset;
 543         fssproj->fssp_proj = kpj;
 544         fssproj->fssp_shares = kpj->kpj_shares;
 545 
 546         fsspset->fssps_nproj++;
 547 
 548         if (fsspset->fssps_list == NULL) {
 549                 /*
 550                  * This will be the first fssproj for this fsspset
 551                  */
 552                 fssproj->fssp_next = fssproj->fssp_prev = fssproj;
 553                 fsspset->fssps_list = fssproj;
 554         } else {
 555                 /*
 556                  * Insert this fssproj to the doubly linked list.
 557                  */
 558                 fssproj_t *fssp_head = fsspset->fssps_list;
 559 
 560                 fssproj->fssp_next = fssp_head;
 561                 fssproj->fssp_prev = fssp_head->fssp_prev;
 562                 fssp_head->fssp_prev->fssp_next = fssproj;
 563                 fssp_head->fssp_prev = fssproj;
 564                 fsspset->fssps_list = fssproj;
 565         }
 566         fssproj->fssp_fsszone = fsszone;
 567         fsszone->fssz_nproj++;
 568         ASSERT(fsszone->fssz_nproj != 0);
 569 }
 570 
 571 /*
 572  * The following routine removes a single fssproj structure from the doubly
 573  * linked list of projects running on the specified cpu partition.  Note that
 574  * global fsspsets_lock must be held in case if this fssproj structure is the
 575  * last on the above mentioned list.  Also note that the fssproj structure is
 576  * not freed here, it is the responsibility of the caller to call kmem_free
 577  * for it.
 578  */
 579 static void
 580 fss_remove_fssproj(fsspset_t *fsspset, fssproj_t *fssproj)
 581 {
 582         fsszone_t *fsszone;
 583 
 584         ASSERT(MUTEX_HELD(&fsspsets_lock));
 585         ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
 586         ASSERT(fssproj->fssp_runnable == 0);
 587 
 588         fsspset->fssps_nproj--;
 589 
 590         fsszone = fssproj->fssp_fsszone;
 591         fsszone->fssz_nproj--;
 592 
 593         if (fssproj->fssp_next != fssproj) {
 594                 /*
 595                  * This is not the last part in the list.
 596                  */
 597                 fssproj->fssp_prev->fssp_next = fssproj->fssp_next;
 598                 fssproj->fssp_next->fssp_prev = fssproj->fssp_prev;
 599                 if (fsspset->fssps_list == fssproj)
 600                         fsspset->fssps_list = fssproj->fssp_next;
 601                 if (fsszone->fssz_nproj == 0)
 602                         fss_remove_fsszone(fsspset, fsszone);
 603         } else {
 604                 /*
 605                  * This was the last project part running
 606                  * at this cpu partition.
 607                  */
 608                 fsspset->fssps_list = NULL;
 609                 ASSERT(fsspset->fssps_nproj == 0);
 610                 ASSERT(fsszone->fssz_nproj == 0);
 611                 fss_remove_fsszone(fsspset, fsszone);
 612                 fss_del_fsspset(fsspset);
 613         }
 614 }
 615 
 616 static void
 617 fss_inactive(kthread_t *t)
 618 {
 619         fssproc_t *fssproc;
 620         fssproj_t *fssproj;
 621         fsspset_t *fsspset;
 622         fsszone_t *fsszone;
 623 
 624         ASSERT(THREAD_LOCK_HELD(t));
 625         fssproc = FSSPROC(t);
 626         fssproj = FSSPROC2FSSPROJ(fssproc);
 627         if (fssproj == NULL)    /* if this thread already exited */
 628                 return;
 629         fsspset = FSSPROJ2FSSPSET(fssproj);
 630         fsszone = fssproj->fssp_fsszone;
 631         disp_lock_enter_high(&fsspset->fssps_displock);
 632         ASSERT(fssproj->fssp_runnable > 0);
 633         if (--fssproj->fssp_runnable == 0) {
 634                 fsszone->fssz_shares -= fssproj->fssp_shares;
 635                 if (--fsszone->fssz_runnable == 0)
 636                         fsspset->fssps_shares -= fsszone->fssz_rshares;
 637         }
 638         ASSERT(fssproc->fss_runnable == 1);
 639         fssproc->fss_runnable = 0;
 640         disp_lock_exit_high(&fsspset->fssps_displock);
 641 }
 642 
 643 static void
 644 fss_active(kthread_t *t)
 645 {
 646         fssproc_t *fssproc;
 647         fssproj_t *fssproj;
 648         fsspset_t *fsspset;
 649         fsszone_t *fsszone;
 650 
 651         ASSERT(THREAD_LOCK_HELD(t));
 652         fssproc = FSSPROC(t);
 653         fssproj = FSSPROC2FSSPROJ(fssproc);
 654         if (fssproj == NULL)    /* if this thread already exited */
 655                 return;
 656         fsspset = FSSPROJ2FSSPSET(fssproj);
 657         fsszone = fssproj->fssp_fsszone;
 658         disp_lock_enter_high(&fsspset->fssps_displock);
 659         if (++fssproj->fssp_runnable == 1) {
 660                 fsszone->fssz_shares += fssproj->fssp_shares;
 661                 if (++fsszone->fssz_runnable == 1)
 662                         fsspset->fssps_shares += fsszone->fssz_rshares;
 663         }
 664         ASSERT(fssproc->fss_runnable == 0);
 665         fssproc->fss_runnable = 1;
 666         disp_lock_exit_high(&fsspset->fssps_displock);
 667 }
 668 
 669 /*
 670  * Fair share scheduler initialization. Called by dispinit() at boot time.
 671  * We can ignore clparmsz argument since we know that the smallest possible
 672  * parameter buffer is big enough for us.
 673  */
 674 /*ARGSUSED*/
 675 static pri_t
 676 fss_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
 677 {
 678         int i;
 679 
 680         ASSERT(MUTEX_HELD(&cpu_lock));
 681 
 682         fss_cid = cid;
 683         fss_maxumdpri = minclsyspri - 1;
 684         fss_maxglobpri = minclsyspri;
 685         fss_minglobpri = 0;
 686         fsspsets = kmem_zalloc(sizeof (fsspset_t) * max_ncpus, KM_SLEEP);
 687 
 688         /*
 689          * Initialize the fssproc hash table.
 690          */
 691         for (i = 0; i < FSS_LISTS; i++)
 692                 fss_listhead[i].fss_next = fss_listhead[i].fss_prev =
 693                     &fss_listhead[i];
 694 
 695         *clfuncspp = &fss_classfuncs;
 696 
 697         /*
 698          * Fill in fss_nice_tick and fss_nice_decay arrays:
 699          * The cost of a tick is lower at positive nice values (so that it
 700          * will not increase its project's usage as much as normal) with 50%
 701          * drop at the maximum level and 50% increase at the minimum level.
 702          * The fsspri decay is slower at positive nice values.  fsspri values
 703          * of processes with negative nice levels must decay faster to receive
 704          * time slices more frequently than normal.
 705          */
 706         for (i = 0; i < FSS_NICE_RANGE; i++) {
 707                 fss_nice_tick[i] = (FSS_TICK_COST * (((3 * FSS_NICE_RANGE) / 2)
 708                     - i)) / FSS_NICE_RANGE;
 709                 fss_nice_decay[i] = FSS_DECAY_MIN +
 710                     ((FSS_DECAY_MAX - FSS_DECAY_MIN) * i) /
 711                     (FSS_NICE_RANGE - 1);
 712         }
 713 
 714         return (fss_maxglobpri);
 715 }
 716 
 717 /*
 718  * Calculate the new cpupri based on the usage, the number of shares and
 719  * the number of active threads.  Reset the tick counter for this thread.
 720  */
 721 static void
 722 fss_newpri(fssproc_t *fssproc)
 723 {
 724         kthread_t *tp;
 725         fssproj_t *fssproj;
 726         fsspset_t *fsspset;
 727         fsszone_t *fsszone;
 728         fsspri_t fsspri, maxfsspri;
 729         pri_t invpri;
 730         uint32_t ticks;
 731 
 732         tp = fssproc->fss_tp;
 733         ASSERT(tp != NULL);
 734 
 735         if (tp->t_cid != fss_cid)
 736                 return;
 737 
 738         ASSERT(THREAD_LOCK_HELD(tp));
 739 
 740         fssproj = FSSPROC2FSSPROJ(fssproc);
 741         fsszone = FSSPROJ2FSSZONE(fssproj);
 742         if (fssproj == NULL)
 743                 /*
 744                  * No need to change priority of exited threads.
 745                  */
 746                 return;
 747 
 748         fsspset = FSSPROJ2FSSPSET(fssproj);
 749         disp_lock_enter_high(&fsspset->fssps_displock);
 750 
 751         if (fssproj->fssp_shares == 0 || fsszone->fssz_rshares == 0) {
 752                 /*
 753                  * Special case: threads with no shares.
 754                  */
 755                 fssproc->fss_umdpri = fss_minglobpri;
 756                 fssproc->fss_ticks = 0;
 757                 disp_lock_exit_high(&fsspset->fssps_displock);
 758                 return;
 759         }
 760 
 761         /*
 762          * fsspri += shusage * nrunnable * ticks
 763          */
 764         ticks = fssproc->fss_ticks;
 765         fssproc->fss_ticks = 0;
 766         fsspri = fssproc->fss_fsspri;
 767         fsspri += fssproj->fssp_shusage * fssproj->fssp_runnable * ticks;
 768         fssproc->fss_fsspri = fsspri;
 769 
 770         if (fsspri < fss_maxumdpri)
 771                 fsspri = fss_maxumdpri; /* so that maxfsspri is != 0 */
 772 
 773         /*
 774          * The general priority formula:
 775          *
 776          *                      (fsspri * umdprirange)
 777          *   pri = maxumdpri - ------------------------
 778          *                              maxfsspri
 779          *
 780          * If this thread's fsspri is greater than the previous largest
 781          * fsspri, then record it as the new high and priority for this
 782          * thread will be one (the lowest priority assigned to a thread
 783          * that has non-zero shares).
 784          * Note that this formula cannot produce out of bounds priority
 785          * values; if it is changed, additional checks may need  to  be
 786          * added.
 787          */
 788         maxfsspri = fsspset->fssps_maxfsspri;
 789         if (fsspri >= maxfsspri) {
 790                 fsspset->fssps_maxfsspri = fsspri;
 791                 disp_lock_exit_high(&fsspset->fssps_displock);
 792                 fssproc->fss_umdpri = 1;
 793         } else {
 794                 disp_lock_exit_high(&fsspset->fssps_displock);
 795                 invpri = (fsspri * (fss_maxumdpri - 1)) / maxfsspri;
 796                 fssproc->fss_umdpri = fss_maxumdpri - invpri;
 797         }
 798 }
 799 
 800 /*
 801  * Decays usages of all running projects and resets their tick counters.
 802  * Called once per second from fss_update() after updating priorities.
 803  */
 804 static void
 805 fss_decay_usage()
 806 {
 807         uint32_t zone_ext_shares, zone_int_shares;
 808         uint32_t kpj_shares, pset_shares;
 809         fsspset_t *fsspset;
 810         fssproj_t *fssproj;
 811         fsszone_t *fsszone;
 812         fsspri_t maxfsspri;
 813         int psetid;
 814 
 815         mutex_enter(&fsspsets_lock);
 816         /*
 817          * Go through all active processor sets and decay usages of projects
 818          * running on them.
 819          */
 820         for (psetid = 0; psetid < max_ncpus; psetid++) {
 821                 fsspset = &fsspsets[psetid];
 822                 mutex_enter(&fsspset->fssps_lock);
 823 
 824                 if (fsspset->fssps_cpupart == NULL ||
 825                     (fssproj = fsspset->fssps_list) == NULL) {
 826                         mutex_exit(&fsspset->fssps_lock);
 827                         continue;
 828                 }
 829 
 830                 /*
 831                  * Decay maxfsspri for this cpu partition with the
 832                  * fastest possible decay rate.
 833                  */
 834                 disp_lock_enter(&fsspset->fssps_displock);
 835 
 836                 maxfsspri = (fsspset->fssps_maxfsspri *
 837                     fss_nice_decay[NZERO]) / FSS_DECAY_BASE;
 838                 if (maxfsspri < fss_maxumdpri)
 839                         maxfsspri = fss_maxumdpri;
 840                 fsspset->fssps_maxfsspri = maxfsspri;
 841 
 842                 do {
 843                         /*
 844                          * Decay usage for each project running on
 845                          * this cpu partition.
 846                          */
 847                         fssproj->fssp_usage =
 848                             (fssproj->fssp_usage * FSS_DECAY_USG) /
 849                             FSS_DECAY_BASE + fssproj->fssp_ticks;
 850                         fssproj->fssp_ticks = 0;
 851 
 852                         fsszone = fssproj->fssp_fsszone;
 853                         /*
 854                          * Readjust the project's number of shares if it has
 855                          * changed since we checked it last time.
 856                          */
 857                         kpj_shares = fssproj->fssp_proj->kpj_shares;
 858                         if (fssproj->fssp_shares != kpj_shares) {
 859                                 if (fssproj->fssp_runnable != 0) {
 860                                         fsszone->fssz_shares -=
 861                                             fssproj->fssp_shares;
 862                                         fsszone->fssz_shares += kpj_shares;
 863                                 }
 864                                 fssproj->fssp_shares = kpj_shares;
 865                         }
 866 
 867                         /*
 868                          * Readjust the zone's number of shares if it
 869                          * has changed since we checked it last time.
 870                          */
 871                         zone_ext_shares = fsszone->fssz_zone->zone_shares;
 872                         if (fsszone->fssz_rshares != zone_ext_shares) {
 873                                 if (fsszone->fssz_runnable != 0) {
 874                                         fsspset->fssps_shares -=
 875                                             fsszone->fssz_rshares;
 876                                         fsspset->fssps_shares +=
 877                                             zone_ext_shares;
 878                                 }
 879                                 fsszone->fssz_rshares = zone_ext_shares;
 880                         }
 881                         zone_int_shares = fsszone->fssz_shares;
 882                         pset_shares = fsspset->fssps_shares;
 883                         /*
 884                          * Calculate fssp_shusage value to be used
 885                          * for fsspri increments for the next second.
 886                          */
 887                         if (kpj_shares == 0 || zone_ext_shares == 0) {
 888                                 fssproj->fssp_shusage = 0;
 889                         } else if (FSSPROJ2KPROJ(fssproj) == proj0p) {
 890                                 /*
 891                                  * Project 0 in the global zone has 50%
 892                                  * of its zone.
 893                                  */
 894                                 fssproj->fssp_shusage = (fssproj->fssp_usage *
 895                                     zone_int_shares * zone_int_shares) /
 896                                     (zone_ext_shares * zone_ext_shares);
 897                         } else {
 898                                 /*
 899                                  * Thread's priority is based on its project's
 900                                  * normalized usage (shusage) value which gets
 901                                  * calculated this way:
 902                                  *
 903                                  *         pset_shares^2    zone_int_shares^2
 904                                  * usage * ------------- * ------------------
 905                                  *         kpj_shares^2     zone_ext_shares^2
 906                                  *
 907                                  * Where zone_int_shares is the sum of shares
 908                                  * of all active projects within the zone (and
 909                                  * the pset), and zone_ext_shares is the number
 910                                  * of zone shares (ie, zone.cpu-shares).
 911                                  *
 912                                  * If there is only one zone active on the pset
 913                                  * the above reduces to:
 914                                  *
 915                                  *                      zone_int_shares^2
 916                                  * shusage = usage * ---------------------
 917                                  *                      kpj_shares^2
 918                                  *
 919                                  * If there's only one project active in the
 920                                  * zone this formula reduces to:
 921                                  *
 922                                  *                      pset_shares^2
 923                                  * shusage = usage * ----------------------
 924                                  *                      zone_ext_shares^2
 925                                  */
 926                                 fssproj->fssp_shusage = fssproj->fssp_usage *
 927                                     pset_shares * zone_int_shares;
 928                                 fssproj->fssp_shusage /=
 929                                     kpj_shares * zone_ext_shares;
 930                                 fssproj->fssp_shusage *=
 931                                     pset_shares * zone_int_shares;
 932                                 fssproj->fssp_shusage /=
 933                                     kpj_shares * zone_ext_shares;
 934                         }
 935                         fssproj = fssproj->fssp_next;
 936                 } while (fssproj != fsspset->fssps_list);
 937 
 938                 disp_lock_exit(&fsspset->fssps_displock);
 939                 mutex_exit(&fsspset->fssps_lock);
 940         }
 941         mutex_exit(&fsspsets_lock);
 942 }
 943 
 944 static void
 945 fss_change_priority(kthread_t *t, fssproc_t *fssproc)
 946 {
 947         pri_t new_pri;
 948 
 949         ASSERT(THREAD_LOCK_HELD(t));
 950         new_pri = fssproc->fss_umdpri;
 951         ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri);
 952 
 953         t->t_cpri = fssproc->fss_upri;
 954         fssproc->fss_flags &= ~FSSRESTORE;
 955         if (t == curthread || t->t_state == TS_ONPROC) {
 956                 /*
 957                  * curthread is always onproc
 958                  */
 959                 cpu_t *cp = t->t_disp_queue->disp_cpu;
 960                 THREAD_CHANGE_PRI(t, new_pri);
 961                 if (t == cp->cpu_dispthread)
 962                         cp->cpu_dispatch_pri = DISP_PRIO(t);
 963                 if (DISP_MUST_SURRENDER(t)) {
 964                         fssproc->fss_flags |= FSSBACKQ;
 965                         cpu_surrender(t);
 966                 } else {
 967                         fssproc->fss_timeleft = fss_quantum;
 968                 }
 969         } else {
 970                 /*
 971                  * When the priority of a thread is changed, it may be
 972                  * necessary to adjust its position on a sleep queue or
 973                  * dispatch queue.  The function thread_change_pri accomplishes
 974                  * this.
 975                  */
 976                 if (thread_change_pri(t, new_pri, 0)) {
 977                         /*
 978                          * The thread was on a run queue.
 979                          */
 980                         fssproc->fss_timeleft = fss_quantum;
 981                 } else {
 982                         fssproc->fss_flags |= FSSBACKQ;
 983                 }
 984         }
 985 }
 986 
 987 /*
 988  * Update priorities of all fair-sharing threads that are currently runnable
 989  * at a user mode priority based on the number of shares and current usage.
 990  * Called once per second via timeout which we reset here.
 991  *
 992  * There are several lists of fair-sharing threads broken up by a hash on the
 993  * thread pointer.  Each list has its own lock.  This avoids blocking all
 994  * fss_enterclass, fss_fork, and fss_exitclass operations while fss_update runs.
 995  * fss_update traverses each list in turn.
 996  */
 997 static void
 998 fss_update(void *arg)
 999 {
1000         int i;
1001         int new_marker = -1;
1002         static int fss_update_marker;
1003 
1004         /*
1005          * Decay and update usages for all projects.
1006          */
1007         fss_decay_usage();
1008 
1009         /*
1010          * Start with the fss_update_marker list, then do the rest.
1011          */
1012         i = fss_update_marker;
1013 
1014         /*
1015          * Go around all threads, set new priorities and decay
1016          * per-thread CPU usages.
1017          */
1018         do {
1019                 /*
1020                  * If this is the first list after the current marker to have
1021                  * threads with priorities updates, advance the marker to this
1022                  * list for the next time fss_update runs.
1023                  */
1024                 if (fss_update_list(i) &&
1025                     new_marker == -1 && i != fss_update_marker)
1026                         new_marker = i;
1027         } while ((i = FSS_LIST_NEXT(i)) != fss_update_marker);
1028 
1029         /*
1030          * Advance marker for the next fss_update call
1031          */
1032         if (new_marker != -1)
1033                 fss_update_marker = new_marker;
1034 
1035         (void) timeout(fss_update, arg, hz);
1036 }
1037 
1038 /*
1039  * Updates priority for a list of threads.  Returns 1 if the priority of one
1040  * of the threads was actually updated, 0 if none were for various reasons
1041  * (thread is no longer in the FSS class, is not runnable, has the preemption
1042  * control no-preempt bit set, etc.)
1043  */
1044 static int
1045 fss_update_list(int i)
1046 {
1047         fssproc_t *fssproc;
1048         fssproj_t *fssproj;
1049         fsspri_t fsspri;
1050         kthread_t *t;
1051         int updated = 0;
1052 
1053         mutex_enter(&fss_listlock[i]);
1054         for (fssproc = fss_listhead[i].fss_next; fssproc != &fss_listhead[i];
1055             fssproc = fssproc->fss_next) {
1056                 t = fssproc->fss_tp;
1057                 /*
1058                  * Lock the thread and verify the state.
1059                  */
1060                 thread_lock(t);
1061                 /*
1062                  * Skip the thread if it is no longer in the FSS class or
1063                  * is running with kernel mode priority.
1064                  */
1065                 if (t->t_cid != fss_cid)
1066                         goto next;
1067                 if ((fssproc->fss_flags & FSSKPRI) != 0)
1068                         goto next;
1069 
1070                 fssproj = FSSPROC2FSSPROJ(fssproc);
1071                 if (fssproj == NULL)
1072                         goto next;
1073                 if (fssproj->fssp_shares != 0) {
1074                         /*
1075                          * Decay fsspri value.
1076                          */
1077                         fsspri = fssproc->fss_fsspri;
1078                         fsspri = (fsspri * fss_nice_decay[fssproc->fss_nice]) /
1079                             FSS_DECAY_BASE;
1080                         fssproc->fss_fsspri = fsspri;
1081                 }
1082 
1083                 if (t->t_schedctl && schedctl_get_nopreempt(t))
1084                         goto next;
1085                 if (t->t_state != TS_RUN && t->t_state != TS_WAIT) {
1086                         /*
1087                          * Make next syscall/trap call fss_trapret
1088                          */
1089                         t->t_trapret = 1;
1090                         aston(t);
1091                         goto next;
1092                 }
1093                 fss_newpri(fssproc);
1094                 updated = 1;
1095 
1096                 /*
1097                  * Only dequeue the thread if it needs to be moved; otherwise
1098                  * it should just round-robin here.
1099                  */
1100                 if (t->t_pri != fssproc->fss_umdpri)
1101                         fss_change_priority(t, fssproc);
1102 next:
1103                 thread_unlock(t);
1104         }
1105         mutex_exit(&fss_listlock[i]);
1106         return (updated);
1107 }
1108 
1109 /*ARGSUSED*/
1110 static int
1111 fss_admin(caddr_t uaddr, cred_t *reqpcredp)
1112 {
1113         fssadmin_t fssadmin;
1114 
1115         if (copyin(uaddr, &fssadmin, sizeof (fssadmin_t)))
1116                 return (EFAULT);
1117 
1118         switch (fssadmin.fss_cmd) {
1119         case FSS_SETADMIN:
1120                 if (secpolicy_dispadm(reqpcredp) != 0)
1121                         return (EPERM);
1122                 if (fssadmin.fss_quantum <= 0 || fssadmin.fss_quantum >= hz)
1123                         return (EINVAL);
1124                 fss_quantum = fssadmin.fss_quantum;
1125                 break;
1126         case FSS_GETADMIN:
1127                 fssadmin.fss_quantum = fss_quantum;
1128                 if (copyout(&fssadmin, uaddr, sizeof (fssadmin_t)))
1129                         return (EFAULT);
1130                 break;
1131         default:
1132                 return (EINVAL);
1133         }
1134         return (0);
1135 }
1136 
1137 static int
1138 fss_getclinfo(void *infop)
1139 {
1140         fssinfo_t *fssinfo = (fssinfo_t *)infop;
1141         fssinfo->fss_maxupri = fss_maxupri;
1142         return (0);
1143 }
1144 
1145 static int
1146 fss_parmsin(void *parmsp)
1147 {
1148         fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1149 
1150         /*
1151          * Check validity of parameters.
1152          */
1153         if ((fssparmsp->fss_uprilim > fss_maxupri ||
1154             fssparmsp->fss_uprilim < -fss_maxupri) &&
1155             fssparmsp->fss_uprilim != FSS_NOCHANGE)
1156                 return (EINVAL);
1157 
1158         if ((fssparmsp->fss_upri > fss_maxupri ||
1159             fssparmsp->fss_upri < -fss_maxupri) &&
1160             fssparmsp->fss_upri != FSS_NOCHANGE)
1161                 return (EINVAL);
1162 
1163         return (0);
1164 }
1165 
1166 /*ARGSUSED*/
1167 static int
1168 fss_parmsout(void *parmsp, pc_vaparms_t *vaparmsp)
1169 {
1170         return (0);
1171 }
1172 
1173 static int
1174 fss_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp)
1175 {
1176         fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1177         int priflag = 0;
1178         int limflag = 0;
1179         uint_t cnt;
1180         pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
1181 
1182         /*
1183          * FSS_NOCHANGE (-32768) is outside of the range of values for
1184          * fss_uprilim and fss_upri.  If the structure fssparms_t is changed,
1185          * FSS_NOCHANGE should be replaced by a flag word.
1186          */
1187         fssparmsp->fss_uprilim = FSS_NOCHANGE;
1188         fssparmsp->fss_upri = FSS_NOCHANGE;
1189 
1190         /*
1191          * Get the varargs parameter and check validity of parameters.
1192          */
1193         if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
1194                 return (EINVAL);
1195 
1196         for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
1197                 switch (vpp->pc_key) {
1198                 case FSS_KY_UPRILIM:
1199                         if (limflag++)
1200                                 return (EINVAL);
1201                         fssparmsp->fss_uprilim = (pri_t)vpp->pc_parm;
1202                         if (fssparmsp->fss_uprilim > fss_maxupri ||
1203                             fssparmsp->fss_uprilim < -fss_maxupri)
1204                                 return (EINVAL);
1205                         break;
1206                 case FSS_KY_UPRI:
1207                         if (priflag++)
1208                                 return (EINVAL);
1209                         fssparmsp->fss_upri = (pri_t)vpp->pc_parm;
1210                         if (fssparmsp->fss_upri > fss_maxupri ||
1211                             fssparmsp->fss_upri < -fss_maxupri)
1212                                 return (EINVAL);
1213                         break;
1214                 default:
1215                         return (EINVAL);
1216                 }
1217         }
1218 
1219         if (vaparmsp->pc_vaparmscnt == 0) {
1220                 /*
1221                  * Use default parameters.
1222                  */
1223                 fssparmsp->fss_upri = fssparmsp->fss_uprilim = 0;
1224         }
1225 
1226         return (0);
1227 }
1228 
1229 /*
1230  * Copy all selected fair-sharing class parameters to the user.  The parameters
1231  * are specified by a key.
1232  */
1233 static int
1234 fss_vaparmsout(void *parmsp, pc_vaparms_t *vaparmsp)
1235 {
1236         fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1237         int priflag = 0;
1238         int limflag = 0;
1239         uint_t cnt;
1240         pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
1241 
1242         ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
1243 
1244         if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
1245                 return (EINVAL);
1246 
1247         for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
1248                 switch (vpp->pc_key) {
1249                 case FSS_KY_UPRILIM:
1250                         if (limflag++)
1251                                 return (EINVAL);
1252                         if (copyout(&fssparmsp->fss_uprilim,
1253                             (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1254                                 return (EFAULT);
1255                         break;
1256                 case FSS_KY_UPRI:
1257                         if (priflag++)
1258                                 return (EINVAL);
1259                         if (copyout(&fssparmsp->fss_upri,
1260                             (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1261                                 return (EFAULT);
1262                         break;
1263                 default:
1264                         return (EINVAL);
1265                 }
1266         }
1267 
1268         return (0);
1269 }
1270 
1271 /*
1272  * Return the user mode scheduling priority range.
1273  */
1274 static int
1275 fss_getclpri(pcpri_t *pcprip)
1276 {
1277         pcprip->pc_clpmax = fss_maxupri;
1278         pcprip->pc_clpmin = -fss_maxupri;
1279         return (0);
1280 }
1281 
1282 static int
1283 fss_alloc(void **p, int flag)
1284 {
1285         void *bufp;
1286 
1287         if ((bufp = kmem_zalloc(sizeof (fssproc_t), flag)) == NULL) {
1288                 return (ENOMEM);
1289         } else {
1290                 *p = bufp;
1291                 return (0);
1292         }
1293 }
1294 
1295 static void
1296 fss_free(void *bufp)
1297 {
1298         if (bufp)
1299                 kmem_free(bufp, sizeof (fssproc_t));
1300 }
1301 
1302 /*
1303  * Thread functions
1304  */
1305 static int
1306 fss_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp,
1307     void *bufp)
1308 {
1309         fssparms_t      *fssparmsp = (fssparms_t *)parmsp;
1310         fssproc_t       *fssproc;
1311         pri_t           reqfssuprilim;
1312         pri_t           reqfssupri;
1313         static uint32_t fssexists = 0;
1314         fsspset_t       *fsspset;
1315         fssproj_t       *fssproj;
1316         fsszone_t       *fsszone;
1317         kproject_t      *kpj;
1318         zone_t          *zone;
1319         int             fsszone_allocated = 0;
1320 
1321         fssproc = (fssproc_t *)bufp;
1322         ASSERT(fssproc != NULL);
1323 
1324         ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
1325 
1326         /*
1327          * Only root can move threads to FSS class.
1328          */
1329         if (reqpcredp != NULL && secpolicy_setpriority(reqpcredp) != 0)
1330                 return (EPERM);
1331         /*
1332          * Initialize the fssproc structure.
1333          */
1334         fssproc->fss_umdpri = fss_maxumdpri / 2;
1335 
1336         if (fssparmsp == NULL) {
1337                 /*
1338                  * Use default values.
1339                  */
1340                 fssproc->fss_nice = NZERO;
1341                 fssproc->fss_uprilim = fssproc->fss_upri = 0;
1342         } else {
1343                 /*
1344                  * Use supplied values.
1345                  */
1346                 if (fssparmsp->fss_uprilim == FSS_NOCHANGE) {
1347                         reqfssuprilim = 0;
1348                 } else {
1349                         if (fssparmsp->fss_uprilim > 0 &&
1350                             secpolicy_setpriority(reqpcredp) != 0)
1351                                 return (EPERM);
1352                         reqfssuprilim = fssparmsp->fss_uprilim;
1353                 }
1354                 if (fssparmsp->fss_upri == FSS_NOCHANGE) {
1355                         reqfssupri = reqfssuprilim;
1356                 } else {
1357                         if (fssparmsp->fss_upri > 0 &&
1358                             secpolicy_setpriority(reqpcredp) != 0)
1359                                 return (EPERM);
1360                         /*
1361                          * Set the user priority to the requested value or
1362                          * the upri limit, whichever is lower.
1363                          */
1364                         reqfssupri = fssparmsp->fss_upri;
1365                         if (reqfssupri > reqfssuprilim)
1366                                 reqfssupri = reqfssuprilim;
1367                 }
1368                 fssproc->fss_uprilim = reqfssuprilim;
1369                 fssproc->fss_upri = reqfssupri;
1370                 fssproc->fss_nice = NZERO - (NZERO * reqfssupri) / fss_maxupri;
1371                 if (fssproc->fss_nice > FSS_NICE_MAX)
1372                         fssproc->fss_nice = FSS_NICE_MAX;
1373         }
1374 
1375         fssproc->fss_timeleft = fss_quantum;
1376         fssproc->fss_tp = t;
1377         cpucaps_sc_init(&fssproc->fss_caps);
1378 
1379         /*
1380          * Put a lock on our fsspset structure.
1381          */
1382         mutex_enter(&fsspsets_lock);
1383         fsspset = fss_find_fsspset(t->t_cpupart);
1384         mutex_enter(&fsspset->fssps_lock);
1385         mutex_exit(&fsspsets_lock);
1386 
1387         zone = ttoproc(t)->p_zone;
1388         if ((fsszone = fss_find_fsszone(fsspset, zone)) == NULL) {
1389                 if ((fsszone = kmem_zalloc(sizeof (fsszone_t), KM_NOSLEEP))
1390                     == NULL) {
1391                         mutex_exit(&fsspset->fssps_lock);
1392                         return (ENOMEM);
1393                 } else {
1394                         fsszone_allocated = 1;
1395                         fss_insert_fsszone(fsspset, zone, fsszone);
1396                 }
1397         }
1398         kpj = ttoproj(t);
1399         if ((fssproj = fss_find_fssproj(fsspset, kpj)) == NULL) {
1400                 if ((fssproj = kmem_zalloc(sizeof (fssproj_t), KM_NOSLEEP))
1401                     == NULL) {
1402                         if (fsszone_allocated) {
1403                                 fss_remove_fsszone(fsspset, fsszone);
1404                                 kmem_free(fsszone, sizeof (fsszone_t));
1405                         }
1406                         mutex_exit(&fsspset->fssps_lock);
1407                         return (ENOMEM);
1408                 } else {
1409                         fss_insert_fssproj(fsspset, kpj, fsszone, fssproj);
1410                 }
1411         }
1412         fssproj->fssp_threads++;
1413         fssproc->fss_proj = fssproj;
1414 
1415         /*
1416          * Reset priority. Process goes to a "user mode" priority here
1417          * regardless of whether or not it has slept since entering the kernel.
1418          */
1419         thread_lock(t);
1420         t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
1421         t->t_cid = cid;
1422         t->t_cldata = (void *)fssproc;
1423         t->t_schedflag |= TS_RUNQMATCH;
1424         fss_change_priority(t, fssproc);
1425         if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
1426             t->t_state == TS_WAIT)
1427                 fss_active(t);
1428         thread_unlock(t);
1429 
1430         mutex_exit(&fsspset->fssps_lock);
1431 
1432         /*
1433          * Link new structure into fssproc list.
1434          */
1435         FSS_LIST_INSERT(fssproc);
1436 
1437         /*
1438          * If this is the first fair-sharing thread to occur since boot,
1439          * we set up the initial call to fss_update() here. Use an atomic
1440          * compare-and-swap since that's easier and faster than a mutex
1441          * (but check with an ordinary load first since most of the time
1442          * this will already be done).
1443          */
1444         if (fssexists == 0 && cas32(&fssexists, 0, 1) == 0)
1445                 (void) timeout(fss_update, NULL, hz);
1446 
1447         return (0);
1448 }
1449 
1450 /*
1451  * Remove fssproc_t from the list.
1452  */
1453 static void
1454 fss_exitclass(void *procp)
1455 {
1456         fssproc_t *fssproc = (fssproc_t *)procp;
1457         fssproj_t *fssproj;
1458         fsspset_t *fsspset;
1459         fsszone_t *fsszone;
1460         kthread_t *t = fssproc->fss_tp;
1461 
1462         /*
1463          * We should be either getting this thread off the deathrow or
1464          * this thread has already moved to another scheduling class and
1465          * we're being called with its old cldata buffer pointer.  In both
1466          * cases, the content of this buffer can not be changed while we're
1467          * here.
1468          */
1469         mutex_enter(&fsspsets_lock);
1470         thread_lock(t);
1471         if (t->t_cid != fss_cid) {
1472                 /*
1473                  * We're being called as a result of the priocntl() system
1474                  * call -- someone is trying to move our thread to another
1475                  * scheduling class. We can't call fss_inactive() here
1476                  * because our thread's t_cldata pointer already points
1477                  * to another scheduling class specific data.
1478                  */
1479                 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
1480 
1481                 fssproj = FSSPROC2FSSPROJ(fssproc);
1482                 fsspset = FSSPROJ2FSSPSET(fssproj);
1483                 fsszone = fssproj->fssp_fsszone;
1484 
1485                 if (fssproc->fss_runnable) {
1486                         disp_lock_enter_high(&fsspset->fssps_displock);
1487                         if (--fssproj->fssp_runnable == 0) {
1488                                 fsszone->fssz_shares -= fssproj->fssp_shares;
1489                                 if (--fsszone->fssz_runnable == 0)
1490                                         fsspset->fssps_shares -=
1491                                             fsszone->fssz_rshares;
1492                         }
1493                         disp_lock_exit_high(&fsspset->fssps_displock);
1494                 }
1495                 thread_unlock(t);
1496 
1497                 mutex_enter(&fsspset->fssps_lock);
1498                 if (--fssproj->fssp_threads == 0) {
1499                         fss_remove_fssproj(fsspset, fssproj);
1500                         if (fsszone->fssz_nproj == 0)
1501                                 kmem_free(fsszone, sizeof (fsszone_t));
1502                         kmem_free(fssproj, sizeof (fssproj_t));
1503                 }
1504                 mutex_exit(&fsspset->fssps_lock);
1505 
1506         } else {
1507                 ASSERT(t->t_state == TS_FREE);
1508                 /*
1509                  * We're being called from thread_free() when our thread
1510                  * is removed from the deathrow. There is nothing we need
1511                  * do here since everything should've been done earlier
1512                  * in fss_exit().
1513                  */
1514                 thread_unlock(t);
1515         }
1516         mutex_exit(&fsspsets_lock);
1517 
1518         FSS_LIST_DELETE(fssproc);
1519         fss_free(fssproc);
1520 }
1521 
1522 /*ARGSUSED*/
1523 static int
1524 fss_canexit(kthread_t *t, cred_t *credp)
1525 {
1526         /*
1527          * A thread is allowed to exit FSS only if we have sufficient
1528          * privileges.
1529          */
1530         if (credp != NULL && secpolicy_setpriority(credp) != 0)
1531                 return (EPERM);
1532         else
1533                 return (0);
1534 }
1535 
1536 /*
1537  * Initialize fair-share class specific proc structure for a child.
1538  */
1539 static int
1540 fss_fork(kthread_t *pt, kthread_t *ct, void *bufp)
1541 {
1542         fssproc_t *pfssproc;    /* ptr to parent's fssproc structure    */
1543         fssproc_t *cfssproc;    /* ptr to child's fssproc structure     */
1544         fssproj_t *fssproj;
1545         fsspset_t *fsspset;
1546 
1547         ASSERT(MUTEX_HELD(&ttoproc(pt)->p_lock));
1548         ASSERT(ct->t_state == TS_STOPPED);
1549 
1550         cfssproc = (fssproc_t *)bufp;
1551         ASSERT(cfssproc != NULL);
1552         bzero(cfssproc, sizeof (fssproc_t));
1553 
1554         thread_lock(pt);
1555         pfssproc = FSSPROC(pt);
1556         fssproj = FSSPROC2FSSPROJ(pfssproc);
1557         fsspset = FSSPROJ2FSSPSET(fssproj);
1558         thread_unlock(pt);
1559 
1560         mutex_enter(&fsspset->fssps_lock);
1561         /*
1562          * Initialize child's fssproc structure.
1563          */
1564         thread_lock(pt);
1565         ASSERT(FSSPROJ(pt) == fssproj);
1566         cfssproc->fss_proj = fssproj;
1567         cfssproc->fss_timeleft = fss_quantum;
1568         cfssproc->fss_umdpri = pfssproc->fss_umdpri;
1569         cfssproc->fss_fsspri = 0;
1570         cfssproc->fss_uprilim = pfssproc->fss_uprilim;
1571         cfssproc->fss_upri = pfssproc->fss_upri;
1572         cfssproc->fss_tp = ct;
1573         cfssproc->fss_nice = pfssproc->fss_nice;
1574         cpucaps_sc_init(&cfssproc->fss_caps);
1575 
1576         cfssproc->fss_flags =
1577             pfssproc->fss_flags & ~(FSSKPRI | FSSBACKQ | FSSRESTORE);
1578         ct->t_cldata = (void *)cfssproc;
1579         ct->t_schedflag |= TS_RUNQMATCH;
1580         thread_unlock(pt);
1581 
1582         fssproj->fssp_threads++;
1583         mutex_exit(&fsspset->fssps_lock);
1584 
1585         /*
1586          * Link new structure into fssproc hash table.
1587          */
1588         FSS_LIST_INSERT(cfssproc);
1589         return (0);
1590 }
1591 
1592 /*
1593  * Child is placed at back of dispatcher queue and parent gives up processor
1594  * so that the child runs first after the fork. This allows the child
1595  * immediately execing to break the multiple use of copy on write pages with no
1596  * disk home. The parent will get to steal them back rather than uselessly
1597  * copying them.
1598  */
1599 static void
1600 fss_forkret(kthread_t *t, kthread_t *ct)
1601 {
1602         proc_t *pp = ttoproc(t);
1603         proc_t *cp = ttoproc(ct);
1604         fssproc_t *fssproc;
1605 
1606         ASSERT(t == curthread);
1607         ASSERT(MUTEX_HELD(&pidlock));
1608 
1609         /*
1610          * Grab the child's p_lock before dropping pidlock to ensure the
1611          * process does not disappear before we set it running.
1612          */
1613         mutex_enter(&cp->p_lock);
1614         continuelwps(cp);
1615         mutex_exit(&cp->p_lock);
1616 
1617         mutex_enter(&pp->p_lock);
1618         mutex_exit(&pidlock);
1619         continuelwps(pp);
1620 
1621         thread_lock(t);
1622 
1623         fssproc = FSSPROC(t);
1624         fss_newpri(fssproc);
1625         fssproc->fss_timeleft = fss_quantum;
1626         t->t_pri = fssproc->fss_umdpri;
1627         ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri);
1628         fssproc->fss_flags &= ~FSSKPRI;
1629         THREAD_TRANSITION(t);
1630 
1631         /*
1632          * We don't want to call fss_setrun(t) here because it may call
1633          * fss_active, which we don't need.
1634          */
1635         fssproc->fss_flags &= ~FSSBACKQ;
1636 
1637         if (t->t_disp_time != ddi_get_lbolt())
1638                 setbackdq(t);
1639         else
1640                 setfrontdq(t);
1641 
1642         thread_unlock(t);
1643         /*
1644          * Safe to drop p_lock now since it is safe to change
1645          * the scheduling class after this point.
1646          */
1647         mutex_exit(&pp->p_lock);
1648 
1649         swtch();
1650 }
1651 
1652 /*
1653  * Get the fair-sharing parameters of the thread pointed to by fssprocp into
1654  * the buffer pointed by fssparmsp.
1655  */
1656 static void
1657 fss_parmsget(kthread_t *t, void *parmsp)
1658 {
1659         fssproc_t *fssproc = FSSPROC(t);
1660         fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1661 
1662         fssparmsp->fss_uprilim = fssproc->fss_uprilim;
1663         fssparmsp->fss_upri = fssproc->fss_upri;
1664 }
1665 
1666 /*ARGSUSED*/
1667 static int
1668 fss_parmsset(kthread_t *t, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
1669 {
1670         char            nice;
1671         pri_t           reqfssuprilim;
1672         pri_t           reqfssupri;
1673         fssproc_t       *fssproc = FSSPROC(t);
1674         fssparms_t      *fssparmsp = (fssparms_t *)parmsp;
1675 
1676         ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1677 
1678         if (fssparmsp->fss_uprilim == FSS_NOCHANGE)
1679                 reqfssuprilim = fssproc->fss_uprilim;
1680         else
1681                 reqfssuprilim = fssparmsp->fss_uprilim;
1682 
1683         if (fssparmsp->fss_upri == FSS_NOCHANGE)
1684                 reqfssupri = fssproc->fss_upri;
1685         else
1686                 reqfssupri = fssparmsp->fss_upri;
1687 
1688         /*
1689          * Make sure the user priority doesn't exceed the upri limit.
1690          */
1691         if (reqfssupri > reqfssuprilim)
1692                 reqfssupri = reqfssuprilim;
1693 
1694         /*
1695          * Basic permissions enforced by generic kernel code for all classes
1696          * require that a thread attempting to change the scheduling parameters
1697          * of a target thread be privileged or have a real or effective UID
1698          * matching that of the target thread. We are not called unless these
1699          * basic permission checks have already passed. The fair-sharing class
1700          * requires in addition that the calling thread be privileged if it
1701          * is attempting to raise the upri limit above its current value.
1702          * This may have been checked previously but if our caller passed us
1703          * a non-NULL credential pointer we assume it hasn't and we check it
1704          * here.
1705          */
1706         if ((reqpcredp != NULL) &&
1707             (reqfssuprilim > fssproc->fss_uprilim) &&
1708             secpolicy_raisepriority(reqpcredp) != 0)
1709                 return (EPERM);
1710 
1711         /*
1712          * Set fss_nice to the nice value corresponding to the user priority we
1713          * are setting.  Note that setting the nice field of the parameter
1714          * struct won't affect upri or nice.
1715          */
1716         nice = NZERO - (reqfssupri * NZERO) / fss_maxupri;
1717         if (nice > FSS_NICE_MAX)
1718                 nice = FSS_NICE_MAX;
1719 
1720         thread_lock(t);
1721 
1722         fssproc->fss_uprilim = reqfssuprilim;
1723         fssproc->fss_upri = reqfssupri;
1724         fssproc->fss_nice = nice;
1725         fss_newpri(fssproc);
1726 
1727         if ((fssproc->fss_flags & FSSKPRI) != 0) {
1728                 thread_unlock(t);
1729                 return (0);
1730         }
1731 
1732         fss_change_priority(t, fssproc);
1733         thread_unlock(t);
1734         return (0);
1735 
1736 }
1737 
1738 /*
1739  * The thread is being stopped.
1740  */
1741 /*ARGSUSED*/
1742 static void
1743 fss_stop(kthread_t *t, int why, int what)
1744 {
1745         ASSERT(THREAD_LOCK_HELD(t));
1746         ASSERT(t == curthread);
1747 
1748         fss_inactive(t);
1749 }
1750 
1751 /*
1752  * The current thread is exiting, do necessary adjustments to its project
1753  */
1754 static void
1755 fss_exit(kthread_t *t)
1756 {
1757         fsspset_t *fsspset;
1758         fssproj_t *fssproj;
1759         fssproc_t *fssproc;
1760         fsszone_t *fsszone;
1761         int free = 0;
1762 
1763         /*
1764          * Thread t here is either a current thread (in which case we hold
1765          * its process' p_lock), or a thread being destroyed by forklwp_fail(),
1766          * in which case we hold pidlock and thread is no longer on the
1767          * thread list.
1768          */
1769         ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock) || MUTEX_HELD(&pidlock));
1770 
1771         fssproc = FSSPROC(t);
1772         fssproj = FSSPROC2FSSPROJ(fssproc);
1773         fsspset = FSSPROJ2FSSPSET(fssproj);
1774         fsszone = fssproj->fssp_fsszone;
1775 
1776         mutex_enter(&fsspsets_lock);
1777         mutex_enter(&fsspset->fssps_lock);
1778 
1779         thread_lock(t);
1780         disp_lock_enter_high(&fsspset->fssps_displock);
1781         if (t->t_state == TS_ONPROC || t->t_state == TS_RUN) {
1782                 if (--fssproj->fssp_runnable == 0) {
1783                         fsszone->fssz_shares -= fssproj->fssp_shares;
1784                         if (--fsszone->fssz_runnable == 0)
1785                                 fsspset->fssps_shares -= fsszone->fssz_rshares;
1786                 }
1787                 ASSERT(fssproc->fss_runnable == 1);
1788                 fssproc->fss_runnable = 0;
1789         }
1790         if (--fssproj->fssp_threads == 0) {
1791                 fss_remove_fssproj(fsspset, fssproj);
1792                 free = 1;
1793         }
1794         disp_lock_exit_high(&fsspset->fssps_displock);
1795         fssproc->fss_proj = NULL;    /* mark this thread as already exited */
1796         thread_unlock(t);
1797 
1798         if (free) {
1799                 if (fsszone->fssz_nproj == 0)
1800                         kmem_free(fsszone, sizeof (fsszone_t));
1801                 kmem_free(fssproj, sizeof (fssproj_t));
1802         }
1803         mutex_exit(&fsspset->fssps_lock);
1804         mutex_exit(&fsspsets_lock);
1805 
1806         /*
1807          * A thread could be exiting in between clock ticks, so we need to
1808          * calculate how much CPU time it used since it was charged last time.
1809          *
1810          * CPU caps are not enforced on exiting processes - it is usually
1811          * desirable to exit as soon as possible to free resources.
1812          */
1813         if (CPUCAPS_ON()) {
1814                 thread_lock(t);
1815                 fssproc = FSSPROC(t);
1816                 (void) cpucaps_charge(t, &fssproc->fss_caps,
1817                     CPUCAPS_CHARGE_ONLY);
1818                 thread_unlock(t);
1819         }
1820 }
1821 
1822 static void
1823 fss_nullsys()
1824 {
1825 }
1826 
1827 /*
1828  * If thread is currently at a kernel mode priority (has slept) and is
1829  * returning to the userland we assign it the appropriate user mode priority
1830  * and time quantum here.  If we're lowering the thread's priority below that
1831  * of other runnable threads then we will set runrun via cpu_surrender() to
1832  * cause preemption.
1833  */
1834 static void
1835 fss_trapret(kthread_t *t)
1836 {
1837         fssproc_t *fssproc = FSSPROC(t);
1838         cpu_t *cp = CPU;
1839 
1840         ASSERT(THREAD_LOCK_HELD(t));
1841         ASSERT(t == curthread);
1842         ASSERT(cp->cpu_dispthread == t);
1843         ASSERT(t->t_state == TS_ONPROC);
1844 
1845         t->t_kpri_req = 0;
1846         if (fssproc->fss_flags & FSSKPRI) {
1847                 /*
1848                  * If thread has blocked in the kernel
1849                  */
1850                 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri);
1851                 cp->cpu_dispatch_pri = DISP_PRIO(t);
1852                 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri);
1853                 fssproc->fss_flags &= ~FSSKPRI;
1854 
1855                 if (DISP_MUST_SURRENDER(t))
1856                         cpu_surrender(t);
1857         }
1858 }
1859 
1860 /*
1861  * Arrange for thread to be placed in appropriate location on dispatcher queue.
1862  * This is called with the current thread in TS_ONPROC and locked.
1863  */
1864 static void
1865 fss_preempt(kthread_t *t)
1866 {
1867         fssproc_t *fssproc = FSSPROC(t);
1868         klwp_t *lwp;
1869         uint_t flags;
1870 
1871         ASSERT(t == curthread);
1872         ASSERT(THREAD_LOCK_HELD(curthread));
1873         ASSERT(t->t_state == TS_ONPROC);
1874 
1875         /*
1876          * If preempted in the kernel, make sure the thread has a kernel
1877          * priority if needed.
1878          */
1879         lwp = curthread->t_lwp;
1880         if (!(fssproc->fss_flags & FSSKPRI) && lwp != NULL && t->t_kpri_req) {
1881                 fssproc->fss_flags |= FSSKPRI;
1882                 THREAD_CHANGE_PRI(t, minclsyspri);
1883                 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri);
1884                 t->t_trapret = 1;    /* so that fss_trapret will run */
1885                 aston(t);
1886         }
1887 
1888         /*
1889          * This thread may be placed on wait queue by CPU Caps. In this case we
1890          * do not need to do anything until it is removed from the wait queue.
1891          * Do not enforce CPU caps on threads running at a kernel priority
1892          */
1893         if (CPUCAPS_ON()) {
1894                 (void) cpucaps_charge(t, &fssproc->fss_caps,
1895                     CPUCAPS_CHARGE_ENFORCE);
1896 
1897                 if (!(fssproc->fss_flags & FSSKPRI) && CPUCAPS_ENFORCE(t))
1898                         return;
1899         }
1900 
1901         /*
1902          * Check to see if we're doing "preemption control" here.  If
1903          * we are, and if the user has requested that this thread not
1904          * be preempted, and if preemptions haven't been put off for
1905          * too long, let the preemption happen here but try to make
1906          * sure the thread is rescheduled as soon as possible.  We do
1907          * this by putting it on the front of the highest priority run
1908          * queue in the FSS class.  If the preemption has been put off
1909          * for too long, clear the "nopreempt" bit and let the thread
1910          * be preempted.
1911          */
1912         if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1913                 if (fssproc->fss_timeleft > -SC_MAX_TICKS) {
1914                         DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t);
1915                         if (!(fssproc->fss_flags & FSSKPRI)) {
1916                                 /*
1917                                  * If not already remembered, remember current
1918                                  * priority for restoration in fss_yield().
1919                                  */
1920                                 if (!(fssproc->fss_flags & FSSRESTORE)) {
1921                                         fssproc->fss_scpri = t->t_pri;
1922                                         fssproc->fss_flags |= FSSRESTORE;
1923                                 }
1924                                 THREAD_CHANGE_PRI(t, fss_maxumdpri);
1925                         }
1926                         schedctl_set_yield(t, 1);
1927                         setfrontdq(t);
1928                         return;
1929                 } else {
1930                         if (fssproc->fss_flags & FSSRESTORE) {
1931                                 THREAD_CHANGE_PRI(t, fssproc->fss_scpri);
1932                                 fssproc->fss_flags &= ~FSSRESTORE;
1933                         }
1934                         schedctl_set_nopreempt(t, 0);
1935                         DTRACE_SCHED1(schedctl__preempt, kthread_t *, t);
1936                         /*
1937                          * Fall through and be preempted below.
1938                          */
1939                 }
1940         }
1941 
1942         flags = fssproc->fss_flags & (FSSBACKQ | FSSKPRI);
1943 
1944         if (flags == FSSBACKQ) {
1945                 fssproc->fss_timeleft = fss_quantum;
1946                 fssproc->fss_flags &= ~FSSBACKQ;
1947                 setbackdq(t);
1948         } else if (flags == (FSSBACKQ | FSSKPRI)) {
1949                 fssproc->fss_flags &= ~FSSBACKQ;
1950                 setbackdq(t);
1951         } else {
1952                 setfrontdq(t);
1953         }
1954 }
1955 
1956 /*
1957  * Called when a thread is waking up and is to be placed on the run queue.
1958  */
1959 static void
1960 fss_setrun(kthread_t *t)
1961 {
1962         fssproc_t *fssproc = FSSPROC(t);
1963 
1964         ASSERT(THREAD_LOCK_HELD(t));    /* t should be in transition */
1965 
1966         if (t->t_state == TS_SLEEP || t->t_state == TS_STOPPED)
1967                 fss_active(t);
1968 
1969         fssproc->fss_timeleft = fss_quantum;
1970 
1971         fssproc->fss_flags &= ~FSSBACKQ;
1972         /*
1973          * If previously were running at the kernel priority then keep that
1974          * priority and the fss_timeleft doesn't matter.
1975          */
1976         if ((fssproc->fss_flags & FSSKPRI) == 0)
1977                 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri);
1978 
1979         if (t->t_disp_time != ddi_get_lbolt())
1980                 setbackdq(t);
1981         else
1982                 setfrontdq(t);
1983 }
1984 
1985 /*
1986  * Prepare thread for sleep. We reset the thread priority so it will run at the
1987  * kernel priority level when it wakes up.
1988  */
1989 static void
1990 fss_sleep(kthread_t *t)
1991 {
1992         fssproc_t *fssproc = FSSPROC(t);
1993 
1994         ASSERT(t == curthread);
1995         ASSERT(THREAD_LOCK_HELD(t));
1996 
1997         ASSERT(t->t_state == TS_ONPROC);
1998 
1999         /*
2000          * Account for time spent on CPU before going to sleep.
2001          */
2002         (void) CPUCAPS_CHARGE(t, &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE);
2003 
2004         fss_inactive(t);
2005 
2006         /*
2007          * Assign a system priority to the thread and arrange for it to be
2008          * retained when the thread is next placed on the run queue (i.e.,
2009          * when it wakes up) instead of being given a new pri.  Also arrange
2010          * for trapret processing as the thread leaves the system call so it
2011          * will drop back to normal priority range.
2012          */
2013         if (t->t_kpri_req) {
2014                 THREAD_CHANGE_PRI(t, minclsyspri);
2015                 fssproc->fss_flags |= FSSKPRI;
2016                 t->t_trapret = 1;    /* so that fss_trapret will run */
2017                 aston(t);
2018         } else if (fssproc->fss_flags & FSSKPRI) {
2019                 /*
2020                  * The thread has done a THREAD_KPRI_REQUEST(), slept, then
2021                  * done THREAD_KPRI_RELEASE() (so no t_kpri_req is 0 again),
2022                  * then slept again all without finishing the current system
2023                  * call so trapret won't have cleared FSSKPRI
2024                  */
2025                 fssproc->fss_flags &= ~FSSKPRI;
2026                 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri);
2027                 if (DISP_MUST_SURRENDER(curthread))
2028                         cpu_surrender(t);
2029         }
2030 }
2031 
2032 /*
2033  * A tick interrupt has ocurrend on a running thread. Check to see if our
2034  * time slice has expired.
2035  */
2036 static void
2037 fss_tick(kthread_t *t)
2038 {
2039         fssproc_t *fssproc;
2040         fssproj_t *fssproj;
2041         klwp_t *lwp;
2042         boolean_t call_cpu_surrender = B_FALSE;
2043         boolean_t cpucaps_enforce = B_FALSE;
2044 
2045         ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
2046 
2047         /*
2048          * It's safe to access fsspset and fssproj structures because we're
2049          * holding our p_lock here.
2050          */
2051         thread_lock(t);
2052         fssproc = FSSPROC(t);
2053         fssproj = FSSPROC2FSSPROJ(fssproc);
2054         if (fssproj != NULL) {
2055                 fsspset_t *fsspset = FSSPROJ2FSSPSET(fssproj);
2056                 disp_lock_enter_high(&fsspset->fssps_displock);
2057                 fssproj->fssp_ticks += fss_nice_tick[fssproc->fss_nice];
2058                 fssproc->fss_ticks++;
2059                 disp_lock_exit_high(&fsspset->fssps_displock);
2060         }
2061 
2062         /*
2063          * Keep track of thread's project CPU usage.  Note that projects
2064          * get charged even when threads are running in the kernel.
2065          * Do not surrender CPU if running in the SYS class.
2066          */
2067         if (CPUCAPS_ON()) {
2068                 cpucaps_enforce = cpucaps_charge(t,
2069                     &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE) &&
2070                     !(fssproc->fss_flags & FSSKPRI);
2071         }
2072 
2073         /*
2074          * A thread's execution time for threads running in the SYS class
2075          * is not tracked.
2076          */
2077         if ((fssproc->fss_flags & FSSKPRI) == 0) {
2078                 /*
2079                  * If thread is not in kernel mode, decrement its fss_timeleft
2080                  */
2081                 if (--fssproc->fss_timeleft <= 0) {
2082                         pri_t new_pri;
2083 
2084                         /*
2085                          * If we're doing preemption control and trying to
2086                          * avoid preempting this thread, just note that the
2087                          * thread should yield soon and let it keep running
2088                          * (unless it's been a while).
2089                          */
2090                         if (t->t_schedctl && schedctl_get_nopreempt(t)) {
2091                                 if (fssproc->fss_timeleft > -SC_MAX_TICKS) {
2092                                         DTRACE_SCHED1(schedctl__nopreempt,
2093                                             kthread_t *, t);
2094                                         schedctl_set_yield(t, 1);
2095                                         thread_unlock_nopreempt(t);
2096                                         return;
2097                                 }
2098                         }
2099                         fssproc->fss_flags &= ~FSSRESTORE;
2100 
2101                         fss_newpri(fssproc);
2102                         new_pri = fssproc->fss_umdpri;
2103                         ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri);
2104 
2105                         /*
2106                          * When the priority of a thread is changed, it may
2107                          * be necessary to adjust its position on a sleep queue
2108                          * or dispatch queue. The function thread_change_pri
2109                          * accomplishes this.
2110                          */
2111                         if (thread_change_pri(t, new_pri, 0)) {
2112                                 fssproc->fss_timeleft = fss_quantum;
2113                         } else {
2114                                 call_cpu_surrender = B_TRUE;
2115                         }
2116                 } else if (t->t_state == TS_ONPROC &&
2117                     t->t_pri < t->t_disp_queue->disp_maxrunpri) {
2118                         /*
2119                          * If there is a higher-priority thread which is
2120                          * waiting for a processor, then thread surrenders
2121                          * the processor.
2122                          */
2123                         call_cpu_surrender = B_TRUE;
2124                 }
2125         }
2126 
2127         if (cpucaps_enforce && 2 * fssproc->fss_timeleft > fss_quantum) {
2128                 /*
2129                  * The thread used more than half of its quantum, so assume that
2130                  * it used the whole quantum.
2131                  *
2132                  * Update thread's priority just before putting it on the wait
2133                  * queue so that it gets charged for the CPU time from its
2134                  * quantum even before that quantum expires.
2135                  */
2136                 fss_newpri(fssproc);
2137                 if (t->t_pri != fssproc->fss_umdpri)
2138                         fss_change_priority(t, fssproc);
2139 
2140                 /*
2141                  * We need to call cpu_surrender for this thread due to cpucaps
2142                  * enforcement, but fss_change_priority may have already done
2143                  * so. In this case FSSBACKQ is set and there is no need to call
2144                  * cpu-surrender again.
2145                  */
2146                 if (!(fssproc->fss_flags & FSSBACKQ))
2147                         call_cpu_surrender = B_TRUE;
2148         }
2149 
2150         if (call_cpu_surrender) {
2151                 fssproc->fss_flags |= FSSBACKQ;
2152                 cpu_surrender(t);
2153         }
2154 
2155         thread_unlock_nopreempt(t);     /* clock thread can't be preempted */
2156 }
2157 
2158 /*
2159  * Processes waking up go to the back of their queue.  We don't need to assign
2160  * a time quantum here because thread is still at a kernel mode priority and
2161  * the time slicing is not done for threads running in the kernel after
2162  * sleeping.  The proper time quantum will be assigned by fss_trapret before the
2163  * thread returns to user mode.
2164  */
2165 static void
2166 fss_wakeup(kthread_t *t)
2167 {
2168         fssproc_t *fssproc;
2169 
2170         ASSERT(THREAD_LOCK_HELD(t));
2171         ASSERT(t->t_state == TS_SLEEP);
2172 
2173         fss_active(t);
2174 
2175         fssproc = FSSPROC(t);
2176         fssproc->fss_flags &= ~FSSBACKQ;
2177 
2178         if (fssproc->fss_flags & FSSKPRI) {
2179                 /*
2180                  * If we already have a kernel priority assigned, then we
2181                  * just use it.
2182                  */
2183                 setbackdq(t);
2184         } else if (t->t_kpri_req) {
2185                 /*
2186                  * Give thread a priority boost if we were asked.
2187                  */
2188                 fssproc->fss_flags |= FSSKPRI;
2189                 THREAD_CHANGE_PRI(t, minclsyspri);
2190                 setbackdq(t);
2191                 t->t_trapret = 1;    /* so that fss_trapret will run */
2192                 aston(t);
2193         } else {
2194                 /*
2195                  * Otherwise, we recalculate the priority.
2196                  */
2197                 if (t->t_disp_time == ddi_get_lbolt()) {
2198                         setfrontdq(t);
2199                 } else {
2200                         fssproc->fss_timeleft = fss_quantum;
2201                         THREAD_CHANGE_PRI(t, fssproc->fss_umdpri);
2202                         setbackdq(t);
2203                 }
2204         }
2205 }
2206 
2207 /*
2208  * fss_donice() is called when a nice(1) command is issued on the thread to
2209  * alter the priority. The nice(1) command exists in Solaris for compatibility.
2210  * Thread priority adjustments should be done via priocntl(1).
2211  */
2212 static int
2213 fss_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp)
2214 {
2215         int newnice;
2216         fssproc_t *fssproc = FSSPROC(t);
2217         fssparms_t fssparms;
2218 
2219         /*
2220          * If there is no change to priority, just return current setting.
2221          */
2222         if (incr == 0) {
2223                 if (retvalp)
2224                         *retvalp = fssproc->fss_nice - NZERO;
2225                 return (0);
2226         }
2227 
2228         if ((incr < 0 || incr > 2 * NZERO) && secpolicy_raisepriority(cr) != 0)
2229                 return (EPERM);
2230 
2231         /*
2232          * Specifying a nice increment greater than the upper limit of
2233          * FSS_NICE_MAX (== 2 * NZERO - 1) will result in the thread's nice
2234          * value being set to the upper limit.  We check for this before
2235          * computing the new value because otherwise we could get overflow
2236          * if a privileged user specified some ridiculous increment.
2237          */
2238         if (incr > FSS_NICE_MAX)
2239                 incr = FSS_NICE_MAX;
2240 
2241         newnice = fssproc->fss_nice + incr;
2242         if (newnice > FSS_NICE_MAX)
2243                 newnice = FSS_NICE_MAX;
2244         else if (newnice < FSS_NICE_MIN)
2245                 newnice = FSS_NICE_MIN;
2246 
2247         fssparms.fss_uprilim = fssparms.fss_upri =
2248             -((newnice - NZERO) * fss_maxupri) / NZERO;
2249 
2250         /*
2251          * Reset the uprilim and upri values of the thread.
2252          */
2253         (void) fss_parmsset(t, (void *)&fssparms, (id_t)0, (cred_t *)NULL);
2254 
2255         /*
2256          * Although fss_parmsset already reset fss_nice it may not have been
2257          * set to precisely the value calculated above because fss_parmsset
2258          * determines the nice value from the user priority and we may have
2259          * truncated during the integer conversion from nice value to user
2260          * priority and back. We reset fss_nice to the value we calculated
2261          * above.
2262          */
2263         fssproc->fss_nice = (char)newnice;
2264 
2265         if (retvalp)
2266                 *retvalp = newnice - NZERO;
2267         return (0);
2268 }
2269 
2270 /*
2271  * Increment the priority of the specified thread by incr and
2272  * return the new value in *retvalp.
2273  */
2274 static int
2275 fss_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp)
2276 {
2277         int newpri;
2278         fssproc_t *fssproc = FSSPROC(t);
2279         fssparms_t fssparms;
2280 
2281         /*
2282          * If there is no change to priority, just return current setting.
2283          */
2284         if (incr == 0) {
2285                 *retvalp = fssproc->fss_upri;
2286                 return (0);
2287         }
2288 
2289         newpri = fssproc->fss_upri + incr;
2290         if (newpri > fss_maxupri || newpri < -fss_maxupri)
2291                 return (EINVAL);
2292 
2293         *retvalp = newpri;
2294         fssparms.fss_uprilim = fssparms.fss_upri = newpri;
2295 
2296         /*
2297          * Reset the uprilim and upri values of the thread.
2298          */
2299         return (fss_parmsset(t, &fssparms, (id_t)0, cr));
2300 }
2301 
2302 /*
2303  * Return the global scheduling priority that would be assigned to a thread
2304  * entering the fair-sharing class with the fss_upri.
2305  */
2306 /*ARGSUSED*/
2307 static pri_t
2308 fss_globpri(kthread_t *t)
2309 {
2310         ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
2311 
2312         return (fss_maxumdpri / 2);
2313 }
2314 
2315 /*
2316  * Called from the yield(2) system call when a thread is yielding (surrendering)
2317  * the processor. The kernel thread is placed at the back of a dispatch queue.
2318  */
2319 static void
2320 fss_yield(kthread_t *t)
2321 {
2322         fssproc_t *fssproc = FSSPROC(t);
2323 
2324         ASSERT(t == curthread);
2325         ASSERT(THREAD_LOCK_HELD(t));
2326 
2327         /*
2328          * Collect CPU usage spent before yielding
2329          */
2330         (void) CPUCAPS_CHARGE(t, &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE);
2331 
2332         /*
2333          * Clear the preemption control "yield" bit since the user is
2334          * doing a yield.
2335          */
2336         if (t->t_schedctl)
2337                 schedctl_set_yield(t, 0);
2338         /*
2339          * If fss_preempt() artifically increased the thread's priority
2340          * to avoid preemption, restore the original priority now.
2341          */
2342         if (fssproc->fss_flags & FSSRESTORE) {
2343                 THREAD_CHANGE_PRI(t, fssproc->fss_scpri);
2344                 fssproc->fss_flags &= ~FSSRESTORE;
2345         }
2346         if (fssproc->fss_timeleft < 0) {
2347                 /*
2348                  * Time slice was artificially extended to avoid preemption,
2349                  * so pretend we're preempting it now.
2350                  */
2351                 DTRACE_SCHED1(schedctl__yield, int, -fssproc->fss_timeleft);
2352                 fssproc->fss_timeleft = fss_quantum;
2353         }
2354         fssproc->fss_flags &= ~FSSBACKQ;
2355         setbackdq(t);
2356 }
2357 
2358 void
2359 fss_changeproj(kthread_t *t, void *kp, void *zp, fssbuf_t *projbuf,
2360     fssbuf_t *zonebuf)
2361 {
2362         kproject_t *kpj_new = kp;
2363         zone_t *zone = zp;
2364         fssproj_t *fssproj_old, *fssproj_new;
2365         fsspset_t *fsspset;
2366         kproject_t *kpj_old;
2367         fssproc_t *fssproc;
2368         fsszone_t *fsszone_old, *fsszone_new;
2369         int free = 0;
2370         int id;
2371 
2372         ASSERT(MUTEX_HELD(&cpu_lock));
2373         ASSERT(MUTEX_HELD(&pidlock));
2374         ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
2375 
2376         if (t->t_cid != fss_cid)
2377                 return;
2378 
2379         fssproc = FSSPROC(t);
2380         mutex_enter(&fsspsets_lock);
2381         fssproj_old = FSSPROC2FSSPROJ(fssproc);
2382         if (fssproj_old == NULL) {
2383                 mutex_exit(&fsspsets_lock);
2384                 return;
2385         }
2386 
2387         fsspset = FSSPROJ2FSSPSET(fssproj_old);
2388         mutex_enter(&fsspset->fssps_lock);
2389         kpj_old = FSSPROJ2KPROJ(fssproj_old);
2390         fsszone_old = fssproj_old->fssp_fsszone;
2391 
2392         ASSERT(t->t_cpupart == fsspset->fssps_cpupart);
2393 
2394         if (kpj_old == kpj_new) {
2395                 mutex_exit(&fsspset->fssps_lock);
2396                 mutex_exit(&fsspsets_lock);
2397                 return;
2398         }
2399 
2400         if ((fsszone_new = fss_find_fsszone(fsspset, zone)) == NULL) {
2401                 /*
2402                  * If the zone for the new project is not currently active on
2403                  * the cpu partition we're on, get one of the pre-allocated
2404                  * buffers and link it in our per-pset zone list.  Such buffers
2405                  * should already exist.
2406                  */
2407                 for (id = 0; id < zonebuf->fssb_size; id++) {
2408                         if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) {
2409                                 fss_insert_fsszone(fsspset, zone, fsszone_new);
2410                                 zonebuf->fssb_list[id] = NULL;
2411                                 break;
2412                         }
2413                 }
2414         }
2415         ASSERT(fsszone_new != NULL);
2416         if ((fssproj_new = fss_find_fssproj(fsspset, kpj_new)) == NULL) {
2417                 /*
2418                  * If our new project is not currently running
2419                  * on the cpu partition we're on, get one of the
2420                  * pre-allocated buffers and link it in our new cpu
2421                  * partition doubly linked list. Such buffers should already
2422                  * exist.
2423                  */
2424                 for (id = 0; id < projbuf->fssb_size; id++) {
2425                         if ((fssproj_new = projbuf->fssb_list[id]) != NULL) {
2426                                 fss_insert_fssproj(fsspset, kpj_new,
2427                                     fsszone_new, fssproj_new);
2428                                 projbuf->fssb_list[id] = NULL;
2429                                 break;
2430                         }
2431                 }
2432         }
2433         ASSERT(fssproj_new != NULL);
2434 
2435         thread_lock(t);
2436         if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
2437             t->t_state == TS_WAIT)
2438                 fss_inactive(t);
2439         ASSERT(fssproj_old->fssp_threads > 0);
2440         if (--fssproj_old->fssp_threads == 0) {
2441                 fss_remove_fssproj(fsspset, fssproj_old);
2442                 free = 1;
2443         }
2444         fssproc->fss_proj = fssproj_new;
2445         fssproc->fss_fsspri = 0;
2446         fssproj_new->fssp_threads++;
2447         if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
2448             t->t_state == TS_WAIT)
2449                 fss_active(t);
2450         thread_unlock(t);
2451         if (free) {
2452                 if (fsszone_old->fssz_nproj == 0)
2453                         kmem_free(fsszone_old, sizeof (fsszone_t));
2454                 kmem_free(fssproj_old, sizeof (fssproj_t));
2455         }
2456 
2457         mutex_exit(&fsspset->fssps_lock);
2458         mutex_exit(&fsspsets_lock);
2459 }
2460 
2461 void
2462 fss_changepset(kthread_t *t, void *newcp, fssbuf_t *projbuf,
2463     fssbuf_t *zonebuf)
2464 {
2465         fsspset_t *fsspset_old, *fsspset_new;
2466         fssproj_t *fssproj_old, *fssproj_new;
2467         fsszone_t *fsszone_old, *fsszone_new;
2468         fssproc_t *fssproc;
2469         kproject_t *kpj;
2470         zone_t *zone;
2471         int id;
2472 
2473         ASSERT(MUTEX_HELD(&cpu_lock));
2474         ASSERT(MUTEX_HELD(&pidlock));
2475         ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
2476 
2477         if (t->t_cid != fss_cid)
2478                 return;
2479 
2480         fssproc = FSSPROC(t);
2481         zone = ttoproc(t)->p_zone;
2482         mutex_enter(&fsspsets_lock);
2483         fssproj_old = FSSPROC2FSSPROJ(fssproc);
2484         if (fssproj_old == NULL) {
2485                 mutex_exit(&fsspsets_lock);
2486                 return;
2487         }
2488         fsszone_old = fssproj_old->fssp_fsszone;
2489         fsspset_old = FSSPROJ2FSSPSET(fssproj_old);
2490         kpj = FSSPROJ2KPROJ(fssproj_old);
2491 
2492         if (fsspset_old->fssps_cpupart == newcp) {
2493                 mutex_exit(&fsspsets_lock);
2494                 return;
2495         }
2496 
2497         ASSERT(ttoproj(t) == kpj);
2498 
2499         fsspset_new = fss_find_fsspset(newcp);
2500 
2501         mutex_enter(&fsspset_new->fssps_lock);
2502         if ((fsszone_new = fss_find_fsszone(fsspset_new, zone)) == NULL) {
2503                 for (id = 0; id < zonebuf->fssb_size; id++) {
2504                         if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) {
2505                                 fss_insert_fsszone(fsspset_new, zone,
2506                                     fsszone_new);
2507                                 zonebuf->fssb_list[id] = NULL;
2508                                 break;
2509                         }
2510                 }
2511         }
2512         ASSERT(fsszone_new != NULL);
2513         if ((fssproj_new = fss_find_fssproj(fsspset_new, kpj)) == NULL) {
2514                 for (id = 0; id < projbuf->fssb_size; id++) {
2515                         if ((fssproj_new = projbuf->fssb_list[id]) != NULL) {
2516                                 fss_insert_fssproj(fsspset_new, kpj,
2517                                     fsszone_new, fssproj_new);
2518                                 projbuf->fssb_list[id] = NULL;
2519                                 break;
2520                         }
2521                 }
2522         }
2523         ASSERT(fssproj_new != NULL);
2524 
2525         fssproj_new->fssp_threads++;
2526         thread_lock(t);
2527         if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
2528             t->t_state == TS_WAIT)
2529                 fss_inactive(t);
2530         fssproc->fss_proj = fssproj_new;
2531         fssproc->fss_fsspri = 0;
2532         if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
2533             t->t_state == TS_WAIT)
2534                 fss_active(t);
2535         thread_unlock(t);
2536         mutex_exit(&fsspset_new->fssps_lock);
2537 
2538         mutex_enter(&fsspset_old->fssps_lock);
2539         if (--fssproj_old->fssp_threads == 0) {
2540                 fss_remove_fssproj(fsspset_old, fssproj_old);
2541                 if (fsszone_old->fssz_nproj == 0)
2542                         kmem_free(fsszone_old, sizeof (fsszone_t));
2543                 kmem_free(fssproj_old, sizeof (fssproj_t));
2544         }
2545         mutex_exit(&fsspset_old->fssps_lock);
2546 
2547         mutex_exit(&fsspsets_lock);
2548 }