1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
  24  */
  25 /*
  26  * Copyright (c) 2011 Bayard G. Bell.  All rights reserved.
  27  * Copyright (c) 2012 by Delphix. All rights reserved.
  28  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
  29  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
  30  */
  31 /*
  32  * Copyright 2011 cyril.galibern@opensvc.com
  33  */
  34 
  35 /*
  36  * SCSI disk target driver.
  37  */
  38 #include <sys/scsi/scsi.h>
  39 #include <sys/dkbad.h>
  40 #include <sys/dklabel.h>
  41 #include <sys/dkio.h>
  42 #include <sys/fdio.h>
  43 #include <sys/cdio.h>
  44 #include <sys/mhd.h>
  45 #include <sys/vtoc.h>
  46 #include <sys/dktp/fdisk.h>
  47 #include <sys/kstat.h>
  48 #include <sys/vtrace.h>
  49 #include <sys/note.h>
  50 #include <sys/thread.h>
  51 #include <sys/proc.h>
  52 #include <sys/efi_partition.h>
  53 #include <sys/var.h>
  54 #include <sys/aio_req.h>
  55 
  56 #ifdef __lock_lint
  57 #define _LP64
  58 #define __amd64
  59 #endif
  60 
  61 #if (defined(__fibre))
  62 /* Note: is there a leadville version of the following? */
  63 #include <sys/fc4/fcal_linkapp.h>
  64 #endif
  65 #include <sys/taskq.h>
  66 #include <sys/uuid.h>
  67 #include <sys/byteorder.h>
  68 #include <sys/sdt.h>
  69 
  70 #include "sd_xbuf.h"
  71 
  72 #include <sys/scsi/targets/sddef.h>
  73 #include <sys/cmlb.h>
  74 #include <sys/sysevent/eventdefs.h>
  75 #include <sys/sysevent/dev.h>
  76 
  77 #include <sys/fm/protocol.h>
  78 
  79 /*
  80  * Loadable module info.
  81  */
  82 #if (defined(__fibre))
  83 #define SD_MODULE_NAME  "SCSI SSA/FCAL Disk Driver"
  84 #else /* !__fibre */
  85 #define SD_MODULE_NAME  "SCSI Disk Driver"
  86 #endif /* !__fibre */
  87 
  88 /*
  89  * Define the interconnect type, to allow the driver to distinguish
  90  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
  91  *
  92  * This is really for backward compatibility. In the future, the driver
  93  * should actually check the "interconnect-type" property as reported by
  94  * the HBA; however at present this property is not defined by all HBAs,
  95  * so we will use this #define (1) to permit the driver to run in
  96  * backward-compatibility mode; and (2) to print a notification message
  97  * if an FC HBA does not support the "interconnect-type" property.  The
  98  * behavior of the driver will be to assume parallel SCSI behaviors unless
  99  * the "interconnect-type" property is defined by the HBA **AND** has a
 100  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
 101  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
 102  * Channel behaviors (as per the old ssd).  (Note that the
 103  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
 104  * will result in the driver assuming parallel SCSI behaviors.)
 105  *
 106  * (see common/sys/scsi/impl/services.h)
 107  *
 108  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
 109  * since some FC HBAs may already support that, and there is some code in
 110  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
 111  * default would confuse that code, and besides things should work fine
 112  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
 113  * "interconnect_type" property.
 114  *
 115  */
 116 #if (defined(__fibre))
 117 #define SD_DEFAULT_INTERCONNECT_TYPE    SD_INTERCONNECT_FIBRE
 118 #else
 119 #define SD_DEFAULT_INTERCONNECT_TYPE    SD_INTERCONNECT_PARALLEL
 120 #endif
 121 
 122 /*
 123  * The name of the driver, established from the module name in _init.
 124  */
 125 static  char *sd_label                  = NULL;
 126 
 127 /*
 128  * Driver name is unfortunately prefixed on some driver.conf properties.
 129  */
 130 #if (defined(__fibre))
 131 #define sd_max_xfer_size                ssd_max_xfer_size
 132 #define sd_config_list                  ssd_config_list
 133 static  char *sd_max_xfer_size          = "ssd_max_xfer_size";
 134 static  char *sd_config_list            = "ssd-config-list";
 135 #else
 136 static  char *sd_max_xfer_size          = "sd_max_xfer_size";
 137 static  char *sd_config_list            = "sd-config-list";
 138 #endif
 139 
 140 /*
 141  * Driver global variables
 142  */
 143 
 144 #if (defined(__fibre))
 145 /*
 146  * These #defines are to avoid namespace collisions that occur because this
 147  * code is currently used to compile two separate driver modules: sd and ssd.
 148  * All global variables need to be treated this way (even if declared static)
 149  * in order to allow the debugger to resolve the names properly.
 150  * It is anticipated that in the near future the ssd module will be obsoleted,
 151  * at which time this namespace issue should go away.
 152  */
 153 #define sd_state                        ssd_state
 154 #define sd_io_time                      ssd_io_time
 155 #define sd_failfast_enable              ssd_failfast_enable
 156 #define sd_ua_retry_count               ssd_ua_retry_count
 157 #define sd_report_pfa                   ssd_report_pfa
 158 #define sd_max_throttle                 ssd_max_throttle
 159 #define sd_min_throttle                 ssd_min_throttle
 160 #define sd_rot_delay                    ssd_rot_delay
 161 
 162 #define sd_retry_on_reservation_conflict        \
 163                                         ssd_retry_on_reservation_conflict
 164 #define sd_reinstate_resv_delay         ssd_reinstate_resv_delay
 165 #define sd_resv_conflict_name           ssd_resv_conflict_name
 166 
 167 #define sd_component_mask               ssd_component_mask
 168 #define sd_level_mask                   ssd_level_mask
 169 #define sd_debug_un                     ssd_debug_un
 170 #define sd_error_level                  ssd_error_level
 171 
 172 #define sd_xbuf_active_limit            ssd_xbuf_active_limit
 173 #define sd_xbuf_reserve_limit           ssd_xbuf_reserve_limit
 174 
 175 #define sd_tr                           ssd_tr
 176 #define sd_reset_throttle_timeout       ssd_reset_throttle_timeout
 177 #define sd_qfull_throttle_timeout       ssd_qfull_throttle_timeout
 178 #define sd_qfull_throttle_enable        ssd_qfull_throttle_enable
 179 #define sd_check_media_time             ssd_check_media_time
 180 #define sd_wait_cmds_complete           ssd_wait_cmds_complete
 181 #define sd_label_mutex                  ssd_label_mutex
 182 #define sd_detach_mutex                 ssd_detach_mutex
 183 #define sd_log_buf                      ssd_log_buf
 184 #define sd_log_mutex                    ssd_log_mutex
 185 
 186 #define sd_disk_table                   ssd_disk_table
 187 #define sd_disk_table_size              ssd_disk_table_size
 188 #define sd_sense_mutex                  ssd_sense_mutex
 189 #define sd_cdbtab                       ssd_cdbtab
 190 
 191 #define sd_cb_ops                       ssd_cb_ops
 192 #define sd_ops                          ssd_ops
 193 #define sd_additional_codes             ssd_additional_codes
 194 #define sd_tgops                        ssd_tgops
 195 
 196 #define sd_minor_data                   ssd_minor_data
 197 #define sd_minor_data_efi               ssd_minor_data_efi
 198 
 199 #define sd_tq                           ssd_tq
 200 #define sd_wmr_tq                       ssd_wmr_tq
 201 #define sd_taskq_name                   ssd_taskq_name
 202 #define sd_wmr_taskq_name               ssd_wmr_taskq_name
 203 #define sd_taskq_minalloc               ssd_taskq_minalloc
 204 #define sd_taskq_maxalloc               ssd_taskq_maxalloc
 205 
 206 #define sd_dump_format_string           ssd_dump_format_string
 207 
 208 #define sd_iostart_chain                ssd_iostart_chain
 209 #define sd_iodone_chain                 ssd_iodone_chain
 210 
 211 #define sd_pm_idletime                  ssd_pm_idletime
 212 
 213 #define sd_force_pm_supported           ssd_force_pm_supported
 214 
 215 #define sd_dtype_optical_bind           ssd_dtype_optical_bind
 216 
 217 #define sd_ssc_init                     ssd_ssc_init
 218 #define sd_ssc_send                     ssd_ssc_send
 219 #define sd_ssc_fini                     ssd_ssc_fini
 220 #define sd_ssc_assessment               ssd_ssc_assessment
 221 #define sd_ssc_post                     ssd_ssc_post
 222 #define sd_ssc_print                    ssd_ssc_print
 223 #define sd_ssc_ereport_post             ssd_ssc_ereport_post
 224 #define sd_ssc_set_info                 ssd_ssc_set_info
 225 #define sd_ssc_extract_info             ssd_ssc_extract_info
 226 
 227 #endif
 228 
 229 #ifdef  SDDEBUG
 230 int     sd_force_pm_supported           = 0;
 231 #endif  /* SDDEBUG */
 232 
 233 void *sd_state                          = NULL;
 234 int sd_io_time                          = SD_IO_TIME;
 235 int sd_failfast_enable                  = 1;
 236 int sd_ua_retry_count                   = SD_UA_RETRY_COUNT;
 237 int sd_report_pfa                       = 1;
 238 int sd_max_throttle                     = SD_MAX_THROTTLE;
 239 int sd_min_throttle                     = SD_MIN_THROTTLE;
 240 int sd_rot_delay                        = 4; /* Default 4ms Rotation delay */
 241 int sd_qfull_throttle_enable            = TRUE;
 242 
 243 int sd_retry_on_reservation_conflict    = 1;
 244 int sd_reinstate_resv_delay             = SD_REINSTATE_RESV_DELAY;
 245 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
 246 
 247 static int sd_dtype_optical_bind        = -1;
 248 
 249 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
 250 static  char *sd_resv_conflict_name     = "sd_retry_on_reservation_conflict";
 251 
 252 /*
 253  * Global data for debug logging. To enable debug printing, sd_component_mask
 254  * and sd_level_mask should be set to the desired bit patterns as outlined in
 255  * sddef.h.
 256  */
 257 uint_t  sd_component_mask               = 0x0;
 258 uint_t  sd_level_mask                   = 0x0;
 259 struct  sd_lun *sd_debug_un             = NULL;
 260 uint_t  sd_error_level                  = SCSI_ERR_RETRYABLE;
 261 
 262 /* Note: these may go away in the future... */
 263 static uint32_t sd_xbuf_active_limit    = 512;
 264 static uint32_t sd_xbuf_reserve_limit   = 16;
 265 
 266 static struct sd_resv_reclaim_request   sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
 267 
 268 /*
 269  * Timer value used to reset the throttle after it has been reduced
 270  * (typically in response to TRAN_BUSY or STATUS_QFULL)
 271  */
 272 static int sd_reset_throttle_timeout    = SD_RESET_THROTTLE_TIMEOUT;
 273 static int sd_qfull_throttle_timeout    = SD_QFULL_THROTTLE_TIMEOUT;
 274 
 275 /*
 276  * Interval value associated with the media change scsi watch.
 277  */
 278 static int sd_check_media_time          = 3000000;
 279 
 280 /*
 281  * Wait value used for in progress operations during a DDI_SUSPEND
 282  */
 283 static int sd_wait_cmds_complete        = SD_WAIT_CMDS_COMPLETE;
 284 
 285 /*
 286  * sd_label_mutex protects a static buffer used in the disk label
 287  * component of the driver
 288  */
 289 static kmutex_t sd_label_mutex;
 290 
 291 /*
 292  * sd_detach_mutex protects un_layer_count, un_detach_count, and
 293  * un_opens_in_progress in the sd_lun structure.
 294  */
 295 static kmutex_t sd_detach_mutex;
 296 
 297 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
 298         sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
 299 
 300 /*
 301  * Global buffer and mutex for debug logging
 302  */
 303 static char     sd_log_buf[1024];
 304 static kmutex_t sd_log_mutex;
 305 
 306 /*
 307  * Structs and globals for recording attached lun information.
 308  * This maintains a chain. Each node in the chain represents a SCSI controller.
 309  * The structure records the number of luns attached to each target connected
 310  * with the controller.
 311  * For parallel scsi device only.
 312  */
 313 struct sd_scsi_hba_tgt_lun {
 314         struct sd_scsi_hba_tgt_lun      *next;
 315         dev_info_t                      *pdip;
 316         int                             nlun[NTARGETS_WIDE];
 317 };
 318 
 319 /*
 320  * Flag to indicate the lun is attached or detached
 321  */
 322 #define SD_SCSI_LUN_ATTACH      0
 323 #define SD_SCSI_LUN_DETACH      1
 324 
 325 static kmutex_t sd_scsi_target_lun_mutex;
 326 static struct sd_scsi_hba_tgt_lun       *sd_scsi_target_lun_head = NULL;
 327 
 328 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
 329     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
 330 
 331 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
 332     sd_scsi_target_lun_head))
 333 
 334 /*
 335  * "Smart" Probe Caching structs, globals, #defines, etc.
 336  * For parallel scsi and non-self-identify device only.
 337  */
 338 
 339 /*
 340  * The following resources and routines are implemented to support
 341  * "smart" probing, which caches the scsi_probe() results in an array,
 342  * in order to help avoid long probe times.
 343  */
 344 struct sd_scsi_probe_cache {
 345         struct  sd_scsi_probe_cache     *next;
 346         dev_info_t      *pdip;
 347         int             cache[NTARGETS_WIDE];
 348 };
 349 
 350 static kmutex_t sd_scsi_probe_cache_mutex;
 351 static struct   sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
 352 
 353 /*
 354  * Really we only need protection on the head of the linked list, but
 355  * better safe than sorry.
 356  */
 357 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
 358     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
 359 
 360 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
 361     sd_scsi_probe_cache_head))
 362 
 363 /*
 364  * Power attribute table
 365  */
 366 static sd_power_attr_ss sd_pwr_ss = {
 367         { "NAME=spindle-motor", "0=off", "1=on", NULL },
 368         {0, 100},
 369         {30, 0},
 370         {20000, 0}
 371 };
 372 
 373 static sd_power_attr_pc sd_pwr_pc = {
 374         { "NAME=spindle-motor", "0=stopped", "1=standby", "2=idle",
 375                 "3=active", NULL },
 376         {0, 0, 0, 100},
 377         {90, 90, 20, 0},
 378         {15000, 15000, 1000, 0}
 379 };
 380 
 381 /*
 382  * Power level to power condition
 383  */
 384 static int sd_pl2pc[] = {
 385         SD_TARGET_START_VALID,
 386         SD_TARGET_STANDBY,
 387         SD_TARGET_IDLE,
 388         SD_TARGET_ACTIVE
 389 };
 390 
 391 /*
 392  * Vendor specific data name property declarations
 393  */
 394 
 395 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
 396 
 397 static sd_tunables seagate_properties = {
 398         SEAGATE_THROTTLE_VALUE,
 399         0,
 400         0,
 401         0,
 402         0,
 403         0,
 404         0,
 405         0,
 406         0
 407 };
 408 
 409 
 410 static sd_tunables fujitsu_properties = {
 411         FUJITSU_THROTTLE_VALUE,
 412         0,
 413         0,
 414         0,
 415         0,
 416         0,
 417         0,
 418         0,
 419         0
 420 };
 421 
 422 static sd_tunables ibm_properties = {
 423         IBM_THROTTLE_VALUE,
 424         0,
 425         0,
 426         0,
 427         0,
 428         0,
 429         0,
 430         0,
 431         0
 432 };
 433 
 434 static sd_tunables purple_properties = {
 435         PURPLE_THROTTLE_VALUE,
 436         0,
 437         0,
 438         PURPLE_BUSY_RETRIES,
 439         PURPLE_RESET_RETRY_COUNT,
 440         PURPLE_RESERVE_RELEASE_TIME,
 441         0,
 442         0,
 443         0
 444 };
 445 
 446 static sd_tunables sve_properties = {
 447         SVE_THROTTLE_VALUE,
 448         0,
 449         0,
 450         SVE_BUSY_RETRIES,
 451         SVE_RESET_RETRY_COUNT,
 452         SVE_RESERVE_RELEASE_TIME,
 453         SVE_MIN_THROTTLE_VALUE,
 454         SVE_DISKSORT_DISABLED_FLAG,
 455         0
 456 };
 457 
 458 static sd_tunables maserati_properties = {
 459         0,
 460         0,
 461         0,
 462         0,
 463         0,
 464         0,
 465         0,
 466         MASERATI_DISKSORT_DISABLED_FLAG,
 467         MASERATI_LUN_RESET_ENABLED_FLAG
 468 };
 469 
 470 static sd_tunables pirus_properties = {
 471         PIRUS_THROTTLE_VALUE,
 472         0,
 473         PIRUS_NRR_COUNT,
 474         PIRUS_BUSY_RETRIES,
 475         PIRUS_RESET_RETRY_COUNT,
 476         0,
 477         PIRUS_MIN_THROTTLE_VALUE,
 478         PIRUS_DISKSORT_DISABLED_FLAG,
 479         PIRUS_LUN_RESET_ENABLED_FLAG
 480 };
 481 
 482 #endif
 483 
 484 #if (defined(__sparc) && !defined(__fibre)) || \
 485         (defined(__i386) || defined(__amd64))
 486 
 487 
 488 static sd_tunables elite_properties = {
 489         ELITE_THROTTLE_VALUE,
 490         0,
 491         0,
 492         0,
 493         0,
 494         0,
 495         0,
 496         0,
 497         0
 498 };
 499 
 500 static sd_tunables st31200n_properties = {
 501         ST31200N_THROTTLE_VALUE,
 502         0,
 503         0,
 504         0,
 505         0,
 506         0,
 507         0,
 508         0,
 509         0
 510 };
 511 
 512 #endif /* Fibre or not */
 513 
 514 static sd_tunables lsi_properties_scsi = {
 515         LSI_THROTTLE_VALUE,
 516         0,
 517         LSI_NOTREADY_RETRIES,
 518         0,
 519         0,
 520         0,
 521         0,
 522         0,
 523         0
 524 };
 525 
 526 static sd_tunables symbios_properties = {
 527         SYMBIOS_THROTTLE_VALUE,
 528         0,
 529         SYMBIOS_NOTREADY_RETRIES,
 530         0,
 531         0,
 532         0,
 533         0,
 534         0,
 535         0
 536 };
 537 
 538 static sd_tunables lsi_properties = {
 539         0,
 540         0,
 541         LSI_NOTREADY_RETRIES,
 542         0,
 543         0,
 544         0,
 545         0,
 546         0,
 547         0
 548 };
 549 
 550 static sd_tunables lsi_oem_properties = {
 551         0,
 552         0,
 553         LSI_OEM_NOTREADY_RETRIES,
 554         0,
 555         0,
 556         0,
 557         0,
 558         0,
 559         0,
 560         1
 561 };
 562 
 563 
 564 
 565 #if (defined(SD_PROP_TST))
 566 
 567 #define SD_TST_CTYPE_VAL        CTYPE_CDROM
 568 #define SD_TST_THROTTLE_VAL     16
 569 #define SD_TST_NOTREADY_VAL     12
 570 #define SD_TST_BUSY_VAL         60
 571 #define SD_TST_RST_RETRY_VAL    36
 572 #define SD_TST_RSV_REL_TIME     60
 573 
 574 static sd_tunables tst_properties = {
 575         SD_TST_THROTTLE_VAL,
 576         SD_TST_CTYPE_VAL,
 577         SD_TST_NOTREADY_VAL,
 578         SD_TST_BUSY_VAL,
 579         SD_TST_RST_RETRY_VAL,
 580         SD_TST_RSV_REL_TIME,
 581         0,
 582         0,
 583         0
 584 };
 585 #endif
 586 
 587 /* This is similar to the ANSI toupper implementation */
 588 #define SD_TOUPPER(C)   (((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
 589 
 590 /*
 591  * Static Driver Configuration Table
 592  *
 593  * This is the table of disks which need throttle adjustment (or, perhaps
 594  * something else as defined by the flags at a future time.)  device_id
 595  * is a string consisting of concatenated vid (vendor), pid (product/model)
 596  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
 597  * the parts of the string are as defined by the sizes in the scsi_inquiry
 598  * structure.  Device type is searched as far as the device_id string is
 599  * defined.  Flags defines which values are to be set in the driver from the
 600  * properties list.
 601  *
 602  * Entries below which begin and end with a "*" are a special case.
 603  * These do not have a specific vendor, and the string which follows
 604  * can appear anywhere in the 16 byte PID portion of the inquiry data.
 605  *
 606  * Entries below which begin and end with a " " (blank) are a special
 607  * case. The comparison function will treat multiple consecutive blanks
 608  * as equivalent to a single blank. For example, this causes a
 609  * sd_disk_table entry of " NEC CDROM " to match a device's id string
 610  * of  "NEC       CDROM".
 611  *
 612  * Note: The MD21 controller type has been obsoleted.
 613  *       ST318202F is a Legacy device
 614  *       MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
 615  *       made with an FC connection. The entries here are a legacy.
 616  */
 617 static sd_disk_config_t sd_disk_table[] = {
 618 #if defined(__fibre) || defined(__i386) || defined(__amd64)
 619         { "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
 620         { "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
 621         { "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
 622         { "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
 623         { "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
 624         { "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
 625         { "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
 626         { "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
 627         { "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
 628         { "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
 629         { "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
 630         { "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
 631         { "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
 632         { "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
 633         { "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
 634         { "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
 635         { "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
 636         { "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
 637         { "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
 638         { "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
 639         { "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
 640         { "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
 641         { "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
 642         { "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
 643         { "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
 644         { "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
 645         { "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
 646         { "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 647         { "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 648         { "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 649         { "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 650         { "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 651         { "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 652         { "IBM     3526",       SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 653         { "IBM     3542",       SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 654         { "IBM     3552",       SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 655         { "IBM     1722",       SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 656         { "IBM     1742",       SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 657         { "IBM     1815",       SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 658         { "IBM     FAStT",      SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 659         { "IBM     1814",       SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 660         { "IBM     1814-200",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 661         { "IBM     1818",       SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 662         { "DELL    MD3000",     SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 663         { "DELL    MD3000i",    SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 664         { "LSI     INF",        SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 665         { "ENGENIO INF",        SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 666         { "SGI     TP",         SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 667         { "SGI     IS",         SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 668         { "*CSM100_*",          SD_CONF_BSET_NRR_COUNT |
 669                         SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
 670         { "*CSM200_*",          SD_CONF_BSET_NRR_COUNT |
 671                         SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
 672         { "Fujitsu SX300",      SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
 673         { "LSI",                SD_CONF_BSET_NRR_COUNT, &lsi_properties },
 674         { "SUN     T3", SD_CONF_BSET_THROTTLE |
 675                         SD_CONF_BSET_BSY_RETRY_COUNT|
 676                         SD_CONF_BSET_RST_RETRIES|
 677                         SD_CONF_BSET_RSV_REL_TIME,
 678                 &purple_properties },
 679         { "SUN     SESS01", SD_CONF_BSET_THROTTLE |
 680                 SD_CONF_BSET_BSY_RETRY_COUNT|
 681                 SD_CONF_BSET_RST_RETRIES|
 682                 SD_CONF_BSET_RSV_REL_TIME|
 683                 SD_CONF_BSET_MIN_THROTTLE|
 684                 SD_CONF_BSET_DISKSORT_DISABLED,
 685                 &sve_properties },
 686         { "SUN     T4", SD_CONF_BSET_THROTTLE |
 687                         SD_CONF_BSET_BSY_RETRY_COUNT|
 688                         SD_CONF_BSET_RST_RETRIES|
 689                         SD_CONF_BSET_RSV_REL_TIME,
 690                 &purple_properties },
 691         { "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
 692                 SD_CONF_BSET_LUN_RESET_ENABLED,
 693                 &maserati_properties },
 694         { "SUN     SE6920", SD_CONF_BSET_THROTTLE |
 695                 SD_CONF_BSET_NRR_COUNT|
 696                 SD_CONF_BSET_BSY_RETRY_COUNT|
 697                 SD_CONF_BSET_RST_RETRIES|
 698                 SD_CONF_BSET_MIN_THROTTLE|
 699                 SD_CONF_BSET_DISKSORT_DISABLED|
 700                 SD_CONF_BSET_LUN_RESET_ENABLED,
 701                 &pirus_properties },
 702         { "SUN     SE6940", SD_CONF_BSET_THROTTLE |
 703                 SD_CONF_BSET_NRR_COUNT|
 704                 SD_CONF_BSET_BSY_RETRY_COUNT|
 705                 SD_CONF_BSET_RST_RETRIES|
 706                 SD_CONF_BSET_MIN_THROTTLE|
 707                 SD_CONF_BSET_DISKSORT_DISABLED|
 708                 SD_CONF_BSET_LUN_RESET_ENABLED,
 709                 &pirus_properties },
 710         { "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
 711                 SD_CONF_BSET_NRR_COUNT|
 712                 SD_CONF_BSET_BSY_RETRY_COUNT|
 713                 SD_CONF_BSET_RST_RETRIES|
 714                 SD_CONF_BSET_MIN_THROTTLE|
 715                 SD_CONF_BSET_DISKSORT_DISABLED|
 716                 SD_CONF_BSET_LUN_RESET_ENABLED,
 717                 &pirus_properties },
 718         { "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
 719                 SD_CONF_BSET_NRR_COUNT|
 720                 SD_CONF_BSET_BSY_RETRY_COUNT|
 721                 SD_CONF_BSET_RST_RETRIES|
 722                 SD_CONF_BSET_MIN_THROTTLE|
 723                 SD_CONF_BSET_DISKSORT_DISABLED|
 724                 SD_CONF_BSET_LUN_RESET_ENABLED,
 725                 &pirus_properties },
 726         { "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
 727                 SD_CONF_BSET_NRR_COUNT|
 728                 SD_CONF_BSET_BSY_RETRY_COUNT|
 729                 SD_CONF_BSET_RST_RETRIES|
 730                 SD_CONF_BSET_MIN_THROTTLE|
 731                 SD_CONF_BSET_DISKSORT_DISABLED|
 732                 SD_CONF_BSET_LUN_RESET_ENABLED,
 733                 &pirus_properties },
 734         { "SUN     SE6330", SD_CONF_BSET_THROTTLE |
 735                 SD_CONF_BSET_NRR_COUNT|
 736                 SD_CONF_BSET_BSY_RETRY_COUNT|
 737                 SD_CONF_BSET_RST_RETRIES|
 738                 SD_CONF_BSET_MIN_THROTTLE|
 739                 SD_CONF_BSET_DISKSORT_DISABLED|
 740                 SD_CONF_BSET_LUN_RESET_ENABLED,
 741                 &pirus_properties },
 742         { "SUN     STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 743         { "SUN     SUN_6180", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 744         { "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 745         { "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 746         { "STK     BladeCtlr",  SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 747         { "STK     FLEXLINE",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
 748         { "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
 749 #endif /* fibre or NON-sparc platforms */
 750 #if ((defined(__sparc) && !defined(__fibre)) ||\
 751         (defined(__i386) || defined(__amd64)))
 752         { "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
 753         { "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
 754         { "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
 755         { "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
 756         { "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
 757         { "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
 758         { "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
 759         { "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
 760         { "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
 761         { "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
 762         { "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
 763         { "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
 764         { "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
 765             &symbios_properties },
 766         { "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
 767             &lsi_properties_scsi },
 768 #if defined(__i386) || defined(__amd64)
 769         { " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
 770                                     | SD_CONF_BSET_READSUB_BCD
 771                                     | SD_CONF_BSET_READ_TOC_ADDR_BCD
 772                                     | SD_CONF_BSET_NO_READ_HEADER
 773                                     | SD_CONF_BSET_READ_CD_XD4), NULL },
 774 
 775         { " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
 776                                     | SD_CONF_BSET_READSUB_BCD
 777                                     | SD_CONF_BSET_READ_TOC_ADDR_BCD
 778                                     | SD_CONF_BSET_NO_READ_HEADER
 779                                     | SD_CONF_BSET_READ_CD_XD4), NULL },
 780 #endif /* __i386 || __amd64 */
 781 #endif /* sparc NON-fibre or NON-sparc platforms */
 782 
 783 #if (defined(SD_PROP_TST))
 784         { "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
 785                                 | SD_CONF_BSET_CTYPE
 786                                 | SD_CONF_BSET_NRR_COUNT
 787                                 | SD_CONF_BSET_FAB_DEVID
 788                                 | SD_CONF_BSET_NOCACHE
 789                                 | SD_CONF_BSET_BSY_RETRY_COUNT
 790                                 | SD_CONF_BSET_PLAYMSF_BCD
 791                                 | SD_CONF_BSET_READSUB_BCD
 792                                 | SD_CONF_BSET_READ_TOC_TRK_BCD
 793                                 | SD_CONF_BSET_READ_TOC_ADDR_BCD
 794                                 | SD_CONF_BSET_NO_READ_HEADER
 795                                 | SD_CONF_BSET_READ_CD_XD4
 796                                 | SD_CONF_BSET_RST_RETRIES
 797                                 | SD_CONF_BSET_RSV_REL_TIME
 798                                 | SD_CONF_BSET_TUR_CHECK), &tst_properties},
 799 #endif
 800 };
 801 
 802 static const int sd_disk_table_size =
 803         sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
 804 
 805 /*
 806  * Emulation mode disk drive VID/PID table
 807  */
 808 static char sd_flash_dev_table[][25] = {
 809         "ATA     MARVELL SD88SA02",
 810         "MARVELL SD88SA02",
 811         "TOSHIBA THNSNV05",
 812 };
 813 
 814 static const int sd_flash_dev_table_size =
 815         sizeof (sd_flash_dev_table) / sizeof (sd_flash_dev_table[0]);
 816 
 817 #define SD_INTERCONNECT_PARALLEL        0
 818 #define SD_INTERCONNECT_FABRIC          1
 819 #define SD_INTERCONNECT_FIBRE           2
 820 #define SD_INTERCONNECT_SSA             3
 821 #define SD_INTERCONNECT_SATA            4
 822 #define SD_INTERCONNECT_SAS             5
 823 
 824 #define SD_IS_PARALLEL_SCSI(un)         \
 825         ((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
 826 #define SD_IS_SERIAL(un)                \
 827         (((un)->un_interconnect_type == SD_INTERCONNECT_SATA) ||\
 828         ((un)->un_interconnect_type == SD_INTERCONNECT_SAS))
 829 
 830 /*
 831  * Definitions used by device id registration routines
 832  */
 833 #define VPD_HEAD_OFFSET         3       /* size of head for vpd page */
 834 #define VPD_PAGE_LENGTH         3       /* offset for pge length data */
 835 #define VPD_MODE_PAGE           1       /* offset into vpd pg for "page code" */
 836 
 837 static kmutex_t sd_sense_mutex = {0};
 838 
 839 /*
 840  * Macros for updates of the driver state
 841  */
 842 #define New_state(un, s)        \
 843         (un)->un_last_state = (un)->un_state, (un)->un_state = (s)
 844 #define Restore_state(un)       \
 845         { uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
 846 
 847 static struct sd_cdbinfo sd_cdbtab[] = {
 848         { CDB_GROUP0, 0x00,        0x1FFFFF,   0xFF,        },
 849         { CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,      },
 850         { CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
 851         { CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
 852 };
 853 
 854 /*
 855  * Specifies the number of seconds that must have elapsed since the last
 856  * cmd. has completed for a device to be declared idle to the PM framework.
 857  */
 858 static int sd_pm_idletime = 1;
 859 
 860 /*
 861  * Internal function prototypes
 862  */
 863 
 864 #if (defined(__fibre))
 865 /*
 866  * These #defines are to avoid namespace collisions that occur because this
 867  * code is currently used to compile two separate driver modules: sd and ssd.
 868  * All function names need to be treated this way (even if declared static)
 869  * in order to allow the debugger to resolve the names properly.
 870  * It is anticipated that in the near future the ssd module will be obsoleted,
 871  * at which time this ugliness should go away.
 872  */
 873 #define sd_log_trace                    ssd_log_trace
 874 #define sd_log_info                     ssd_log_info
 875 #define sd_log_err                      ssd_log_err
 876 #define sdprobe                         ssdprobe
 877 #define sdinfo                          ssdinfo
 878 #define sd_prop_op                      ssd_prop_op
 879 #define sd_scsi_probe_cache_init        ssd_scsi_probe_cache_init
 880 #define sd_scsi_probe_cache_fini        ssd_scsi_probe_cache_fini
 881 #define sd_scsi_clear_probe_cache       ssd_scsi_clear_probe_cache
 882 #define sd_scsi_probe_with_cache        ssd_scsi_probe_with_cache
 883 #define sd_scsi_target_lun_init         ssd_scsi_target_lun_init
 884 #define sd_scsi_target_lun_fini         ssd_scsi_target_lun_fini
 885 #define sd_scsi_get_target_lun_count    ssd_scsi_get_target_lun_count
 886 #define sd_scsi_update_lun_on_target    ssd_scsi_update_lun_on_target
 887 #define sd_spin_up_unit                 ssd_spin_up_unit
 888 #define sd_enable_descr_sense           ssd_enable_descr_sense
 889 #define sd_reenable_dsense_task         ssd_reenable_dsense_task
 890 #define sd_set_mmc_caps                 ssd_set_mmc_caps
 891 #define sd_read_unit_properties         ssd_read_unit_properties
 892 #define sd_process_sdconf_file          ssd_process_sdconf_file
 893 #define sd_process_sdconf_table         ssd_process_sdconf_table
 894 #define sd_sdconf_id_match              ssd_sdconf_id_match
 895 #define sd_blank_cmp                    ssd_blank_cmp
 896 #define sd_chk_vers1_data               ssd_chk_vers1_data
 897 #define sd_set_vers1_properties         ssd_set_vers1_properties
 898 #define sd_check_solid_state            ssd_check_solid_state
 899 #define sd_check_emulation_mode         ssd_check_emulation_mode
 900 
 901 #define sd_get_physical_geometry        ssd_get_physical_geometry
 902 #define sd_get_virtual_geometry         ssd_get_virtual_geometry
 903 #define sd_update_block_info            ssd_update_block_info
 904 #define sd_register_devid               ssd_register_devid
 905 #define sd_get_devid                    ssd_get_devid
 906 #define sd_create_devid                 ssd_create_devid
 907 #define sd_write_deviceid               ssd_write_deviceid
 908 #define sd_check_vpd_page_support       ssd_check_vpd_page_support
 909 #define sd_setup_pm                     ssd_setup_pm
 910 #define sd_create_pm_components         ssd_create_pm_components
 911 #define sd_ddi_suspend                  ssd_ddi_suspend
 912 #define sd_ddi_resume                   ssd_ddi_resume
 913 #define sd_pm_state_change              ssd_pm_state_change
 914 #define sdpower                         ssdpower
 915 #define sdattach                        ssdattach
 916 #define sddetach                        ssddetach
 917 #define sd_unit_attach                  ssd_unit_attach
 918 #define sd_unit_detach                  ssd_unit_detach
 919 #define sd_set_unit_attributes          ssd_set_unit_attributes
 920 #define sd_create_errstats              ssd_create_errstats
 921 #define sd_set_errstats                 ssd_set_errstats
 922 #define sd_set_pstats                   ssd_set_pstats
 923 #define sddump                          ssddump
 924 #define sd_scsi_poll                    ssd_scsi_poll
 925 #define sd_send_polled_RQS              ssd_send_polled_RQS
 926 #define sd_ddi_scsi_poll                ssd_ddi_scsi_poll
 927 #define sd_init_event_callbacks         ssd_init_event_callbacks
 928 #define sd_event_callback               ssd_event_callback
 929 #define sd_cache_control                ssd_cache_control
 930 #define sd_get_write_cache_enabled      ssd_get_write_cache_enabled
 931 #define sd_get_nv_sup                   ssd_get_nv_sup
 932 #define sd_make_device                  ssd_make_device
 933 #define sdopen                          ssdopen
 934 #define sdclose                         ssdclose
 935 #define sd_ready_and_valid              ssd_ready_and_valid
 936 #define sdmin                           ssdmin
 937 #define sdread                          ssdread
 938 #define sdwrite                         ssdwrite
 939 #define sdaread                         ssdaread
 940 #define sdawrite                        ssdawrite
 941 #define sdstrategy                      ssdstrategy
 942 #define sdioctl                         ssdioctl
 943 #define sd_mapblockaddr_iostart         ssd_mapblockaddr_iostart
 944 #define sd_mapblocksize_iostart         ssd_mapblocksize_iostart
 945 #define sd_checksum_iostart             ssd_checksum_iostart
 946 #define sd_checksum_uscsi_iostart       ssd_checksum_uscsi_iostart
 947 #define sd_pm_iostart                   ssd_pm_iostart
 948 #define sd_core_iostart                 ssd_core_iostart
 949 #define sd_mapblockaddr_iodone          ssd_mapblockaddr_iodone
 950 #define sd_mapblocksize_iodone          ssd_mapblocksize_iodone
 951 #define sd_checksum_iodone              ssd_checksum_iodone
 952 #define sd_checksum_uscsi_iodone        ssd_checksum_uscsi_iodone
 953 #define sd_pm_iodone                    ssd_pm_iodone
 954 #define sd_initpkt_for_buf              ssd_initpkt_for_buf
 955 #define sd_destroypkt_for_buf           ssd_destroypkt_for_buf
 956 #define sd_setup_rw_pkt                 ssd_setup_rw_pkt
 957 #define sd_setup_next_rw_pkt            ssd_setup_next_rw_pkt
 958 #define sd_buf_iodone                   ssd_buf_iodone
 959 #define sd_uscsi_strategy               ssd_uscsi_strategy
 960 #define sd_initpkt_for_uscsi            ssd_initpkt_for_uscsi
 961 #define sd_destroypkt_for_uscsi         ssd_destroypkt_for_uscsi
 962 #define sd_uscsi_iodone                 ssd_uscsi_iodone
 963 #define sd_xbuf_strategy                ssd_xbuf_strategy
 964 #define sd_xbuf_init                    ssd_xbuf_init
 965 #define sd_pm_entry                     ssd_pm_entry
 966 #define sd_pm_exit                      ssd_pm_exit
 967 
 968 #define sd_pm_idletimeout_handler       ssd_pm_idletimeout_handler
 969 #define sd_pm_timeout_handler           ssd_pm_timeout_handler
 970 
 971 #define sd_add_buf_to_waitq             ssd_add_buf_to_waitq
 972 #define sdintr                          ssdintr
 973 #define sd_start_cmds                   ssd_start_cmds
 974 #define sd_send_scsi_cmd                ssd_send_scsi_cmd
 975 #define sd_bioclone_alloc               ssd_bioclone_alloc
 976 #define sd_bioclone_free                ssd_bioclone_free
 977 #define sd_shadow_buf_alloc             ssd_shadow_buf_alloc
 978 #define sd_shadow_buf_free              ssd_shadow_buf_free
 979 #define sd_print_transport_rejected_message     \
 980                                         ssd_print_transport_rejected_message
 981 #define sd_retry_command                ssd_retry_command
 982 #define sd_set_retry_bp                 ssd_set_retry_bp
 983 #define sd_send_request_sense_command   ssd_send_request_sense_command
 984 #define sd_start_retry_command          ssd_start_retry_command
 985 #define sd_start_direct_priority_command        \
 986                                         ssd_start_direct_priority_command
 987 #define sd_return_failed_command        ssd_return_failed_command
 988 #define sd_return_failed_command_no_restart     \
 989                                         ssd_return_failed_command_no_restart
 990 #define sd_return_command               ssd_return_command
 991 #define sd_sync_with_callback           ssd_sync_with_callback
 992 #define sdrunout                        ssdrunout
 993 #define sd_mark_rqs_busy                ssd_mark_rqs_busy
 994 #define sd_mark_rqs_idle                ssd_mark_rqs_idle
 995 #define sd_reduce_throttle              ssd_reduce_throttle
 996 #define sd_restore_throttle             ssd_restore_throttle
 997 #define sd_print_incomplete_msg         ssd_print_incomplete_msg
 998 #define sd_init_cdb_limits              ssd_init_cdb_limits
 999 #define sd_pkt_status_good              ssd_pkt_status_good
1000 #define sd_pkt_status_check_condition   ssd_pkt_status_check_condition
1001 #define sd_pkt_status_busy              ssd_pkt_status_busy
1002 #define sd_pkt_status_reservation_conflict      \
1003                                         ssd_pkt_status_reservation_conflict
1004 #define sd_pkt_status_qfull             ssd_pkt_status_qfull
1005 #define sd_handle_request_sense         ssd_handle_request_sense
1006 #define sd_handle_auto_request_sense    ssd_handle_auto_request_sense
1007 #define sd_print_sense_failed_msg       ssd_print_sense_failed_msg
1008 #define sd_validate_sense_data          ssd_validate_sense_data
1009 #define sd_decode_sense                 ssd_decode_sense
1010 #define sd_print_sense_msg              ssd_print_sense_msg
1011 #define sd_sense_key_no_sense           ssd_sense_key_no_sense
1012 #define sd_sense_key_recoverable_error  ssd_sense_key_recoverable_error
1013 #define sd_sense_key_not_ready          ssd_sense_key_not_ready
1014 #define sd_sense_key_medium_or_hardware_error   \
1015                                         ssd_sense_key_medium_or_hardware_error
1016 #define sd_sense_key_illegal_request    ssd_sense_key_illegal_request
1017 #define sd_sense_key_unit_attention     ssd_sense_key_unit_attention
1018 #define sd_sense_key_fail_command       ssd_sense_key_fail_command
1019 #define sd_sense_key_blank_check        ssd_sense_key_blank_check
1020 #define sd_sense_key_aborted_command    ssd_sense_key_aborted_command
1021 #define sd_sense_key_default            ssd_sense_key_default
1022 #define sd_print_retry_msg              ssd_print_retry_msg
1023 #define sd_print_cmd_incomplete_msg     ssd_print_cmd_incomplete_msg
1024 #define sd_pkt_reason_cmd_incomplete    ssd_pkt_reason_cmd_incomplete
1025 #define sd_pkt_reason_cmd_tran_err      ssd_pkt_reason_cmd_tran_err
1026 #define sd_pkt_reason_cmd_reset         ssd_pkt_reason_cmd_reset
1027 #define sd_pkt_reason_cmd_aborted       ssd_pkt_reason_cmd_aborted
1028 #define sd_pkt_reason_cmd_timeout       ssd_pkt_reason_cmd_timeout
1029 #define sd_pkt_reason_cmd_unx_bus_free  ssd_pkt_reason_cmd_unx_bus_free
1030 #define sd_pkt_reason_cmd_tag_reject    ssd_pkt_reason_cmd_tag_reject
1031 #define sd_pkt_reason_default           ssd_pkt_reason_default
1032 #define sd_reset_target                 ssd_reset_target
1033 #define sd_start_stop_unit_callback     ssd_start_stop_unit_callback
1034 #define sd_start_stop_unit_task         ssd_start_stop_unit_task
1035 #define sd_taskq_create                 ssd_taskq_create
1036 #define sd_taskq_delete                 ssd_taskq_delete
1037 #define sd_target_change_task           ssd_target_change_task
1038 #define sd_log_dev_status_event         ssd_log_dev_status_event
1039 #define sd_log_lun_expansion_event      ssd_log_lun_expansion_event
1040 #define sd_log_eject_request_event      ssd_log_eject_request_event
1041 #define sd_media_change_task            ssd_media_change_task
1042 #define sd_handle_mchange               ssd_handle_mchange
1043 #define sd_send_scsi_DOORLOCK           ssd_send_scsi_DOORLOCK
1044 #define sd_send_scsi_READ_CAPACITY      ssd_send_scsi_READ_CAPACITY
1045 #define sd_send_scsi_READ_CAPACITY_16   ssd_send_scsi_READ_CAPACITY_16
1046 #define sd_send_scsi_GET_CONFIGURATION  ssd_send_scsi_GET_CONFIGURATION
1047 #define sd_send_scsi_feature_GET_CONFIGURATION  \
1048                                         sd_send_scsi_feature_GET_CONFIGURATION
1049 #define sd_send_scsi_START_STOP_UNIT    ssd_send_scsi_START_STOP_UNIT
1050 #define sd_send_scsi_INQUIRY            ssd_send_scsi_INQUIRY
1051 #define sd_send_scsi_TEST_UNIT_READY    ssd_send_scsi_TEST_UNIT_READY
1052 #define sd_send_scsi_PERSISTENT_RESERVE_IN      \
1053                                         ssd_send_scsi_PERSISTENT_RESERVE_IN
1054 #define sd_send_scsi_PERSISTENT_RESERVE_OUT     \
1055                                         ssd_send_scsi_PERSISTENT_RESERVE_OUT
1056 #define sd_send_scsi_SYNCHRONIZE_CACHE  ssd_send_scsi_SYNCHRONIZE_CACHE
1057 #define sd_send_scsi_SYNCHRONIZE_CACHE_biodone  \
1058                                         ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1059 #define sd_send_scsi_MODE_SENSE         ssd_send_scsi_MODE_SENSE
1060 #define sd_send_scsi_MODE_SELECT        ssd_send_scsi_MODE_SELECT
1061 #define sd_send_scsi_RDWR               ssd_send_scsi_RDWR
1062 #define sd_send_scsi_LOG_SENSE          ssd_send_scsi_LOG_SENSE
1063 #define sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION      \
1064                                 ssd_send_scsi_GET_EVENT_STATUS_NOTIFICATION
1065 #define sd_gesn_media_data_valid        ssd_gesn_media_data_valid
1066 #define sd_alloc_rqs                    ssd_alloc_rqs
1067 #define sd_free_rqs                     ssd_free_rqs
1068 #define sd_dump_memory                  ssd_dump_memory
1069 #define sd_get_media_info_com           ssd_get_media_info_com
1070 #define sd_get_media_info               ssd_get_media_info
1071 #define sd_get_media_info_ext           ssd_get_media_info_ext
1072 #define sd_dkio_ctrl_info               ssd_dkio_ctrl_info
1073 #define sd_nvpair_str_decode            ssd_nvpair_str_decode
1074 #define sd_strtok_r                     ssd_strtok_r
1075 #define sd_set_properties               ssd_set_properties
1076 #define sd_get_tunables_from_conf       ssd_get_tunables_from_conf
1077 #define sd_setup_next_xfer              ssd_setup_next_xfer
1078 #define sd_dkio_get_temp                ssd_dkio_get_temp
1079 #define sd_check_mhd                    ssd_check_mhd
1080 #define sd_mhd_watch_cb                 ssd_mhd_watch_cb
1081 #define sd_mhd_watch_incomplete         ssd_mhd_watch_incomplete
1082 #define sd_sname                        ssd_sname
1083 #define sd_mhd_resvd_recover            ssd_mhd_resvd_recover
1084 #define sd_resv_reclaim_thread          ssd_resv_reclaim_thread
1085 #define sd_take_ownership               ssd_take_ownership
1086 #define sd_reserve_release              ssd_reserve_release
1087 #define sd_rmv_resv_reclaim_req         ssd_rmv_resv_reclaim_req
1088 #define sd_mhd_reset_notify_cb          ssd_mhd_reset_notify_cb
1089 #define sd_persistent_reservation_in_read_keys  \
1090                                         ssd_persistent_reservation_in_read_keys
1091 #define sd_persistent_reservation_in_read_resv  \
1092                                         ssd_persistent_reservation_in_read_resv
1093 #define sd_mhdioc_takeown               ssd_mhdioc_takeown
1094 #define sd_mhdioc_failfast              ssd_mhdioc_failfast
1095 #define sd_mhdioc_release               ssd_mhdioc_release
1096 #define sd_mhdioc_register_devid        ssd_mhdioc_register_devid
1097 #define sd_mhdioc_inkeys                ssd_mhdioc_inkeys
1098 #define sd_mhdioc_inresv                ssd_mhdioc_inresv
1099 #define sr_change_blkmode               ssr_change_blkmode
1100 #define sr_change_speed                 ssr_change_speed
1101 #define sr_atapi_change_speed           ssr_atapi_change_speed
1102 #define sr_pause_resume                 ssr_pause_resume
1103 #define sr_play_msf                     ssr_play_msf
1104 #define sr_play_trkind                  ssr_play_trkind
1105 #define sr_read_all_subcodes            ssr_read_all_subcodes
1106 #define sr_read_subchannel              ssr_read_subchannel
1107 #define sr_read_tocentry                ssr_read_tocentry
1108 #define sr_read_tochdr                  ssr_read_tochdr
1109 #define sr_read_cdda                    ssr_read_cdda
1110 #define sr_read_cdxa                    ssr_read_cdxa
1111 #define sr_read_mode1                   ssr_read_mode1
1112 #define sr_read_mode2                   ssr_read_mode2
1113 #define sr_read_cd_mode2                ssr_read_cd_mode2
1114 #define sr_sector_mode                  ssr_sector_mode
1115 #define sr_eject                        ssr_eject
1116 #define sr_ejected                      ssr_ejected
1117 #define sr_check_wp                     ssr_check_wp
1118 #define sd_watch_request_submit         ssd_watch_request_submit
1119 #define sd_check_media                  ssd_check_media
1120 #define sd_media_watch_cb               ssd_media_watch_cb
1121 #define sd_delayed_cv_broadcast         ssd_delayed_cv_broadcast
1122 #define sr_volume_ctrl                  ssr_volume_ctrl
1123 #define sr_read_sony_session_offset     ssr_read_sony_session_offset
1124 #define sd_log_page_supported           ssd_log_page_supported
1125 #define sd_check_for_writable_cd        ssd_check_for_writable_cd
1126 #define sd_wm_cache_constructor         ssd_wm_cache_constructor
1127 #define sd_wm_cache_destructor          ssd_wm_cache_destructor
1128 #define sd_range_lock                   ssd_range_lock
1129 #define sd_get_range                    ssd_get_range
1130 #define sd_free_inlist_wmap             ssd_free_inlist_wmap
1131 #define sd_range_unlock                 ssd_range_unlock
1132 #define sd_read_modify_write_task       ssd_read_modify_write_task
1133 #define sddump_do_read_of_rmw           ssddump_do_read_of_rmw
1134 
1135 #define sd_iostart_chain                ssd_iostart_chain
1136 #define sd_iodone_chain                 ssd_iodone_chain
1137 #define sd_initpkt_map                  ssd_initpkt_map
1138 #define sd_destroypkt_map               ssd_destroypkt_map
1139 #define sd_chain_type_map               ssd_chain_type_map
1140 #define sd_chain_index_map              ssd_chain_index_map
1141 
1142 #define sd_failfast_flushctl            ssd_failfast_flushctl
1143 #define sd_failfast_flushq              ssd_failfast_flushq
1144 #define sd_failfast_flushq_callback     ssd_failfast_flushq_callback
1145 
1146 #define sd_is_lsi                       ssd_is_lsi
1147 #define sd_tg_rdwr                      ssd_tg_rdwr
1148 #define sd_tg_getinfo                   ssd_tg_getinfo
1149 #define sd_rmw_msg_print_handler        ssd_rmw_msg_print_handler
1150 
1151 #endif  /* #if (defined(__fibre)) */
1152 
1153 
1154 int _init(void);
1155 int _fini(void);
1156 int _info(struct modinfo *modinfop);
1157 
1158 /*PRINTFLIKE3*/
1159 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1160 /*PRINTFLIKE3*/
1161 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1162 /*PRINTFLIKE3*/
1163 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1164 
1165 static int sdprobe(dev_info_t *devi);
1166 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1167     void **result);
1168 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1169     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1170 
1171 /*
1172  * Smart probe for parallel scsi
1173  */
1174 static void sd_scsi_probe_cache_init(void);
1175 static void sd_scsi_probe_cache_fini(void);
1176 static void sd_scsi_clear_probe_cache(void);
1177 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1178 
1179 /*
1180  * Attached luns on target for parallel scsi
1181  */
1182 static void sd_scsi_target_lun_init(void);
1183 static void sd_scsi_target_lun_fini(void);
1184 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1185 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1186 
1187 static int      sd_spin_up_unit(sd_ssc_t *ssc);
1188 
1189 /*
1190  * Using sd_ssc_init to establish sd_ssc_t struct
1191  * Using sd_ssc_send to send uscsi internal command
1192  * Using sd_ssc_fini to free sd_ssc_t struct
1193  */
1194 static sd_ssc_t *sd_ssc_init(struct sd_lun *un);
1195 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd,
1196     int flag, enum uio_seg dataspace, int path_flag);
1197 static void sd_ssc_fini(sd_ssc_t *ssc);
1198 
1199 /*
1200  * Using sd_ssc_assessment to set correct type-of-assessment
1201  * Using sd_ssc_post to post ereport & system log
1202  *       sd_ssc_post will call sd_ssc_print to print system log
1203  *       sd_ssc_post will call sd_ssd_ereport_post to post ereport
1204  */
1205 static void sd_ssc_assessment(sd_ssc_t *ssc,
1206     enum sd_type_assessment tp_assess);
1207 
1208 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess);
1209 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity);
1210 static void sd_ssc_ereport_post(sd_ssc_t *ssc,
1211     enum sd_driver_assessment drv_assess);
1212 
1213 /*
1214  * Using sd_ssc_set_info to mark an un-decodable-data error.
1215  * Using sd_ssc_extract_info to transfer information from internal
1216  *       data structures to sd_ssc_t.
1217  */
1218 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp,
1219     const char *fmt, ...);
1220 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un,
1221     struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp);
1222 
1223 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1224     enum uio_seg dataspace, int path_flag);
1225 
1226 #ifdef _LP64
1227 static void     sd_enable_descr_sense(sd_ssc_t *ssc);
1228 static void     sd_reenable_dsense_task(void *arg);
1229 #endif /* _LP64 */
1230 
1231 static void     sd_set_mmc_caps(sd_ssc_t *ssc);
1232 
1233 static void sd_read_unit_properties(struct sd_lun *un);
1234 static int  sd_process_sdconf_file(struct sd_lun *un);
1235 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str);
1236 static char *sd_strtok_r(char *string, const char *sepset, char **lasts);
1237 static void sd_set_properties(struct sd_lun *un, char *name, char *value);
1238 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1239     int *data_list, sd_tunables *values);
1240 static void sd_process_sdconf_table(struct sd_lun *un);
1241 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1242 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1243 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1244         int list_len, char *dataname_ptr);
1245 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1246     sd_tunables *prop_list);
1247 
1248 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi,
1249     int reservation_flag);
1250 static int  sd_get_devid(sd_ssc_t *ssc);
1251 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc);
1252 static int  sd_write_deviceid(sd_ssc_t *ssc);
1253 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1254 static int  sd_check_vpd_page_support(sd_ssc_t *ssc);
1255 
1256 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi);
1257 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1258 
1259 static int  sd_ddi_suspend(dev_info_t *devi);
1260 static int  sd_ddi_resume(dev_info_t *devi);
1261 static int  sd_pm_state_change(struct sd_lun *un, int level, int flag);
1262 static int  sdpower(dev_info_t *devi, int component, int level);
1263 
1264 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1265 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1266 static int  sd_unit_attach(dev_info_t *devi);
1267 static int  sd_unit_detach(dev_info_t *devi);
1268 
1269 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1270 static void sd_create_errstats(struct sd_lun *un, int instance);
1271 static void sd_set_errstats(struct sd_lun *un);
1272 static void sd_set_pstats(struct sd_lun *un);
1273 
1274 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1275 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1276 static int  sd_send_polled_RQS(struct sd_lun *un);
1277 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1278 
1279 #if (defined(__fibre))
1280 /*
1281  * Event callbacks (photon)
1282  */
1283 static void sd_init_event_callbacks(struct sd_lun *un);
1284 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1285 #endif
1286 
1287 /*
1288  * Defines for sd_cache_control
1289  */
1290 
1291 #define SD_CACHE_ENABLE         1
1292 #define SD_CACHE_DISABLE        0
1293 #define SD_CACHE_NOCHANGE       -1
1294 
1295 static int   sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag);
1296 static int   sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled);
1297 static void  sd_get_nv_sup(sd_ssc_t *ssc);
1298 static dev_t sd_make_device(dev_info_t *devi);
1299 static void  sd_check_solid_state(sd_ssc_t *ssc);
1300 static void  sd_check_emulation_mode(sd_ssc_t *ssc);
1301 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1302         uint64_t capacity);
1303 
1304 /*
1305  * Driver entry point functions.
1306  */
1307 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1308 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1309 static int  sd_ready_and_valid(sd_ssc_t *ssc, int part);
1310 
1311 static void sdmin(struct buf *bp);
1312 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1313 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1314 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1315 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1316 
1317 static int sdstrategy(struct buf *bp);
1318 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1319 
1320 /*
1321  * Function prototypes for layering functions in the iostart chain.
1322  */
1323 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1324         struct buf *bp);
1325 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1326         struct buf *bp);
1327 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1328 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1329         struct buf *bp);
1330 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1331 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1332 
1333 /*
1334  * Function prototypes for layering functions in the iodone chain.
1335  */
1336 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1337 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1338 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1339         struct buf *bp);
1340 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1341         struct buf *bp);
1342 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1343 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1344         struct buf *bp);
1345 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1346 
1347 /*
1348  * Prototypes for functions to support buf(9S) based IO.
1349  */
1350 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1351 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1352 static void sd_destroypkt_for_buf(struct buf *);
1353 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1354         struct buf *bp, int flags,
1355         int (*callback)(caddr_t), caddr_t callback_arg,
1356         diskaddr_t lba, uint32_t blockcount);
1357 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1358         struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1359 
1360 /*
1361  * Prototypes for functions to support USCSI IO.
1362  */
1363 static int sd_uscsi_strategy(struct buf *bp);
1364 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1365 static void sd_destroypkt_for_uscsi(struct buf *);
1366 
1367 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1368         uchar_t chain_type, void *pktinfop);
1369 
1370 static int  sd_pm_entry(struct sd_lun *un);
1371 static void sd_pm_exit(struct sd_lun *un);
1372 
1373 static void sd_pm_idletimeout_handler(void *arg);
1374 
1375 /*
1376  * sd_core internal functions (used at the sd_core_io layer).
1377  */
1378 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1379 static void sdintr(struct scsi_pkt *pktp);
1380 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1381 
1382 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1383         enum uio_seg dataspace, int path_flag);
1384 
1385 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1386         daddr_t blkno, int (*func)(struct buf *));
1387 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1388         uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1389 static void sd_bioclone_free(struct buf *bp);
1390 static void sd_shadow_buf_free(struct buf *bp);
1391 
1392 static void sd_print_transport_rejected_message(struct sd_lun *un,
1393         struct sd_xbuf *xp, int code);
1394 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1395     void *arg, int code);
1396 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1397     void *arg, int code);
1398 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1399     void *arg, int code);
1400 
1401 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1402         int retry_check_flag,
1403         void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1404                 int c),
1405         void *user_arg, int failure_code,  clock_t retry_delay,
1406         void (*statp)(kstat_io_t *));
1407 
1408 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1409         clock_t retry_delay, void (*statp)(kstat_io_t *));
1410 
1411 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1412         struct scsi_pkt *pktp);
1413 static void sd_start_retry_command(void *arg);
1414 static void sd_start_direct_priority_command(void *arg);
1415 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1416         int errcode);
1417 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1418         struct buf *bp, int errcode);
1419 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1420 static void sd_sync_with_callback(struct sd_lun *un);
1421 static int sdrunout(caddr_t arg);
1422 
1423 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1424 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1425 
1426 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1427 static void sd_restore_throttle(void *arg);
1428 
1429 static void sd_init_cdb_limits(struct sd_lun *un);
1430 
1431 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1432         struct sd_xbuf *xp, struct scsi_pkt *pktp);
1433 
1434 /*
1435  * Error handling functions
1436  */
1437 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1438         struct sd_xbuf *xp, struct scsi_pkt *pktp);
1439 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1440         struct sd_xbuf *xp, struct scsi_pkt *pktp);
1441 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1442         struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1443 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1444         struct sd_xbuf *xp, struct scsi_pkt *pktp);
1445 
1446 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1447         struct sd_xbuf *xp, struct scsi_pkt *pktp);
1448 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1449         struct sd_xbuf *xp, struct scsi_pkt *pktp);
1450 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1451         struct sd_xbuf *xp, size_t actual_len);
1452 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1453         struct sd_xbuf *xp, struct scsi_pkt *pktp);
1454 
1455 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1456         void *arg, int code);
1457 
1458 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1459         struct sd_xbuf *xp, struct scsi_pkt *pktp);
1460 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1461         uint8_t *sense_datap,
1462         struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1463 static void sd_sense_key_not_ready(struct sd_lun *un,
1464         uint8_t *sense_datap,
1465         struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1466 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1467         uint8_t *sense_datap,
1468         struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1469 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1470         struct sd_xbuf *xp, struct scsi_pkt *pktp);
1471 static void sd_sense_key_unit_attention(struct sd_lun *un,
1472         uint8_t *sense_datap,
1473         struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1474 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1475         struct sd_xbuf *xp, struct scsi_pkt *pktp);
1476 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1477         struct sd_xbuf *xp, struct scsi_pkt *pktp);
1478 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1479         struct sd_xbuf *xp, struct scsi_pkt *pktp);
1480 static void sd_sense_key_default(struct sd_lun *un,
1481         uint8_t *sense_datap,
1482         struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1483 
1484 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1485         void *arg, int flag);
1486 
1487 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1488         struct sd_xbuf *xp, struct scsi_pkt *pktp);
1489 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1490         struct sd_xbuf *xp, struct scsi_pkt *pktp);
1491 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1492         struct sd_xbuf *xp, struct scsi_pkt *pktp);
1493 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1494         struct sd_xbuf *xp, struct scsi_pkt *pktp);
1495 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1496         struct sd_xbuf *xp, struct scsi_pkt *pktp);
1497 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1498         struct sd_xbuf *xp, struct scsi_pkt *pktp);
1499 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1500         struct sd_xbuf *xp, struct scsi_pkt *pktp);
1501 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1502         struct sd_xbuf *xp, struct scsi_pkt *pktp);
1503 
1504 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1505 
1506 static void sd_start_stop_unit_callback(void *arg);
1507 static void sd_start_stop_unit_task(void *arg);
1508 
1509 static void sd_taskq_create(void);
1510 static void sd_taskq_delete(void);
1511 static void sd_target_change_task(void *arg);
1512 static void sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag);
1513 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag);
1514 static void sd_log_eject_request_event(struct sd_lun *un, int km_flag);
1515 static void sd_media_change_task(void *arg);
1516 
1517 static int sd_handle_mchange(struct sd_lun *un);
1518 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag);
1519 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp,
1520         uint32_t *lbap, int path_flag);
1521 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
1522         uint32_t *lbap, uint32_t *psp, int path_flag);
1523 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag,
1524         int flag, int path_flag);
1525 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr,
1526         size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1527 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag);
1528 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc,
1529         uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1530 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc,
1531         uchar_t usr_cmd, uchar_t *usr_bufp);
1532 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1533         struct dk_callback *dkc);
1534 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1535 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc,
1536         struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1537         uchar_t *bufaddr, uint_t buflen, int path_flag);
1538 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
1539         struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1540         uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1541 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize,
1542         uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1543 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize,
1544         uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1545 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
1546         size_t buflen, daddr_t start_block, int path_flag);
1547 #define sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag) \
1548         sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \
1549         path_flag)
1550 #define sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\
1551         sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\
1552         path_flag)
1553 
1554 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr,
1555         uint16_t buflen, uchar_t page_code, uchar_t page_control,
1556         uint16_t param_ptr, int path_flag);
1557 static int sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc,
1558         uchar_t *bufaddr, size_t buflen, uchar_t class_req);
1559 static boolean_t sd_gesn_media_data_valid(uchar_t *data);
1560 
1561 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1562 static void sd_free_rqs(struct sd_lun *un);
1563 
1564 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1565         uchar_t *data, int len, int fmt);
1566 static void sd_panic_for_res_conflict(struct sd_lun *un);
1567 
1568 /*
1569  * Disk Ioctl Function Prototypes
1570  */
1571 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1572 static int sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag);
1573 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1574 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1575 
1576 /*
1577  * Multi-host Ioctl Prototypes
1578  */
1579 static int sd_check_mhd(dev_t dev, int interval);
1580 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1581 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1582 static char *sd_sname(uchar_t status);
1583 static void sd_mhd_resvd_recover(void *arg);
1584 static void sd_resv_reclaim_thread();
1585 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1586 static int sd_reserve_release(dev_t dev, int cmd);
1587 static void sd_rmv_resv_reclaim_req(dev_t dev);
1588 static void sd_mhd_reset_notify_cb(caddr_t arg);
1589 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1590         mhioc_inkeys_t *usrp, int flag);
1591 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1592         mhioc_inresvs_t *usrp, int flag);
1593 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1594 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1595 static int sd_mhdioc_release(dev_t dev);
1596 static int sd_mhdioc_register_devid(dev_t dev);
1597 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1598 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1599 
1600 /*
1601  * SCSI removable prototypes
1602  */
1603 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1604 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1605 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1606 static int sr_pause_resume(dev_t dev, int mode);
1607 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1608 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1609 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1610 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1611 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1612 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1613 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1614 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1615 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1616 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1617 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1618 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1619 static int sr_eject(dev_t dev);
1620 static void sr_ejected(register struct sd_lun *un);
1621 static int sr_check_wp(dev_t dev);
1622 static opaque_t sd_watch_request_submit(struct sd_lun *un);
1623 static int sd_check_media(dev_t dev, enum dkio_state state);
1624 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1625 static void sd_delayed_cv_broadcast(void *arg);
1626 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1627 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1628 
1629 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page);
1630 
1631 /*
1632  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1633  */
1634 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag);
1635 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1636 static void sd_wm_cache_destructor(void *wm, void *un);
1637 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1638         daddr_t endb, ushort_t typ);
1639 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1640         daddr_t endb);
1641 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1642 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1643 static void sd_read_modify_write_task(void * arg);
1644 static int
1645 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1646         struct buf **bpp);
1647 
1648 
1649 /*
1650  * Function prototypes for failfast support.
1651  */
1652 static void sd_failfast_flushq(struct sd_lun *un);
1653 static int sd_failfast_flushq_callback(struct buf *bp);
1654 
1655 /*
1656  * Function prototypes to check for lsi devices
1657  */
1658 static void sd_is_lsi(struct sd_lun *un);
1659 
1660 /*
1661  * Function prototypes for partial DMA support
1662  */
1663 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1664                 struct scsi_pkt *pkt, struct sd_xbuf *xp);
1665 
1666 
1667 /* Function prototypes for cmlb */
1668 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1669     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1670 
1671 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1672 
1673 /*
1674  * For printing RMW warning message timely
1675  */
1676 static void sd_rmw_msg_print_handler(void *arg);
1677 
1678 /*
1679  * Constants for failfast support:
1680  *
1681  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1682  * failfast processing being performed.
1683  *
1684  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1685  * failfast processing on all bufs with B_FAILFAST set.
1686  */
1687 
1688 #define SD_FAILFAST_INACTIVE            0
1689 #define SD_FAILFAST_ACTIVE              1
1690 
1691 /*
1692  * Bitmask to control behavior of buf(9S) flushes when a transition to
1693  * the failfast state occurs. Optional bits include:
1694  *
1695  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1696  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1697  * be flushed.
1698  *
1699  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1700  * driver, in addition to the regular wait queue. This includes the xbuf
1701  * queues. When clear, only the driver's wait queue will be flushed.
1702  */
1703 #define SD_FAILFAST_FLUSH_ALL_BUFS      0x01
1704 #define SD_FAILFAST_FLUSH_ALL_QUEUES    0x02
1705 
1706 /*
1707  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1708  * to flush all queues within the driver.
1709  */
1710 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1711 
1712 
1713 /*
1714  * SD Testing Fault Injection
1715  */
1716 #ifdef SD_FAULT_INJECTION
1717 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1718 static void sd_faultinjection(struct scsi_pkt *pktp);
1719 static void sd_injection_log(char *buf, struct sd_lun *un);
1720 #endif
1721 
1722 /*
1723  * Device driver ops vector
1724  */
1725 static struct cb_ops sd_cb_ops = {
1726         sdopen,                 /* open */
1727         sdclose,                /* close */
1728         sdstrategy,             /* strategy */
1729         nodev,                  /* print */
1730         sddump,                 /* dump */
1731         sdread,                 /* read */
1732         sdwrite,                /* write */
1733         sdioctl,                /* ioctl */
1734         nodev,                  /* devmap */
1735         nodev,                  /* mmap */
1736         nodev,                  /* segmap */
1737         nochpoll,               /* poll */
1738         sd_prop_op,             /* cb_prop_op */
1739         0,                      /* streamtab  */
1740         D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1741         CB_REV,                 /* cb_rev */
1742         sdaread,                /* async I/O read entry point */
1743         sdawrite                /* async I/O write entry point */
1744 };
1745 
1746 struct dev_ops sd_ops = {
1747         DEVO_REV,               /* devo_rev, */
1748         0,                      /* refcnt  */
1749         sdinfo,                 /* info */
1750         nulldev,                /* identify */
1751         sdprobe,                /* probe */
1752         sdattach,               /* attach */
1753         sddetach,               /* detach */
1754         nodev,                  /* reset */
1755         &sd_cb_ops,         /* driver operations */
1756         NULL,                   /* bus operations */
1757         sdpower,                /* power */
1758         ddi_quiesce_not_needed,         /* quiesce */
1759 };
1760 
1761 /*
1762  * This is the loadable module wrapper.
1763  */
1764 #include <sys/modctl.h>
1765 
1766 #ifndef XPV_HVM_DRIVER
1767 static struct modldrv modldrv = {
1768         &mod_driverops,             /* Type of module. This one is a driver */
1769         SD_MODULE_NAME,         /* Module name. */
1770         &sd_ops                     /* driver ops */
1771 };
1772 
1773 static struct modlinkage modlinkage = {
1774         MODREV_1, &modldrv, NULL
1775 };
1776 
1777 #else /* XPV_HVM_DRIVER */
1778 static struct modlmisc modlmisc = {
1779         &mod_miscops,               /* Type of module. This one is a misc */
1780         "HVM " SD_MODULE_NAME,          /* Module name. */
1781 };
1782 
1783 static struct modlinkage modlinkage = {
1784         MODREV_1, &modlmisc, NULL
1785 };
1786 
1787 #endif /* XPV_HVM_DRIVER */
1788 
1789 static cmlb_tg_ops_t sd_tgops = {
1790         TG_DK_OPS_VERSION_1,
1791         sd_tg_rdwr,
1792         sd_tg_getinfo
1793 };
1794 
1795 static struct scsi_asq_key_strings sd_additional_codes[] = {
1796         0x81, 0, "Logical Unit is Reserved",
1797         0x85, 0, "Audio Address Not Valid",
1798         0xb6, 0, "Media Load Mechanism Failed",
1799         0xB9, 0, "Audio Play Operation Aborted",
1800         0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1801         0x53, 2, "Medium removal prevented",
1802         0x6f, 0, "Authentication failed during key exchange",
1803         0x6f, 1, "Key not present",
1804         0x6f, 2, "Key not established",
1805         0x6f, 3, "Read without proper authentication",
1806         0x6f, 4, "Mismatched region to this logical unit",
1807         0x6f, 5, "Region reset count error",
1808         0xffff, 0x0, NULL
1809 };
1810 
1811 
1812 /*
1813  * Struct for passing printing information for sense data messages
1814  */
1815 struct sd_sense_info {
1816         int     ssi_severity;
1817         int     ssi_pfa_flag;
1818 };
1819 
1820 /*
1821  * Table of function pointers for iostart-side routines. Separate "chains"
1822  * of layered function calls are formed by placing the function pointers
1823  * sequentially in the desired order. Functions are called according to an
1824  * incrementing table index ordering. The last function in each chain must
1825  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1826  * in the sd_iodone_chain[] array.
1827  *
1828  * Note: It may seem more natural to organize both the iostart and iodone
1829  * functions together, into an array of structures (or some similar
1830  * organization) with a common index, rather than two separate arrays which
1831  * must be maintained in synchronization. The purpose of this division is
1832  * to achieve improved performance: individual arrays allows for more
1833  * effective cache line utilization on certain platforms.
1834  */
1835 
1836 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1837 
1838 
1839 static sd_chain_t sd_iostart_chain[] = {
1840 
1841         /* Chain for buf IO for disk drive targets (PM enabled) */
1842         sd_mapblockaddr_iostart,        /* Index: 0 */
1843         sd_pm_iostart,                  /* Index: 1 */
1844         sd_core_iostart,                /* Index: 2 */
1845 
1846         /* Chain for buf IO for disk drive targets (PM disabled) */
1847         sd_mapblockaddr_iostart,        /* Index: 3 */
1848         sd_core_iostart,                /* Index: 4 */
1849 
1850         /*
1851          * Chain for buf IO for removable-media or large sector size
1852          * disk drive targets with RMW needed (PM enabled)
1853          */
1854         sd_mapblockaddr_iostart,        /* Index: 5 */
1855         sd_mapblocksize_iostart,        /* Index: 6 */
1856         sd_pm_iostart,                  /* Index: 7 */
1857         sd_core_iostart,                /* Index: 8 */
1858 
1859         /*
1860          * Chain for buf IO for removable-media or large sector size
1861          * disk drive targets with RMW needed (PM disabled)
1862          */
1863         sd_mapblockaddr_iostart,        /* Index: 9 */
1864         sd_mapblocksize_iostart,        /* Index: 10 */
1865         sd_core_iostart,                /* Index: 11 */
1866 
1867         /* Chain for buf IO for disk drives with checksumming (PM enabled) */
1868         sd_mapblockaddr_iostart,        /* Index: 12 */
1869         sd_checksum_iostart,            /* Index: 13 */
1870         sd_pm_iostart,                  /* Index: 14 */
1871         sd_core_iostart,                /* Index: 15 */
1872 
1873         /* Chain for buf IO for disk drives with checksumming (PM disabled) */
1874         sd_mapblockaddr_iostart,        /* Index: 16 */
1875         sd_checksum_iostart,            /* Index: 17 */
1876         sd_core_iostart,                /* Index: 18 */
1877 
1878         /* Chain for USCSI commands (all targets) */
1879         sd_pm_iostart,                  /* Index: 19 */
1880         sd_core_iostart,                /* Index: 20 */
1881 
1882         /* Chain for checksumming USCSI commands (all targets) */
1883         sd_checksum_uscsi_iostart,      /* Index: 21 */
1884         sd_pm_iostart,                  /* Index: 22 */
1885         sd_core_iostart,                /* Index: 23 */
1886 
1887         /* Chain for "direct" USCSI commands (all targets) */
1888         sd_core_iostart,                /* Index: 24 */
1889 
1890         /* Chain for "direct priority" USCSI commands (all targets) */
1891         sd_core_iostart,                /* Index: 25 */
1892 
1893         /*
1894          * Chain for buf IO for large sector size disk drive targets
1895          * with RMW needed with checksumming (PM enabled)
1896          */
1897         sd_mapblockaddr_iostart,        /* Index: 26 */
1898         sd_mapblocksize_iostart,        /* Index: 27 */
1899         sd_checksum_iostart,            /* Index: 28 */
1900         sd_pm_iostart,                  /* Index: 29 */
1901         sd_core_iostart,                /* Index: 30 */
1902 
1903         /*
1904          * Chain for buf IO for large sector size disk drive targets
1905          * with RMW needed with checksumming (PM disabled)
1906          */
1907         sd_mapblockaddr_iostart,        /* Index: 31 */
1908         sd_mapblocksize_iostart,        /* Index: 32 */
1909         sd_checksum_iostart,            /* Index: 33 */
1910         sd_core_iostart,                /* Index: 34 */
1911 
1912 };
1913 
1914 /*
1915  * Macros to locate the first function of each iostart chain in the
1916  * sd_iostart_chain[] array. These are located by the index in the array.
1917  */
1918 #define SD_CHAIN_DISK_IOSTART                   0
1919 #define SD_CHAIN_DISK_IOSTART_NO_PM             3
1920 #define SD_CHAIN_MSS_DISK_IOSTART               5
1921 #define SD_CHAIN_RMMEDIA_IOSTART                5
1922 #define SD_CHAIN_MSS_DISK_IOSTART_NO_PM         9
1923 #define SD_CHAIN_RMMEDIA_IOSTART_NO_PM          9
1924 #define SD_CHAIN_CHKSUM_IOSTART                 12
1925 #define SD_CHAIN_CHKSUM_IOSTART_NO_PM           16
1926 #define SD_CHAIN_USCSI_CMD_IOSTART              19
1927 #define SD_CHAIN_USCSI_CHKSUM_IOSTART           21
1928 #define SD_CHAIN_DIRECT_CMD_IOSTART             24
1929 #define SD_CHAIN_PRIORITY_CMD_IOSTART           25
1930 #define SD_CHAIN_MSS_CHKSUM_IOSTART             26
1931 #define SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM       31
1932 
1933 
1934 /*
1935  * Table of function pointers for the iodone-side routines for the driver-
1936  * internal layering mechanism.  The calling sequence for iodone routines
1937  * uses a decrementing table index, so the last routine called in a chain
1938  * must be at the lowest array index location for that chain.  The last
1939  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1940  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1941  * of the functions in an iodone side chain must correspond to the ordering
1942  * of the iostart routines for that chain.  Note that there is no iodone
1943  * side routine that corresponds to sd_core_iostart(), so there is no
1944  * entry in the table for this.
1945  */
1946 
1947 static sd_chain_t sd_iodone_chain[] = {
1948 
1949         /* Chain for buf IO for disk drive targets (PM enabled) */
1950         sd_buf_iodone,                  /* Index: 0 */
1951         sd_mapblockaddr_iodone,         /* Index: 1 */
1952         sd_pm_iodone,                   /* Index: 2 */
1953 
1954         /* Chain for buf IO for disk drive targets (PM disabled) */
1955         sd_buf_iodone,                  /* Index: 3 */
1956         sd_mapblockaddr_iodone,         /* Index: 4 */
1957 
1958         /*
1959          * Chain for buf IO for removable-media or large sector size
1960          * disk drive targets with RMW needed (PM enabled)
1961          */
1962         sd_buf_iodone,                  /* Index: 5 */
1963         sd_mapblockaddr_iodone,         /* Index: 6 */
1964         sd_mapblocksize_iodone,         /* Index: 7 */
1965         sd_pm_iodone,                   /* Index: 8 */
1966 
1967         /*
1968          * Chain for buf IO for removable-media or large sector size
1969          * disk drive targets with RMW needed (PM disabled)
1970          */
1971         sd_buf_iodone,                  /* Index: 9 */
1972         sd_mapblockaddr_iodone,         /* Index: 10 */
1973         sd_mapblocksize_iodone,         /* Index: 11 */
1974 
1975         /* Chain for buf IO for disk drives with checksumming (PM enabled) */
1976         sd_buf_iodone,                  /* Index: 12 */
1977         sd_mapblockaddr_iodone,         /* Index: 13 */
1978         sd_checksum_iodone,             /* Index: 14 */
1979         sd_pm_iodone,                   /* Index: 15 */
1980 
1981         /* Chain for buf IO for disk drives with checksumming (PM disabled) */
1982         sd_buf_iodone,                  /* Index: 16 */
1983         sd_mapblockaddr_iodone,         /* Index: 17 */
1984         sd_checksum_iodone,             /* Index: 18 */
1985 
1986         /* Chain for USCSI commands (non-checksum targets) */
1987         sd_uscsi_iodone,                /* Index: 19 */
1988         sd_pm_iodone,                   /* Index: 20 */
1989 
1990         /* Chain for USCSI commands (checksum targets) */
1991         sd_uscsi_iodone,                /* Index: 21 */
1992         sd_checksum_uscsi_iodone,       /* Index: 22 */
1993         sd_pm_iodone,                   /* Index: 22 */
1994 
1995         /* Chain for "direct" USCSI commands (all targets) */
1996         sd_uscsi_iodone,                /* Index: 24 */
1997 
1998         /* Chain for "direct priority" USCSI commands (all targets) */
1999         sd_uscsi_iodone,                /* Index: 25 */
2000 
2001         /*
2002          * Chain for buf IO for large sector size disk drive targets
2003          * with checksumming (PM enabled)
2004          */
2005         sd_buf_iodone,                  /* Index: 26 */
2006         sd_mapblockaddr_iodone,         /* Index: 27 */
2007         sd_mapblocksize_iodone,         /* Index: 28 */
2008         sd_checksum_iodone,             /* Index: 29 */
2009         sd_pm_iodone,                   /* Index: 30 */
2010 
2011         /*
2012          * Chain for buf IO for large sector size disk drive targets
2013          * with checksumming (PM disabled)
2014          */
2015         sd_buf_iodone,                  /* Index: 31 */
2016         sd_mapblockaddr_iodone,         /* Index: 32 */
2017         sd_mapblocksize_iodone,         /* Index: 33 */
2018         sd_checksum_iodone,             /* Index: 34 */
2019 };
2020 
2021 
2022 /*
2023  * Macros to locate the "first" function in the sd_iodone_chain[] array for
2024  * each iodone-side chain. These are located by the array index, but as the
2025  * iodone side functions are called in a decrementing-index order, the
2026  * highest index number in each chain must be specified (as these correspond
2027  * to the first function in the iodone chain that will be called by the core
2028  * at IO completion time).
2029  */
2030 
2031 #define SD_CHAIN_DISK_IODONE                    2
2032 #define SD_CHAIN_DISK_IODONE_NO_PM              4
2033 #define SD_CHAIN_RMMEDIA_IODONE                 8
2034 #define SD_CHAIN_MSS_DISK_IODONE                8
2035 #define SD_CHAIN_RMMEDIA_IODONE_NO_PM           11
2036 #define SD_CHAIN_MSS_DISK_IODONE_NO_PM          11
2037 #define SD_CHAIN_CHKSUM_IODONE                  15
2038 #define SD_CHAIN_CHKSUM_IODONE_NO_PM            18
2039 #define SD_CHAIN_USCSI_CMD_IODONE               20
2040 #define SD_CHAIN_USCSI_CHKSUM_IODONE            22
2041 #define SD_CHAIN_DIRECT_CMD_IODONE              24
2042 #define SD_CHAIN_PRIORITY_CMD_IODONE            25
2043 #define SD_CHAIN_MSS_CHKSUM_IODONE              30
2044 #define SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM        34
2045 
2046 
2047 
2048 /*
2049  * Array to map a layering chain index to the appropriate initpkt routine.
2050  * The redundant entries are present so that the index used for accessing
2051  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2052  * with this table as well.
2053  */
2054 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
2055 
2056 static sd_initpkt_t     sd_initpkt_map[] = {
2057 
2058         /* Chain for buf IO for disk drive targets (PM enabled) */
2059         sd_initpkt_for_buf,             /* Index: 0 */
2060         sd_initpkt_for_buf,             /* Index: 1 */
2061         sd_initpkt_for_buf,             /* Index: 2 */
2062 
2063         /* Chain for buf IO for disk drive targets (PM disabled) */
2064         sd_initpkt_for_buf,             /* Index: 3 */
2065         sd_initpkt_for_buf,             /* Index: 4 */
2066 
2067         /*
2068          * Chain for buf IO for removable-media or large sector size
2069          * disk drive targets (PM enabled)
2070          */
2071         sd_initpkt_for_buf,             /* Index: 5 */
2072         sd_initpkt_for_buf,             /* Index: 6 */
2073         sd_initpkt_for_buf,             /* Index: 7 */
2074         sd_initpkt_for_buf,             /* Index: 8 */
2075 
2076         /*
2077          * Chain for buf IO for removable-media or large sector size
2078          * disk drive targets (PM disabled)
2079          */
2080         sd_initpkt_for_buf,             /* Index: 9 */
2081         sd_initpkt_for_buf,             /* Index: 10 */
2082         sd_initpkt_for_buf,             /* Index: 11 */
2083 
2084         /* Chain for buf IO for disk drives with checksumming (PM enabled) */
2085         sd_initpkt_for_buf,             /* Index: 12 */
2086         sd_initpkt_for_buf,             /* Index: 13 */
2087         sd_initpkt_for_buf,             /* Index: 14 */
2088         sd_initpkt_for_buf,             /* Index: 15 */
2089 
2090         /* Chain for buf IO for disk drives with checksumming (PM disabled) */
2091         sd_initpkt_for_buf,             /* Index: 16 */
2092         sd_initpkt_for_buf,             /* Index: 17 */
2093         sd_initpkt_for_buf,             /* Index: 18 */
2094 
2095         /* Chain for USCSI commands (non-checksum targets) */
2096         sd_initpkt_for_uscsi,           /* Index: 19 */
2097         sd_initpkt_for_uscsi,           /* Index: 20 */
2098 
2099         /* Chain for USCSI commands (checksum targets) */
2100         sd_initpkt_for_uscsi,           /* Index: 21 */
2101         sd_initpkt_for_uscsi,           /* Index: 22 */
2102         sd_initpkt_for_uscsi,           /* Index: 22 */
2103 
2104         /* Chain for "direct" USCSI commands (all targets) */
2105         sd_initpkt_for_uscsi,           /* Index: 24 */
2106 
2107         /* Chain for "direct priority" USCSI commands (all targets) */
2108         sd_initpkt_for_uscsi,           /* Index: 25 */
2109 
2110         /*
2111          * Chain for buf IO for large sector size disk drive targets
2112          * with checksumming (PM enabled)
2113          */
2114         sd_initpkt_for_buf,             /* Index: 26 */
2115         sd_initpkt_for_buf,             /* Index: 27 */
2116         sd_initpkt_for_buf,             /* Index: 28 */
2117         sd_initpkt_for_buf,             /* Index: 29 */
2118         sd_initpkt_for_buf,             /* Index: 30 */
2119 
2120         /*
2121          * Chain for buf IO for large sector size disk drive targets
2122          * with checksumming (PM disabled)
2123          */
2124         sd_initpkt_for_buf,             /* Index: 31 */
2125         sd_initpkt_for_buf,             /* Index: 32 */
2126         sd_initpkt_for_buf,             /* Index: 33 */
2127         sd_initpkt_for_buf,             /* Index: 34 */
2128 };
2129 
2130 
2131 /*
2132  * Array to map a layering chain index to the appropriate destroypktpkt routine.
2133  * The redundant entries are present so that the index used for accessing
2134  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2135  * with this table as well.
2136  */
2137 typedef void (*sd_destroypkt_t)(struct buf *);
2138 
2139 static sd_destroypkt_t  sd_destroypkt_map[] = {
2140 
2141         /* Chain for buf IO for disk drive targets (PM enabled) */
2142         sd_destroypkt_for_buf,          /* Index: 0 */
2143         sd_destroypkt_for_buf,          /* Index: 1 */
2144         sd_destroypkt_for_buf,          /* Index: 2 */
2145 
2146         /* Chain for buf IO for disk drive targets (PM disabled) */
2147         sd_destroypkt_for_buf,          /* Index: 3 */
2148         sd_destroypkt_for_buf,          /* Index: 4 */
2149 
2150         /*
2151          * Chain for buf IO for removable-media or large sector size
2152          * disk drive targets (PM enabled)
2153          */
2154         sd_destroypkt_for_buf,          /* Index: 5 */
2155         sd_destroypkt_for_buf,          /* Index: 6 */
2156         sd_destroypkt_for_buf,          /* Index: 7 */
2157         sd_destroypkt_for_buf,          /* Index: 8 */
2158 
2159         /*
2160          * Chain for buf IO for removable-media or large sector size
2161          * disk drive targets (PM disabled)
2162          */
2163         sd_destroypkt_for_buf,          /* Index: 9 */
2164         sd_destroypkt_for_buf,          /* Index: 10 */
2165         sd_destroypkt_for_buf,          /* Index: 11 */
2166 
2167         /* Chain for buf IO for disk drives with checksumming (PM enabled) */
2168         sd_destroypkt_for_buf,          /* Index: 12 */
2169         sd_destroypkt_for_buf,          /* Index: 13 */
2170         sd_destroypkt_for_buf,          /* Index: 14 */
2171         sd_destroypkt_for_buf,          /* Index: 15 */
2172 
2173         /* Chain for buf IO for disk drives with checksumming (PM disabled) */
2174         sd_destroypkt_for_buf,          /* Index: 16 */
2175         sd_destroypkt_for_buf,          /* Index: 17 */
2176         sd_destroypkt_for_buf,          /* Index: 18 */
2177 
2178         /* Chain for USCSI commands (non-checksum targets) */
2179         sd_destroypkt_for_uscsi,        /* Index: 19 */
2180         sd_destroypkt_for_uscsi,        /* Index: 20 */
2181 
2182         /* Chain for USCSI commands (checksum targets) */
2183         sd_destroypkt_for_uscsi,        /* Index: 21 */
2184         sd_destroypkt_for_uscsi,        /* Index: 22 */
2185         sd_destroypkt_for_uscsi,        /* Index: 22 */
2186 
2187         /* Chain for "direct" USCSI commands (all targets) */
2188         sd_destroypkt_for_uscsi,        /* Index: 24 */
2189 
2190         /* Chain for "direct priority" USCSI commands (all targets) */
2191         sd_destroypkt_for_uscsi,        /* Index: 25 */
2192 
2193         /*
2194          * Chain for buf IO for large sector size disk drive targets
2195          * with checksumming (PM disabled)
2196          */
2197         sd_destroypkt_for_buf,          /* Index: 26 */
2198         sd_destroypkt_for_buf,          /* Index: 27 */
2199         sd_destroypkt_for_buf,          /* Index: 28 */
2200         sd_destroypkt_for_buf,          /* Index: 29 */
2201         sd_destroypkt_for_buf,          /* Index: 30 */
2202 
2203         /*
2204          * Chain for buf IO for large sector size disk drive targets
2205          * with checksumming (PM enabled)
2206          */
2207         sd_destroypkt_for_buf,          /* Index: 31 */
2208         sd_destroypkt_for_buf,          /* Index: 32 */
2209         sd_destroypkt_for_buf,          /* Index: 33 */
2210         sd_destroypkt_for_buf,          /* Index: 34 */
2211 };
2212 
2213 
2214 
2215 /*
2216  * Array to map a layering chain index to the appropriate chain "type".
2217  * The chain type indicates a specific property/usage of the chain.
2218  * The redundant entries are present so that the index used for accessing
2219  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2220  * with this table as well.
2221  */
2222 
2223 #define SD_CHAIN_NULL                   0       /* for the special RQS cmd */
2224 #define SD_CHAIN_BUFIO                  1       /* regular buf IO */
2225 #define SD_CHAIN_USCSI                  2       /* regular USCSI commands */
2226 #define SD_CHAIN_DIRECT                 3       /* uscsi, w/ bypass power mgt */
2227 #define SD_CHAIN_DIRECT_PRIORITY        4       /* uscsi, w/ bypass power mgt */
2228                                                 /* (for error recovery) */
2229 
2230 static int sd_chain_type_map[] = {
2231 
2232         /* Chain for buf IO for disk drive targets (PM enabled) */
2233         SD_CHAIN_BUFIO,                 /* Index: 0 */
2234         SD_CHAIN_BUFIO,                 /* Index: 1 */
2235         SD_CHAIN_BUFIO,                 /* Index: 2 */
2236 
2237         /* Chain for buf IO for disk drive targets (PM disabled) */
2238         SD_CHAIN_BUFIO,                 /* Index: 3 */
2239         SD_CHAIN_BUFIO,                 /* Index: 4 */
2240 
2241         /*
2242          * Chain for buf IO for removable-media or large sector size
2243          * disk drive targets (PM enabled)
2244          */
2245         SD_CHAIN_BUFIO,                 /* Index: 5 */
2246         SD_CHAIN_BUFIO,                 /* Index: 6 */
2247         SD_CHAIN_BUFIO,                 /* Index: 7 */
2248         SD_CHAIN_BUFIO,                 /* Index: 8 */
2249 
2250         /*
2251          * Chain for buf IO for removable-media or large sector size
2252          * disk drive targets (PM disabled)
2253          */
2254         SD_CHAIN_BUFIO,                 /* Index: 9 */
2255         SD_CHAIN_BUFIO,                 /* Index: 10 */
2256         SD_CHAIN_BUFIO,                 /* Index: 11 */
2257 
2258         /* Chain for buf IO for disk drives with checksumming (PM enabled) */
2259         SD_CHAIN_BUFIO,                 /* Index: 12 */
2260         SD_CHAIN_BUFIO,                 /* Index: 13 */
2261         SD_CHAIN_BUFIO,                 /* Index: 14 */
2262         SD_CHAIN_BUFIO,                 /* Index: 15 */
2263 
2264         /* Chain for buf IO for disk drives with checksumming (PM disabled) */
2265         SD_CHAIN_BUFIO,                 /* Index: 16 */
2266         SD_CHAIN_BUFIO,                 /* Index: 17 */
2267         SD_CHAIN_BUFIO,                 /* Index: 18 */
2268 
2269         /* Chain for USCSI commands (non-checksum targets) */
2270         SD_CHAIN_USCSI,                 /* Index: 19 */
2271         SD_CHAIN_USCSI,                 /* Index: 20 */
2272 
2273         /* Chain for USCSI commands (checksum targets) */
2274         SD_CHAIN_USCSI,                 /* Index: 21 */
2275         SD_CHAIN_USCSI,                 /* Index: 22 */
2276         SD_CHAIN_USCSI,                 /* Index: 23 */
2277 
2278         /* Chain for "direct" USCSI commands (all targets) */
2279         SD_CHAIN_DIRECT,                /* Index: 24 */
2280 
2281         /* Chain for "direct priority" USCSI commands (all targets) */
2282         SD_CHAIN_DIRECT_PRIORITY,       /* Index: 25 */
2283 
2284         /*
2285          * Chain for buf IO for large sector size disk drive targets
2286          * with checksumming (PM enabled)
2287          */
2288         SD_CHAIN_BUFIO,                 /* Index: 26 */
2289         SD_CHAIN_BUFIO,                 /* Index: 27 */
2290         SD_CHAIN_BUFIO,                 /* Index: 28 */
2291         SD_CHAIN_BUFIO,                 /* Index: 29 */
2292         SD_CHAIN_BUFIO,                 /* Index: 30 */
2293 
2294         /*
2295          * Chain for buf IO for large sector size disk drive targets
2296          * with checksumming (PM disabled)
2297          */
2298         SD_CHAIN_BUFIO,                 /* Index: 31 */
2299         SD_CHAIN_BUFIO,                 /* Index: 32 */
2300         SD_CHAIN_BUFIO,                 /* Index: 33 */
2301         SD_CHAIN_BUFIO,                 /* Index: 34 */
2302 };
2303 
2304 
2305 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2306 #define SD_IS_BUFIO(xp)                 \
2307         (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2308 
2309 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2310 #define SD_IS_DIRECT_PRIORITY(xp)       \
2311         (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2312 
2313 
2314 
2315 /*
2316  * Struct, array, and macros to map a specific chain to the appropriate
2317  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2318  *
2319  * The sd_chain_index_map[] array is used at attach time to set the various
2320  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2321  * chain to be used with the instance. This allows different instances to use
2322  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2323  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2324  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2325  * dynamically & without the use of locking; and (2) a layer may update the
2326  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2327  * to allow for deferred processing of an IO within the same chain from a
2328  * different execution context.
2329  */
2330 
2331 struct sd_chain_index {
2332         int     sci_iostart_index;
2333         int     sci_iodone_index;
2334 };
2335 
2336 static struct sd_chain_index    sd_chain_index_map[] = {
2337         { SD_CHAIN_DISK_IOSTART,                SD_CHAIN_DISK_IODONE },
2338         { SD_CHAIN_DISK_IOSTART_NO_PM,          SD_CHAIN_DISK_IODONE_NO_PM },
2339         { SD_CHAIN_RMMEDIA_IOSTART,             SD_CHAIN_RMMEDIA_IODONE },
2340         { SD_CHAIN_RMMEDIA_IOSTART_NO_PM,       SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2341         { SD_CHAIN_CHKSUM_IOSTART,              SD_CHAIN_CHKSUM_IODONE },
2342         { SD_CHAIN_CHKSUM_IOSTART_NO_PM,        SD_CHAIN_CHKSUM_IODONE_NO_PM },
2343         { SD_CHAIN_USCSI_CMD_IOSTART,           SD_CHAIN_USCSI_CMD_IODONE },
2344         { SD_CHAIN_USCSI_CHKSUM_IOSTART,        SD_CHAIN_USCSI_CHKSUM_IODONE },
2345         { SD_CHAIN_DIRECT_CMD_IOSTART,          SD_CHAIN_DIRECT_CMD_IODONE },
2346         { SD_CHAIN_PRIORITY_CMD_IOSTART,        SD_CHAIN_PRIORITY_CMD_IODONE },
2347         { SD_CHAIN_MSS_CHKSUM_IOSTART,          SD_CHAIN_MSS_CHKSUM_IODONE },
2348         { SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM, SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM },
2349 
2350 };
2351 
2352 
2353 /*
2354  * The following are indexes into the sd_chain_index_map[] array.
2355  */
2356 
2357 /* un->un_buf_chain_type must be set to one of these */
2358 #define SD_CHAIN_INFO_DISK              0
2359 #define SD_CHAIN_INFO_DISK_NO_PM        1
2360 #define SD_CHAIN_INFO_RMMEDIA           2
2361 #define SD_CHAIN_INFO_MSS_DISK          2
2362 #define SD_CHAIN_INFO_RMMEDIA_NO_PM     3
2363 #define SD_CHAIN_INFO_MSS_DSK_NO_PM     3
2364 #define SD_CHAIN_INFO_CHKSUM            4
2365 #define SD_CHAIN_INFO_CHKSUM_NO_PM      5
2366 #define SD_CHAIN_INFO_MSS_DISK_CHKSUM   10
2367 #define SD_CHAIN_INFO_MSS_DISK_CHKSUM_NO_PM     11
2368 
2369 /* un->un_uscsi_chain_type must be set to one of these */
2370 #define SD_CHAIN_INFO_USCSI_CMD         6
2371 /* USCSI with PM disabled is the same as DIRECT */
2372 #define SD_CHAIN_INFO_USCSI_CMD_NO_PM   8
2373 #define SD_CHAIN_INFO_USCSI_CHKSUM      7
2374 
2375 /* un->un_direct_chain_type must be set to one of these */
2376 #define SD_CHAIN_INFO_DIRECT_CMD        8
2377 
2378 /* un->un_priority_chain_type must be set to one of these */
2379 #define SD_CHAIN_INFO_PRIORITY_CMD      9
2380 
2381 /* size for devid inquiries */
2382 #define MAX_INQUIRY_SIZE                0xF0
2383 
2384 /*
2385  * Macros used by functions to pass a given buf(9S) struct along to the
2386  * next function in the layering chain for further processing.
2387  *
2388  * In the following macros, passing more than three arguments to the called
2389  * routines causes the optimizer for the SPARC compiler to stop doing tail
2390  * call elimination which results in significant performance degradation.
2391  */
2392 #define SD_BEGIN_IOSTART(index, un, bp) \
2393         ((*(sd_iostart_chain[index]))(index, un, bp))
2394 
2395 #define SD_BEGIN_IODONE(index, un, bp)  \
2396         ((*(sd_iodone_chain[index]))(index, un, bp))
2397 
2398 #define SD_NEXT_IOSTART(index, un, bp)                          \
2399         ((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2400 
2401 #define SD_NEXT_IODONE(index, un, bp)                           \
2402         ((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2403 
2404 /*
2405  *    Function: _init
2406  *
2407  * Description: This is the driver _init(9E) entry point.
2408  *
2409  * Return Code: Returns the value from mod_install(9F) or
2410  *              ddi_soft_state_init(9F) as appropriate.
2411  *
2412  *     Context: Called when driver module loaded.
2413  */
2414 
2415 int
2416 _init(void)
2417 {
2418         int     err;
2419 
2420         /* establish driver name from module name */
2421         sd_label = (char *)mod_modname(&modlinkage);
2422 
2423 #ifndef XPV_HVM_DRIVER
2424         err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2425             SD_MAXUNIT);
2426         if (err != 0) {
2427                 return (err);
2428         }
2429 
2430 #else /* XPV_HVM_DRIVER */
2431         /* Remove the leading "hvm_" from the module name */
2432         ASSERT(strncmp(sd_label, "hvm_", strlen("hvm_")) == 0);
2433         sd_label += strlen("hvm_");
2434 
2435 #endif /* XPV_HVM_DRIVER */
2436 
2437         mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2438         mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2439         mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2440 
2441         mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2442         cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2443         cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2444 
2445         /*
2446          * it's ok to init here even for fibre device
2447          */
2448         sd_scsi_probe_cache_init();
2449 
2450         sd_scsi_target_lun_init();
2451 
2452         /*
2453          * Creating taskq before mod_install ensures that all callers (threads)
2454          * that enter the module after a successful mod_install encounter
2455          * a valid taskq.
2456          */
2457         sd_taskq_create();
2458 
2459         err = mod_install(&modlinkage);
2460         if (err != 0) {
2461                 /* delete taskq if install fails */
2462                 sd_taskq_delete();
2463 
2464                 mutex_destroy(&sd_detach_mutex);
2465                 mutex_destroy(&sd_log_mutex);
2466                 mutex_destroy(&sd_label_mutex);
2467 
2468                 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2469                 cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2470                 cv_destroy(&sd_tr.srq_inprocess_cv);
2471 
2472                 sd_scsi_probe_cache_fini();
2473 
2474                 sd_scsi_target_lun_fini();
2475 
2476 #ifndef XPV_HVM_DRIVER
2477                 ddi_soft_state_fini(&sd_state);
2478 #endif /* !XPV_HVM_DRIVER */
2479                 return (err);
2480         }
2481 
2482         return (err);
2483 }
2484 
2485 
2486 /*
2487  *    Function: _fini
2488  *
2489  * Description: This is the driver _fini(9E) entry point.
2490  *
2491  * Return Code: Returns the value from mod_remove(9F)
2492  *
2493  *     Context: Called when driver module is unloaded.
2494  */
2495 
2496 int
2497 _fini(void)
2498 {
2499         int err;
2500 
2501         if ((err = mod_remove(&modlinkage)) != 0) {
2502                 return (err);
2503         }
2504 
2505         sd_taskq_delete();
2506 
2507         mutex_destroy(&sd_detach_mutex);
2508         mutex_destroy(&sd_log_mutex);
2509         mutex_destroy(&sd_label_mutex);
2510         mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2511 
2512         sd_scsi_probe_cache_fini();
2513 
2514         sd_scsi_target_lun_fini();
2515 
2516         cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2517         cv_destroy(&sd_tr.srq_inprocess_cv);
2518 
2519 #ifndef XPV_HVM_DRIVER
2520         ddi_soft_state_fini(&sd_state);
2521 #endif /* !XPV_HVM_DRIVER */
2522 
2523         return (err);
2524 }
2525 
2526 
2527 /*
2528  *    Function: _info
2529  *
2530  * Description: This is the driver _info(9E) entry point.
2531  *
2532  *   Arguments: modinfop - pointer to the driver modinfo structure
2533  *
2534  * Return Code: Returns the value from mod_info(9F).
2535  *
2536  *     Context: Kernel thread context
2537  */
2538 
2539 int
2540 _info(struct modinfo *modinfop)
2541 {
2542         return (mod_info(&modlinkage, modinfop));
2543 }
2544 
2545 
2546 /*
2547  * The following routines implement the driver message logging facility.
2548  * They provide component- and level- based debug output filtering.
2549  * Output may also be restricted to messages for a single instance by
2550  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2551  * to NULL, then messages for all instances are printed.
2552  *
2553  * These routines have been cloned from each other due to the language
2554  * constraints of macros and variable argument list processing.
2555  */
2556 
2557 
2558 /*
2559  *    Function: sd_log_err
2560  *
2561  * Description: This routine is called by the SD_ERROR macro for debug
2562  *              logging of error conditions.
2563  *
2564  *   Arguments: comp - driver component being logged
2565  *              dev  - pointer to driver info structure
2566  *              fmt  - error string and format to be logged
2567  */
2568 
2569 static void
2570 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2571 {
2572         va_list         ap;
2573         dev_info_t      *dev;
2574 
2575         ASSERT(un != NULL);
2576         dev = SD_DEVINFO(un);
2577         ASSERT(dev != NULL);
2578 
2579         /*
2580          * Filter messages based on the global component and level masks.
2581          * Also print if un matches the value of sd_debug_un, or if
2582          * sd_debug_un is set to NULL.
2583          */
2584         if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2585             ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2586                 mutex_enter(&sd_log_mutex);
2587                 va_start(ap, fmt);
2588                 (void) vsprintf(sd_log_buf, fmt, ap);
2589                 va_end(ap);
2590                 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2591                 mutex_exit(&sd_log_mutex);
2592         }
2593 #ifdef SD_FAULT_INJECTION
2594         _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2595         if (un->sd_injection_mask & comp) {
2596                 mutex_enter(&sd_log_mutex);
2597                 va_start(ap, fmt);
2598                 (void) vsprintf(sd_log_buf, fmt, ap);
2599                 va_end(ap);
2600                 sd_injection_log(sd_log_buf, un);
2601                 mutex_exit(&sd_log_mutex);
2602         }
2603 #endif
2604 }
2605 
2606 
2607 /*
2608  *    Function: sd_log_info
2609  *
2610  * Description: This routine is called by the SD_INFO macro for debug
2611  *              logging of general purpose informational conditions.
2612  *
2613  *   Arguments: comp - driver component being logged
2614  *              dev  - pointer to driver info structure
2615  *              fmt  - info string and format to be logged
2616  */
2617 
2618 static void
2619 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2620 {
2621         va_list         ap;
2622         dev_info_t      *dev;
2623 
2624         ASSERT(un != NULL);
2625         dev = SD_DEVINFO(un);
2626         ASSERT(dev != NULL);
2627 
2628         /*
2629          * Filter messages based on the global component and level masks.
2630          * Also print if un matches the value of sd_debug_un, or if
2631          * sd_debug_un is set to NULL.
2632          */
2633         if ((sd_component_mask & component) &&
2634             (sd_level_mask & SD_LOGMASK_INFO) &&
2635             ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2636                 mutex_enter(&sd_log_mutex);
2637                 va_start(ap, fmt);
2638                 (void) vsprintf(sd_log_buf, fmt, ap);
2639                 va_end(ap);
2640                 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2641                 mutex_exit(&sd_log_mutex);
2642         }
2643 #ifdef SD_FAULT_INJECTION
2644         _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2645         if (un->sd_injection_mask & component) {
2646                 mutex_enter(&sd_log_mutex);
2647                 va_start(ap, fmt);
2648                 (void) vsprintf(sd_log_buf, fmt, ap);
2649                 va_end(ap);
2650                 sd_injection_log(sd_log_buf, un);
2651                 mutex_exit(&sd_log_mutex);
2652         }
2653 #endif
2654 }
2655 
2656 
2657 /*
2658  *    Function: sd_log_trace
2659  *
2660  * Description: This routine is called by the SD_TRACE macro for debug
2661  *              logging of trace conditions (i.e. function entry/exit).
2662  *
2663  *   Arguments: comp - driver component being logged
2664  *              dev  - pointer to driver info structure
2665  *              fmt  - trace string and format to be logged
2666  */
2667 
2668 static void
2669 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2670 {
2671         va_list         ap;
2672         dev_info_t      *dev;
2673 
2674         ASSERT(un != NULL);
2675         dev = SD_DEVINFO(un);
2676         ASSERT(dev != NULL);
2677 
2678         /*
2679          * Filter messages based on the global component and level masks.
2680          * Also print if un matches the value of sd_debug_un, or if
2681          * sd_debug_un is set to NULL.
2682          */
2683         if ((sd_component_mask & component) &&
2684             (sd_level_mask & SD_LOGMASK_TRACE) &&
2685             ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2686                 mutex_enter(&sd_log_mutex);
2687                 va_start(ap, fmt);
2688                 (void) vsprintf(sd_log_buf, fmt, ap);
2689                 va_end(ap);
2690                 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2691                 mutex_exit(&sd_log_mutex);
2692         }
2693 #ifdef SD_FAULT_INJECTION
2694         _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2695         if (un->sd_injection_mask & component) {
2696                 mutex_enter(&sd_log_mutex);
2697                 va_start(ap, fmt);
2698                 (void) vsprintf(sd_log_buf, fmt, ap);
2699                 va_end(ap);
2700                 sd_injection_log(sd_log_buf, un);
2701                 mutex_exit(&sd_log_mutex);
2702         }
2703 #endif
2704 }
2705 
2706 
2707 /*
2708  *    Function: sdprobe
2709  *
2710  * Description: This is the driver probe(9e) entry point function.
2711  *
2712  *   Arguments: devi - opaque device info handle
2713  *
2714  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2715  *              DDI_PROBE_FAILURE: If the probe failed.
2716  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2717  *                                 but may be present in the future.
2718  */
2719 
2720 static int
2721 sdprobe(dev_info_t *devi)
2722 {
2723         struct scsi_device      *devp;
2724         int                     rval;
2725 #ifndef XPV_HVM_DRIVER
2726         int                     instance = ddi_get_instance(devi);
2727 #endif /* !XPV_HVM_DRIVER */
2728 
2729         /*
2730          * if it wasn't for pln, sdprobe could actually be nulldev
2731          * in the "__fibre" case.
2732          */
2733         if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2734                 return (DDI_PROBE_DONTCARE);
2735         }
2736 
2737         devp = ddi_get_driver_private(devi);
2738 
2739         if (devp == NULL) {
2740                 /* Ooops... nexus driver is mis-configured... */
2741                 return (DDI_PROBE_FAILURE);
2742         }
2743 
2744 #ifndef XPV_HVM_DRIVER
2745         if (ddi_get_soft_state(sd_state, instance) != NULL) {
2746                 return (DDI_PROBE_PARTIAL);
2747         }
2748 #endif /* !XPV_HVM_DRIVER */
2749 
2750         /*
2751          * Call the SCSA utility probe routine to see if we actually
2752          * have a target at this SCSI nexus.
2753          */
2754         switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2755         case SCSIPROBE_EXISTS:
2756                 switch (devp->sd_inq->inq_dtype) {
2757                 case DTYPE_DIRECT:
2758                         rval = DDI_PROBE_SUCCESS;
2759                         break;
2760                 case DTYPE_RODIRECT:
2761                         /* CDs etc. Can be removable media */
2762                         rval = DDI_PROBE_SUCCESS;
2763                         break;
2764                 case DTYPE_OPTICAL:
2765                         /*
2766                          * Rewritable optical driver HP115AA
2767                          * Can also be removable media
2768                          */
2769 
2770                         /*
2771                          * Do not attempt to bind to  DTYPE_OPTICAL if
2772                          * pre solaris 9 sparc sd behavior is required
2773                          *
2774                          * If first time through and sd_dtype_optical_bind
2775                          * has not been set in /etc/system check properties
2776                          */
2777 
2778                         if (sd_dtype_optical_bind  < 0) {
2779                                 sd_dtype_optical_bind = ddi_prop_get_int
2780                                     (DDI_DEV_T_ANY, devi, 0,
2781                                     "optical-device-bind", 1);
2782                         }
2783 
2784                         if (sd_dtype_optical_bind == 0) {
2785                                 rval = DDI_PROBE_FAILURE;
2786                         } else {
2787                                 rval = DDI_PROBE_SUCCESS;
2788                         }
2789                         break;
2790 
2791                 case DTYPE_NOTPRESENT:
2792                 default:
2793                         rval = DDI_PROBE_FAILURE;
2794                         break;
2795                 }
2796                 break;
2797         default:
2798                 rval = DDI_PROBE_PARTIAL;
2799                 break;
2800         }
2801 
2802         /*
2803          * This routine checks for resource allocation prior to freeing,
2804          * so it will take care of the "smart probing" case where a
2805          * scsi_probe() may or may not have been issued and will *not*
2806          * free previously-freed resources.
2807          */
2808         scsi_unprobe(devp);
2809         return (rval);
2810 }
2811 
2812 
2813 /*
2814  *    Function: sdinfo
2815  *
2816  * Description: This is the driver getinfo(9e) entry point function.
2817  *              Given the device number, return the devinfo pointer from
2818  *              the scsi_device structure or the instance number
2819  *              associated with the dev_t.
2820  *
2821  *   Arguments: dip     - pointer to device info structure
2822  *              infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2823  *                        DDI_INFO_DEVT2INSTANCE)
2824  *              arg     - driver dev_t
2825  *              resultp - user buffer for request response
2826  *
2827  * Return Code: DDI_SUCCESS
2828  *              DDI_FAILURE
2829  */
2830 /* ARGSUSED */
2831 static int
2832 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2833 {
2834         struct sd_lun   *un;
2835         dev_t           dev;
2836         int             instance;
2837         int             error;
2838 
2839         switch (infocmd) {
2840         case DDI_INFO_DEVT2DEVINFO:
2841                 dev = (dev_t)arg;
2842                 instance = SDUNIT(dev);
2843                 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2844                         return (DDI_FAILURE);
2845                 }
2846                 *result = (void *) SD_DEVINFO(un);
2847                 error = DDI_SUCCESS;
2848                 break;
2849         case DDI_INFO_DEVT2INSTANCE:
2850                 dev = (dev_t)arg;
2851                 instance = SDUNIT(dev);
2852                 *result = (void *)(uintptr_t)instance;
2853                 error = DDI_SUCCESS;
2854                 break;
2855         default:
2856                 error = DDI_FAILURE;
2857         }
2858         return (error);
2859 }
2860 
2861 /*
2862  *    Function: sd_prop_op
2863  *
2864  * Description: This is the driver prop_op(9e) entry point function.
2865  *              Return the number of blocks for the partition in question
2866  *              or forward the request to the property facilities.
2867  *
2868  *   Arguments: dev       - device number
2869  *              dip       - pointer to device info structure
2870  *              prop_op   - property operator
2871  *              mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2872  *              name      - pointer to property name
2873  *              valuep    - pointer or address of the user buffer
2874  *              lengthp   - property length
2875  *
2876  * Return Code: DDI_PROP_SUCCESS
2877  *              DDI_PROP_NOT_FOUND
2878  *              DDI_PROP_UNDEFINED
2879  *              DDI_PROP_NO_MEMORY
2880  *              DDI_PROP_BUF_TOO_SMALL
2881  */
2882 
2883 static int
2884 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2885         char *name, caddr_t valuep, int *lengthp)
2886 {
2887         struct sd_lun   *un;
2888 
2889         if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL)
2890                 return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2891                     name, valuep, lengthp));
2892 
2893         return (cmlb_prop_op(un->un_cmlbhandle,
2894             dev, dip, prop_op, mod_flags, name, valuep, lengthp,
2895             SDPART(dev), (void *)SD_PATH_DIRECT));
2896 }
2897 
2898 /*
2899  * The following functions are for smart probing:
2900  * sd_scsi_probe_cache_init()
2901  * sd_scsi_probe_cache_fini()
2902  * sd_scsi_clear_probe_cache()
2903  * sd_scsi_probe_with_cache()
2904  */
2905 
2906 /*
2907  *    Function: sd_scsi_probe_cache_init
2908  *
2909  * Description: Initializes the probe response cache mutex and head pointer.
2910  *
2911  *     Context: Kernel thread context
2912  */
2913 
2914 static void
2915 sd_scsi_probe_cache_init(void)
2916 {
2917         mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2918         sd_scsi_probe_cache_head = NULL;
2919 }
2920 
2921 
2922 /*
2923  *    Function: sd_scsi_probe_cache_fini
2924  *
2925  * Description: Frees all resources associated with the probe response cache.
2926  *
2927  *     Context: Kernel thread context
2928  */
2929 
2930 static void
2931 sd_scsi_probe_cache_fini(void)
2932 {
2933         struct sd_scsi_probe_cache *cp;
2934         struct sd_scsi_probe_cache *ncp;
2935 
2936         /* Clean up our smart probing linked list */
2937         for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2938                 ncp = cp->next;
2939                 kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2940         }
2941         sd_scsi_probe_cache_head = NULL;
2942         mutex_destroy(&sd_scsi_probe_cache_mutex);
2943 }
2944 
2945 
2946 /*
2947  *    Function: sd_scsi_clear_probe_cache
2948  *
2949  * Description: This routine clears the probe response cache. This is
2950  *              done when open() returns ENXIO so that when deferred
2951  *              attach is attempted (possibly after a device has been
2952  *              turned on) we will retry the probe. Since we don't know
2953  *              which target we failed to open, we just clear the
2954  *              entire cache.
2955  *
2956  *     Context: Kernel thread context
2957  */
2958 
2959 static void
2960 sd_scsi_clear_probe_cache(void)
2961 {
2962         struct sd_scsi_probe_cache      *cp;
2963         int                             i;
2964 
2965         mutex_enter(&sd_scsi_probe_cache_mutex);
2966         for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2967                 /*
2968                  * Reset all entries to SCSIPROBE_EXISTS.  This will
2969                  * force probing to be performed the next time
2970                  * sd_scsi_probe_with_cache is called.
2971                  */
2972                 for (i = 0; i < NTARGETS_WIDE; i++) {
2973                         cp->cache[i] = SCSIPROBE_EXISTS;
2974                 }
2975         }
2976         mutex_exit(&sd_scsi_probe_cache_mutex);
2977 }
2978 
2979 
2980 /*
2981  *    Function: sd_scsi_probe_with_cache
2982  *
2983  * Description: This routine implements support for a scsi device probe
2984  *              with cache. The driver maintains a cache of the target
2985  *              responses to scsi probes. If we get no response from a
2986  *              target during a probe inquiry, we remember that, and we
2987  *              avoid additional calls to scsi_probe on non-zero LUNs
2988  *              on the same target until the cache is cleared. By doing
2989  *              so we avoid the 1/4 sec selection timeout for nonzero
2990  *              LUNs. lun0 of a target is always probed.
2991  *
2992  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2993  *              waitfunc - indicates what the allocator routines should
2994  *                         do when resources are not available. This value
2995  *                         is passed on to scsi_probe() when that routine
2996  *                         is called.
2997  *
2998  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2999  *              otherwise the value returned by scsi_probe(9F).
3000  *
3001  *     Context: Kernel thread context
3002  */
3003 
3004 static int
3005 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
3006 {
3007         struct sd_scsi_probe_cache      *cp;
3008         dev_info_t      *pdip = ddi_get_parent(devp->sd_dev);
3009         int             lun, tgt;
3010 
3011         lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
3012             SCSI_ADDR_PROP_LUN, 0);
3013         tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
3014             SCSI_ADDR_PROP_TARGET, -1);
3015 
3016         /* Make sure caching enabled and target in range */
3017         if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
3018                 /* do it the old way (no cache) */
3019                 return (scsi_probe(devp, waitfn));
3020         }
3021 
3022         mutex_enter(&sd_scsi_probe_cache_mutex);
3023 
3024         /* Find the cache for this scsi bus instance */
3025         for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
3026                 if (cp->pdip == pdip) {
3027                         break;
3028                 }
3029         }
3030 
3031         /* If we can't find a cache for this pdip, create one */
3032         if (cp == NULL) {
3033                 int i;
3034 
3035                 cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
3036                     KM_SLEEP);
3037                 cp->pdip = pdip;
3038                 cp->next = sd_scsi_probe_cache_head;
3039                 sd_scsi_probe_cache_head = cp;
3040                 for (i = 0; i < NTARGETS_WIDE; i++) {
3041                         cp->cache[i] = SCSIPROBE_EXISTS;
3042                 }
3043         }
3044 
3045         mutex_exit(&sd_scsi_probe_cache_mutex);
3046 
3047         /* Recompute the cache for this target if LUN zero */
3048         if (lun == 0) {
3049                 cp->cache[tgt] = SCSIPROBE_EXISTS;
3050         }
3051 
3052         /* Don't probe if cache remembers a NORESP from a previous LUN. */
3053         if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
3054                 return (SCSIPROBE_NORESP);
3055         }
3056 
3057         /* Do the actual probe; save & return the result */
3058         return (cp->cache[tgt] = scsi_probe(devp, waitfn));
3059 }
3060 
3061 
3062 /*
3063  *    Function: sd_scsi_target_lun_init
3064  *
3065  * Description: Initializes the attached lun chain mutex and head pointer.
3066  *
3067  *     Context: Kernel thread context
3068  */
3069 
3070 static void
3071 sd_scsi_target_lun_init(void)
3072 {
3073         mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
3074         sd_scsi_target_lun_head = NULL;
3075 }
3076 
3077 
3078 /*
3079  *    Function: sd_scsi_target_lun_fini
3080  *
3081  * Description: Frees all resources associated with the attached lun
3082  *              chain
3083  *
3084  *     Context: Kernel thread context
3085  */
3086 
3087 static void
3088 sd_scsi_target_lun_fini(void)
3089 {
3090         struct sd_scsi_hba_tgt_lun      *cp;
3091         struct sd_scsi_hba_tgt_lun      *ncp;
3092 
3093         for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
3094                 ncp = cp->next;
3095                 kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
3096         }
3097         sd_scsi_target_lun_head = NULL;
3098         mutex_destroy(&sd_scsi_target_lun_mutex);
3099 }
3100 
3101 
3102 /*
3103  *    Function: sd_scsi_get_target_lun_count
3104  *
3105  * Description: This routine will check in the attached lun chain to see
3106  *              how many luns are attached on the required SCSI controller
3107  *              and target. Currently, some capabilities like tagged queue
3108  *              are supported per target based by HBA. So all luns in a
3109  *              target have the same capabilities. Based on this assumption,
3110  *              sd should only set these capabilities once per target. This
3111  *              function is called when sd needs to decide how many luns
3112  *              already attached on a target.
3113  *
3114  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
3115  *                        controller device.
3116  *              target  - The target ID on the controller's SCSI bus.
3117  *
3118  * Return Code: The number of luns attached on the required target and
3119  *              controller.
3120  *              -1 if target ID is not in parallel SCSI scope or the given
3121  *              dip is not in the chain.
3122  *
3123  *     Context: Kernel thread context
3124  */
3125 
3126 static int
3127 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
3128 {
3129         struct sd_scsi_hba_tgt_lun      *cp;
3130 
3131         if ((target < 0) || (target >= NTARGETS_WIDE)) {
3132                 return (-1);
3133         }
3134 
3135         mutex_enter(&sd_scsi_target_lun_mutex);
3136 
3137         for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3138                 if (cp->pdip == dip) {
3139                         break;
3140                 }
3141         }
3142 
3143         mutex_exit(&sd_scsi_target_lun_mutex);
3144 
3145         if (cp == NULL) {
3146                 return (-1);
3147         }
3148 
3149         return (cp->nlun[target]);
3150 }
3151 
3152 
3153 /*
3154  *    Function: sd_scsi_update_lun_on_target
3155  *
3156  * Description: This routine is used to update the attached lun chain when a
3157  *              lun is attached or detached on a target.
3158  *
3159  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
3160  *                        controller device.
3161  *              target  - The target ID on the controller's SCSI bus.
3162  *              flag    - Indicate the lun is attached or detached.
3163  *
3164  *     Context: Kernel thread context
3165  */
3166 
3167 static void
3168 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
3169 {
3170         struct sd_scsi_hba_tgt_lun      *cp;
3171 
3172         mutex_enter(&sd_scsi_target_lun_mutex);
3173 
3174         for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3175                 if (cp->pdip == dip) {
3176                         break;
3177                 }
3178         }
3179 
3180         if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
3181                 cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
3182                     KM_SLEEP);
3183                 cp->pdip = dip;
3184                 cp->next = sd_scsi_target_lun_head;
3185                 sd_scsi_target_lun_head = cp;
3186         }
3187 
3188         mutex_exit(&sd_scsi_target_lun_mutex);
3189 
3190         if (cp != NULL) {
3191                 if (flag == SD_SCSI_LUN_ATTACH) {
3192                         cp->nlun[target] ++;
3193                 } else {
3194                         cp->nlun[target] --;
3195                 }
3196         }
3197 }
3198 
3199 
3200 /*
3201  *    Function: sd_spin_up_unit
3202  *
3203  * Description: Issues the following commands to spin-up the device:
3204  *              START STOP UNIT, and INQUIRY.
3205  *
3206  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3207  *                      structure for this target.
3208  *
3209  * Return Code: 0 - success
3210  *              EIO - failure
3211  *              EACCES - reservation conflict
3212  *
3213  *     Context: Kernel thread context
3214  */
3215 
3216 static int
3217 sd_spin_up_unit(sd_ssc_t *ssc)
3218 {
3219         size_t  resid           = 0;
3220         int     has_conflict    = FALSE;
3221         uchar_t *bufaddr;
3222         int     status;
3223         struct sd_lun   *un;
3224 
3225         ASSERT(ssc != NULL);
3226         un = ssc->ssc_un;
3227         ASSERT(un != NULL);
3228 
3229         /*
3230          * Send a throwaway START UNIT command.
3231          *
3232          * If we fail on this, we don't care presently what precisely
3233          * is wrong.  EMC's arrays will also fail this with a check
3234          * condition (0x2/0x4/0x3) if the device is "inactive," but
3235          * we don't want to fail the attach because it may become
3236          * "active" later.
3237          * We don't know if power condition is supported or not at
3238          * this stage, use START STOP bit.
3239          */
3240         status = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
3241             SD_TARGET_START, SD_PATH_DIRECT);
3242 
3243         if (status != 0) {
3244                 if (status == EACCES)
3245                         has_conflict = TRUE;
3246                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3247         }
3248 
3249         /*
3250          * Send another INQUIRY command to the target. This is necessary for
3251          * non-removable media direct access devices because their INQUIRY data
3252          * may not be fully qualified until they are spun up (perhaps via the
3253          * START command above).  Note: This seems to be needed for some
3254          * legacy devices only.) The INQUIRY command should succeed even if a
3255          * Reservation Conflict is present.
3256          */
3257         bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
3258 
3259         if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid)
3260             != 0) {
3261                 kmem_free(bufaddr, SUN_INQSIZE);
3262                 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
3263                 return (EIO);
3264         }
3265 
3266         /*
3267          * If we got enough INQUIRY data, copy it over the old INQUIRY data.
3268          * Note that this routine does not return a failure here even if the
3269          * INQUIRY command did not return any data.  This is a legacy behavior.
3270          */
3271         if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
3272                 bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
3273         }
3274 
3275         kmem_free(bufaddr, SUN_INQSIZE);
3276 
3277         /* If we hit a reservation conflict above, tell the caller. */
3278         if (has_conflict == TRUE) {
3279                 return (EACCES);
3280         }
3281 
3282         return (0);
3283 }
3284 
3285 #ifdef _LP64
3286 /*
3287  *    Function: sd_enable_descr_sense
3288  *
3289  * Description: This routine attempts to select descriptor sense format
3290  *              using the Control mode page.  Devices that support 64 bit
3291  *              LBAs (for >2TB luns) should also implement descriptor
3292  *              sense data so we will call this function whenever we see
3293  *              a lun larger than 2TB.  If for some reason the device
3294  *              supports 64 bit LBAs but doesn't support descriptor sense
3295  *              presumably the mode select will fail.  Everything will
3296  *              continue to work normally except that we will not get
3297  *              complete sense data for commands that fail with an LBA
3298  *              larger than 32 bits.
3299  *
3300  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3301  *                      structure for this target.
3302  *
3303  *     Context: Kernel thread context only
3304  */
3305 
3306 static void
3307 sd_enable_descr_sense(sd_ssc_t *ssc)
3308 {
3309         uchar_t                 *header;
3310         struct mode_control_scsi3 *ctrl_bufp;
3311         size_t                  buflen;
3312         size_t                  bd_len;
3313         int                     status;
3314         struct sd_lun           *un;
3315 
3316         ASSERT(ssc != NULL);
3317         un = ssc->ssc_un;
3318         ASSERT(un != NULL);
3319 
3320         /*
3321          * Read MODE SENSE page 0xA, Control Mode Page
3322          */
3323         buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3324             sizeof (struct mode_control_scsi3);
3325         header = kmem_zalloc(buflen, KM_SLEEP);
3326 
3327         status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
3328             MODEPAGE_CTRL_MODE, SD_PATH_DIRECT);
3329 
3330         if (status != 0) {
3331                 SD_ERROR(SD_LOG_COMMON, un,
3332                     "sd_enable_descr_sense: mode sense ctrl page failed\n");
3333                 goto eds_exit;
3334         }
3335 
3336         /*
3337          * Determine size of Block Descriptors in order to locate
3338          * the mode page data. ATAPI devices return 0, SCSI devices
3339          * should return MODE_BLK_DESC_LENGTH.
3340          */
3341         bd_len  = ((struct mode_header *)header)->bdesc_length;
3342 
3343         /* Clear the mode data length field for MODE SELECT */
3344         ((struct mode_header *)header)->length = 0;
3345 
3346         ctrl_bufp = (struct mode_control_scsi3 *)
3347             (header + MODE_HEADER_LENGTH + bd_len);
3348 
3349         /*
3350          * If the page length is smaller than the expected value,
3351          * the target device doesn't support D_SENSE. Bail out here.
3352          */
3353         if (ctrl_bufp->mode_page.length <
3354             sizeof (struct mode_control_scsi3) - 2) {
3355                 SD_ERROR(SD_LOG_COMMON, un,
3356                     "sd_enable_descr_sense: enable D_SENSE failed\n");
3357                 goto eds_exit;
3358         }
3359 
3360         /*
3361          * Clear PS bit for MODE SELECT
3362          */
3363         ctrl_bufp->mode_page.ps = 0;
3364 
3365         /*
3366          * Set D_SENSE to enable descriptor sense format.
3367          */
3368         ctrl_bufp->d_sense = 1;
3369 
3370         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3371 
3372         /*
3373          * Use MODE SELECT to commit the change to the D_SENSE bit
3374          */
3375         status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
3376             buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT);
3377 
3378         if (status != 0) {
3379                 SD_INFO(SD_LOG_COMMON, un,
3380                     "sd_enable_descr_sense: mode select ctrl page failed\n");
3381         } else {
3382                 kmem_free(header, buflen);
3383                 return;
3384         }
3385 
3386 eds_exit:
3387         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3388         kmem_free(header, buflen);
3389 }
3390 
3391 /*
3392  *    Function: sd_reenable_dsense_task
3393  *
3394  * Description: Re-enable descriptor sense after device or bus reset
3395  *
3396  *     Context: Executes in a taskq() thread context
3397  */
3398 static void
3399 sd_reenable_dsense_task(void *arg)
3400 {
3401         struct  sd_lun  *un = arg;
3402         sd_ssc_t        *ssc;
3403 
3404         ASSERT(un != NULL);
3405 
3406         ssc = sd_ssc_init(un);
3407         sd_enable_descr_sense(ssc);
3408         sd_ssc_fini(ssc);
3409 }
3410 #endif /* _LP64 */
3411 
3412 /*
3413  *    Function: sd_set_mmc_caps
3414  *
3415  * Description: This routine determines if the device is MMC compliant and if
3416  *              the device supports CDDA via a mode sense of the CDVD
3417  *              capabilities mode page. Also checks if the device is a
3418  *              dvdram writable device.
3419  *
3420  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3421  *                      structure for this target.
3422  *
3423  *     Context: Kernel thread context only
3424  */
3425 
3426 static void
3427 sd_set_mmc_caps(sd_ssc_t *ssc)
3428 {
3429         struct mode_header_grp2         *sense_mhp;
3430         uchar_t                         *sense_page;
3431         caddr_t                         buf;
3432         int                             bd_len;
3433         int                             status;
3434         struct uscsi_cmd                com;
3435         int                             rtn;
3436         uchar_t                         *out_data_rw, *out_data_hd;
3437         uchar_t                         *rqbuf_rw, *rqbuf_hd;
3438         uchar_t                         *out_data_gesn;
3439         int                             gesn_len;
3440         struct sd_lun                   *un;
3441 
3442         ASSERT(ssc != NULL);
3443         un = ssc->ssc_un;
3444         ASSERT(un != NULL);
3445 
3446         /*
3447          * The flags which will be set in this function are - mmc compliant,
3448          * dvdram writable device, cdda support. Initialize them to FALSE
3449          * and if a capability is detected - it will be set to TRUE.
3450          */
3451         un->un_f_mmc_cap = FALSE;
3452         un->un_f_dvdram_writable_device = FALSE;
3453         un->un_f_cfg_cdda = FALSE;
3454 
3455         buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3456         status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3457             BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3458 
3459         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3460 
3461         if (status != 0) {
3462                 /* command failed; just return */
3463                 kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3464                 return;
3465         }
3466         /*
3467          * If the mode sense request for the CDROM CAPABILITIES
3468          * page (0x2A) succeeds the device is assumed to be MMC.
3469          */
3470         un->un_f_mmc_cap = TRUE;
3471 
3472         /* See if GET STATUS EVENT NOTIFICATION is supported */
3473         if (un->un_f_mmc_gesn_polling) {
3474                 gesn_len = SD_GESN_HEADER_LEN + SD_GESN_MEDIA_DATA_LEN;
3475                 out_data_gesn = kmem_zalloc(gesn_len, KM_SLEEP);
3476 
3477                 rtn = sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(ssc,
3478                     out_data_gesn, gesn_len, 1 << SD_GESN_MEDIA_CLASS);
3479 
3480                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3481 
3482                 if ((rtn != 0) || !sd_gesn_media_data_valid(out_data_gesn)) {
3483                         un->un_f_mmc_gesn_polling = FALSE;
3484                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
3485                             "sd_set_mmc_caps: gesn not supported "
3486                             "%d %x %x %x %x\n", rtn,
3487                             out_data_gesn[0], out_data_gesn[1],
3488                             out_data_gesn[2], out_data_gesn[3]);
3489                 }
3490 
3491                 kmem_free(out_data_gesn, gesn_len);
3492         }
3493 
3494         /* Get to the page data */
3495         sense_mhp = (struct mode_header_grp2 *)buf;
3496         bd_len = (sense_mhp->bdesc_length_hi << 8) |
3497             sense_mhp->bdesc_length_lo;
3498         if (bd_len > MODE_BLK_DESC_LENGTH) {
3499                 /*
3500                  * We did not get back the expected block descriptor
3501                  * length so we cannot determine if the device supports
3502                  * CDDA. However, we still indicate the device is MMC
3503                  * according to the successful response to the page
3504                  * 0x2A mode sense request.
3505                  */
3506                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3507                     "sd_set_mmc_caps: Mode Sense returned "
3508                     "invalid block descriptor length\n");
3509                 kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3510                 return;
3511         }
3512 
3513         /* See if read CDDA is supported */
3514         sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3515             bd_len);
3516         un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3517 
3518         /* See if writing DVD RAM is supported. */
3519         un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3520         if (un->un_f_dvdram_writable_device == TRUE) {
3521                 kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3522                 return;
3523         }
3524 
3525         /*
3526          * If the device presents DVD or CD capabilities in the mode
3527          * page, we can return here since a RRD will not have
3528          * these capabilities.
3529          */
3530         if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3531                 kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3532                 return;
3533         }
3534         kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3535 
3536         /*
3537          * If un->un_f_dvdram_writable_device is still FALSE,
3538          * check for a Removable Rigid Disk (RRD).  A RRD
3539          * device is identified by the features RANDOM_WRITABLE and
3540          * HARDWARE_DEFECT_MANAGEMENT.
3541          */
3542         out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3543         rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3544 
3545         rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3546             SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3547             RANDOM_WRITABLE, SD_PATH_STANDARD);
3548 
3549         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3550 
3551         if (rtn != 0) {
3552                 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3553                 kmem_free(rqbuf_rw, SENSE_LENGTH);
3554                 return;
3555         }
3556 
3557         out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3558         rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3559 
3560         rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3561             SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3562             HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3563 
3564         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3565 
3566         if (rtn == 0) {
3567                 /*
3568                  * We have good information, check for random writable
3569                  * and hardware defect features.
3570                  */
3571                 if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3572                     (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3573                         un->un_f_dvdram_writable_device = TRUE;
3574                 }
3575         }
3576 
3577         kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3578         kmem_free(rqbuf_rw, SENSE_LENGTH);
3579         kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3580         kmem_free(rqbuf_hd, SENSE_LENGTH);
3581 }
3582 
3583 /*
3584  *    Function: sd_check_for_writable_cd
3585  *
3586  * Description: This routine determines if the media in the device is
3587  *              writable or not. It uses the get configuration command (0x46)
3588  *              to determine if the media is writable
3589  *
3590  *   Arguments: un - driver soft state (unit) structure
3591  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3592  *                           chain and the normal command waitq, or
3593  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3594  *                           "direct" chain and bypass the normal command
3595  *                           waitq.
3596  *
3597  *     Context: Never called at interrupt context.
3598  */
3599 
3600 static void
3601 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag)
3602 {
3603         struct uscsi_cmd                com;
3604         uchar_t                         *out_data;
3605         uchar_t                         *rqbuf;
3606         int                             rtn;
3607         uchar_t                         *out_data_rw, *out_data_hd;
3608         uchar_t                         *rqbuf_rw, *rqbuf_hd;
3609         struct mode_header_grp2         *sense_mhp;
3610         uchar_t                         *sense_page;
3611         caddr_t                         buf;
3612         int                             bd_len;
3613         int                             status;
3614         struct sd_lun                   *un;
3615 
3616         ASSERT(ssc != NULL);
3617         un = ssc->ssc_un;
3618         ASSERT(un != NULL);
3619         ASSERT(mutex_owned(SD_MUTEX(un)));
3620 
3621         /*
3622          * Initialize the writable media to false, if configuration info.
3623          * tells us otherwise then only we will set it.
3624          */
3625         un->un_f_mmc_writable_media = FALSE;
3626         mutex_exit(SD_MUTEX(un));
3627 
3628         out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3629         rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3630 
3631         rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH,
3632             out_data, SD_PROFILE_HEADER_LEN, path_flag);
3633 
3634         if (rtn != 0)
3635                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3636 
3637         mutex_enter(SD_MUTEX(un));
3638         if (rtn == 0) {
3639                 /*
3640                  * We have good information, check for writable DVD.
3641                  */
3642                 if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3643                         un->un_f_mmc_writable_media = TRUE;
3644                         kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3645                         kmem_free(rqbuf, SENSE_LENGTH);
3646                         return;
3647                 }
3648         }
3649 
3650         kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3651         kmem_free(rqbuf, SENSE_LENGTH);
3652 
3653         /*
3654          * Determine if this is a RRD type device.
3655          */
3656         mutex_exit(SD_MUTEX(un));
3657         buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3658         status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3659             BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3660 
3661         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3662 
3663         mutex_enter(SD_MUTEX(un));
3664         if (status != 0) {
3665                 /* command failed; just return */
3666                 kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3667                 return;
3668         }
3669 
3670         /* Get to the page data */
3671         sense_mhp = (struct mode_header_grp2 *)buf;
3672         bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3673         if (bd_len > MODE_BLK_DESC_LENGTH) {
3674                 /*
3675                  * We did not get back the expected block descriptor length so
3676                  * we cannot check the mode page.
3677                  */
3678                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3679                     "sd_check_for_writable_cd: Mode Sense returned "
3680                     "invalid block descriptor length\n");
3681                 kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3682                 return;
3683         }
3684 
3685         /*
3686          * If the device presents DVD or CD capabilities in the mode
3687          * page, we can return here since a RRD device will not have
3688          * these capabilities.
3689          */
3690         sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3691         if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3692                 kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3693                 return;
3694         }
3695         kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3696 
3697         /*
3698          * If un->un_f_mmc_writable_media is still FALSE,
3699          * check for RRD type media.  A RRD device is identified
3700          * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3701          */
3702         mutex_exit(SD_MUTEX(un));
3703         out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3704         rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3705 
3706         rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3707             SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3708             RANDOM_WRITABLE, path_flag);
3709 
3710         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3711         if (rtn != 0) {
3712                 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3713                 kmem_free(rqbuf_rw, SENSE_LENGTH);
3714                 mutex_enter(SD_MUTEX(un));
3715                 return;
3716         }
3717 
3718         out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3719         rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3720 
3721         rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3722             SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3723             HARDWARE_DEFECT_MANAGEMENT, path_flag);
3724 
3725         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3726         mutex_enter(SD_MUTEX(un));
3727         if (rtn == 0) {
3728                 /*
3729                  * We have good information, check for random writable
3730                  * and hardware defect features as current.
3731                  */
3732                 if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3733                     (out_data_rw[10] & 0x1) &&
3734                     (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3735                     (out_data_hd[10] & 0x1)) {
3736                         un->un_f_mmc_writable_media = TRUE;
3737                 }
3738         }
3739 
3740         kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3741         kmem_free(rqbuf_rw, SENSE_LENGTH);
3742         kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3743         kmem_free(rqbuf_hd, SENSE_LENGTH);
3744 }
3745 
3746 /*
3747  *    Function: sd_read_unit_properties
3748  *
3749  * Description: The following implements a property lookup mechanism.
3750  *              Properties for particular disks (keyed on vendor, model
3751  *              and rev numbers) are sought in the sd.conf file via
3752  *              sd_process_sdconf_file(), and if not found there, are
3753  *              looked for in a list hardcoded in this driver via
3754  *              sd_process_sdconf_table() Once located the properties
3755  *              are used to update the driver unit structure.
3756  *
3757  *   Arguments: un - driver soft state (unit) structure
3758  */
3759 
3760 static void
3761 sd_read_unit_properties(struct sd_lun *un)
3762 {
3763         /*
3764          * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3765          * the "sd-config-list" property (from the sd.conf file) or if
3766          * there was not a match for the inquiry vid/pid. If this event
3767          * occurs the static driver configuration table is searched for
3768          * a match.
3769          */
3770         ASSERT(un != NULL);
3771         if (sd_process_sdconf_file(un) == SD_FAILURE) {
3772                 sd_process_sdconf_table(un);
3773         }
3774 
3775         /* check for LSI device */
3776         sd_is_lsi(un);
3777 
3778 
3779 }
3780 
3781 
3782 /*
3783  *    Function: sd_process_sdconf_file
3784  *
3785  * Description: Use ddi_prop_lookup(9F) to obtain the properties from the
3786  *              driver's config file (ie, sd.conf) and update the driver
3787  *              soft state structure accordingly.
3788  *
3789  *   Arguments: un - driver soft state (unit) structure
3790  *
3791  * Return Code: SD_SUCCESS - The properties were successfully set according
3792  *                           to the driver configuration file.
3793  *              SD_FAILURE - The driver config list was not obtained or
3794  *                           there was no vid/pid match. This indicates that
3795  *                           the static config table should be used.
3796  *
3797  * The config file has a property, "sd-config-list". Currently we support
3798  * two kinds of formats. For both formats, the value of this property
3799  * is a list of duplets:
3800  *
3801  *  sd-config-list=
3802  *      <duplet>,
3803  *      [,<duplet>]*;
3804  *
3805  * For the improved format, where
3806  *
3807  *     <duplet>:= "<vid+pid>","<tunable-list>"
3808  *
3809  * and
3810  *
3811  *     <tunable-list>:=   <tunable> [, <tunable> ]*;
3812  *     <tunable> =        <name> : <value>
3813  *
3814  * The <vid+pid> is the string that is returned by the target device on a
3815  * SCSI inquiry command, the <tunable-list> contains one or more tunables
3816  * to apply to all target devices with the specified <vid+pid>.
3817  *
3818  * Each <tunable> is a "<name> : <value>" pair.
3819  *
3820  * For the old format, the structure of each duplet is as follows:
3821  *
3822  *  <duplet>:= "<vid+pid>","<data-property-name_list>"
3823  *
3824  * The first entry of the duplet is the device ID string (the concatenated
3825  * vid & pid; not to be confused with a device_id).  This is defined in
3826  * the same way as in the sd_disk_table.
3827  *
3828  * The second part of the duplet is a string that identifies a
3829  * data-property-name-list. The data-property-name-list is defined as
3830  * follows:
3831  *
3832  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3833  *
3834  * The syntax of <data-property-name> depends on the <version> field.
3835  *
3836  * If version = SD_CONF_VERSION_1 we have the following syntax:
3837  *
3838  *      <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3839  *
3840  * where the prop0 value will be used to set prop0 if bit0 set in the
3841  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3842  *
3843  */
3844 
3845 static int
3846 sd_process_sdconf_file(struct sd_lun *un)
3847 {
3848         char    **config_list = NULL;
3849         uint_t  nelements;
3850         char    *vidptr;
3851         int     vidlen;
3852         char    *dnlist_ptr;
3853         char    *dataname_ptr;
3854         char    *dataname_lasts;
3855         int     *data_list = NULL;
3856         uint_t  data_list_len;
3857         int     rval = SD_FAILURE;
3858         int     i;
3859 
3860         ASSERT(un != NULL);
3861 
3862         /* Obtain the configuration list associated with the .conf file */
3863         if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un),
3864             DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list,
3865             &config_list, &nelements) != DDI_PROP_SUCCESS) {
3866                 return (SD_FAILURE);
3867         }
3868 
3869         /*
3870          * Compare vids in each duplet to the inquiry vid - if a match is
3871          * made, get the data value and update the soft state structure
3872          * accordingly.
3873          *
3874          * Each duplet should show as a pair of strings, return SD_FAILURE
3875          * otherwise.
3876          */
3877         if (nelements & 1) {
3878                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3879                     "sd-config-list should show as pairs of strings.\n");
3880                 if (config_list)
3881                         ddi_prop_free(config_list);
3882                 return (SD_FAILURE);
3883         }
3884 
3885         for (i = 0; i < nelements; i += 2) {
3886                 /*
3887                  * Note: The assumption here is that each vid entry is on
3888                  * a unique line from its associated duplet.
3889                  */
3890                 vidptr = config_list[i];
3891                 vidlen = (int)strlen(vidptr);
3892                 if (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS) {
3893                         continue;
3894                 }
3895 
3896                 /*
3897                  * dnlist contains 1 or more blank separated
3898                  * data-property-name entries
3899                  */
3900                 dnlist_ptr = config_list[i + 1];
3901 
3902                 if (strchr(dnlist_ptr, ':') != NULL) {
3903                         /*
3904                          * Decode the improved format sd-config-list.
3905                          */
3906                         sd_nvpair_str_decode(un, dnlist_ptr);
3907                 } else {
3908                         /*
3909                          * The old format sd-config-list, loop through all
3910                          * data-property-name entries in the
3911                          * data-property-name-list
3912                          * setting the properties for each.
3913                          */
3914                         for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t",
3915                             &dataname_lasts); dataname_ptr != NULL;
3916                             dataname_ptr = sd_strtok_r(NULL, " \t",
3917                             &dataname_lasts)) {
3918                                 int version;
3919 
3920                                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
3921                                     "sd_process_sdconf_file: disk:%s, "
3922                                     "data:%s\n", vidptr, dataname_ptr);
3923 
3924                                 /* Get the data list */
3925                                 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY,
3926                                     SD_DEVINFO(un), 0, dataname_ptr, &data_list,
3927                                     &data_list_len) != DDI_PROP_SUCCESS) {
3928                                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
3929                                             "sd_process_sdconf_file: data "
3930                                             "property (%s) has no value\n",
3931                                             dataname_ptr);
3932                                         continue;
3933                                 }
3934 
3935                                 version = data_list[0];
3936 
3937                                 if (version == SD_CONF_VERSION_1) {
3938                                         sd_tunables values;
3939 
3940                                         /* Set the properties */
3941                                         if (sd_chk_vers1_data(un, data_list[1],
3942                                             &data_list[2], data_list_len,
3943                                             dataname_ptr) == SD_SUCCESS) {
3944                                                 sd_get_tunables_from_conf(un,
3945                                                     data_list[1], &data_list[2],
3946                                                     &values);
3947                                                 sd_set_vers1_properties(un,
3948                                                     data_list[1], &values);
3949                                                 rval = SD_SUCCESS;
3950                                         } else {
3951                                                 rval = SD_FAILURE;
3952                                         }
3953                                 } else {
3954                                         scsi_log(SD_DEVINFO(un), sd_label,
3955                                             CE_WARN, "data property %s version "
3956                                             "0x%x is invalid.",
3957                                             dataname_ptr, version);
3958                                         rval = SD_FAILURE;
3959                                 }
3960                                 if (data_list)
3961                                         ddi_prop_free(data_list);
3962                         }
3963                 }
3964         }
3965 
3966         /* free up the memory allocated by ddi_prop_lookup_string_array(). */
3967         if (config_list) {
3968                 ddi_prop_free(config_list);
3969         }
3970 
3971         return (rval);
3972 }
3973 
3974 /*
3975  *    Function: sd_nvpair_str_decode()
3976  *
3977  * Description: Parse the improved format sd-config-list to get
3978  *    each entry of tunable, which includes a name-value pair.
3979  *    Then call sd_set_properties() to set the property.
3980  *
3981  *   Arguments: un - driver soft state (unit) structure
3982  *    nvpair_str - the tunable list
3983  */
3984 static void
3985 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str)
3986 {
3987         char    *nv, *name, *value, *token;
3988         char    *nv_lasts, *v_lasts, *x_lasts;
3989 
3990         for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL;
3991             nv = sd_strtok_r(NULL, ",", &nv_lasts)) {
3992                 token = sd_strtok_r(nv, ":", &v_lasts);
3993                 name  = sd_strtok_r(token, " \t", &x_lasts);
3994                 token = sd_strtok_r(NULL, ":", &v_lasts);
3995                 value = sd_strtok_r(token, " \t", &x_lasts);
3996                 if (name == NULL || value == NULL) {
3997                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
3998                             "sd_nvpair_str_decode: "
3999                             "name or value is not valid!\n");
4000                 } else {
4001                         sd_set_properties(un, name, value);
4002                 }
4003         }
4004 }
4005 
4006 /*
4007  *    Function: sd_strtok_r()
4008  *
4009  * Description: This function uses strpbrk and strspn to break
4010  *    string into tokens on sequentially subsequent calls. Return
4011  *    NULL when no non-separator characters remain. The first
4012  *    argument is NULL for subsequent calls.
4013  */
4014 static char *
4015 sd_strtok_r(char *string, const char *sepset, char **lasts)
4016 {
4017         char    *q, *r;
4018 
4019         /* First or subsequent call */
4020         if (string == NULL)
4021                 string = *lasts;
4022 
4023         if (string == NULL)
4024                 return (NULL);
4025 
4026         /* Skip leading separators */
4027         q = string + strspn(string, sepset);
4028 
4029         if (*q == '\0')
4030                 return (NULL);
4031 
4032         if ((r = strpbrk(q, sepset)) == NULL)
4033                 *lasts = NULL;
4034         else {
4035                 *r = '\0';
4036                 *lasts = r + 1;
4037         }
4038         return (q);
4039 }
4040 
4041 /*
4042  *    Function: sd_set_properties()
4043  *
4044  * Description: Set device properties based on the improved
4045  *    format sd-config-list.
4046  *
4047  *   Arguments: un - driver soft state (unit) structure
4048  *    name  - supported tunable name
4049  *    value - tunable value
4050  */
4051 static void
4052 sd_set_properties(struct sd_lun *un, char *name, char *value)
4053 {
4054         char    *endptr = NULL;
4055         long    val = 0;
4056 
4057         if (strcasecmp(name, "cache-nonvolatile") == 0) {
4058                 if (strcasecmp(value, "true") == 0) {
4059                         un->un_f_suppress_cache_flush = TRUE;
4060                 } else if (strcasecmp(value, "false") == 0) {
4061                         un->un_f_suppress_cache_flush = FALSE;
4062                 } else {
4063                         goto value_invalid;
4064                 }
4065                 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4066                     "suppress_cache_flush flag set to %d\n",
4067                     un->un_f_suppress_cache_flush);
4068                 return;
4069         }
4070 
4071         if (strcasecmp(name, "controller-type") == 0) {
4072                 if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4073                         un->un_ctype = val;
4074                 } else {
4075                         goto value_invalid;
4076                 }
4077                 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4078                     "ctype set to %d\n", un->un_ctype);
4079                 return;
4080         }
4081 
4082         if (strcasecmp(name, "delay-busy") == 0) {
4083                 if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4084                         un->un_busy_timeout = drv_usectohz(val / 1000);
4085                 } else {
4086                         goto value_invalid;
4087                 }
4088                 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4089                     "busy_timeout set to %d\n", un->un_busy_timeout);
4090                 return;
4091         }
4092 
4093         if (strcasecmp(name, "disksort") == 0) {
4094                 if (strcasecmp(value, "true") == 0) {
4095                         un->un_f_disksort_disabled = FALSE;
4096                 } else if (strcasecmp(value, "false") == 0) {
4097                         un->un_f_disksort_disabled = TRUE;
4098                 } else {
4099                         goto value_invalid;
4100                 }
4101                 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4102                     "disksort disabled flag set to %d\n",
4103                     un->un_f_disksort_disabled);
4104                 return;
4105         }
4106 
4107         if (strcasecmp(name, "power-condition") == 0) {
4108                 if (strcasecmp(value, "true") == 0) {
4109                         un->un_f_power_condition_disabled = FALSE;
4110                 } else if (strcasecmp(value, "false") == 0) {
4111                         un->un_f_power_condition_disabled = TRUE;
4112                 } else {
4113                         goto value_invalid;
4114                 }
4115                 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4116                     "power condition disabled flag set to %d\n",
4117                     un->un_f_power_condition_disabled);
4118                 return;
4119         }
4120 
4121         if (strcasecmp(name, "timeout-releasereservation") == 0) {
4122                 if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4123                         un->un_reserve_release_time = val;
4124                 } else {
4125                         goto value_invalid;
4126                 }
4127                 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4128                     "reservation release timeout set to %d\n",
4129                     un->un_reserve_release_time);
4130                 return;
4131         }
4132 
4133         if (strcasecmp(name, "reset-lun") == 0) {
4134                 if (strcasecmp(value, "true") == 0) {
4135                         un->un_f_lun_reset_enabled = TRUE;
4136                 } else if (strcasecmp(value, "false") == 0) {
4137                         un->un_f_lun_reset_enabled = FALSE;
4138                 } else {
4139                         goto value_invalid;
4140                 }
4141                 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4142                     "lun reset enabled flag set to %d\n",
4143                     un->un_f_lun_reset_enabled);
4144                 return;
4145         }
4146 
4147         if (strcasecmp(name, "retries-busy") == 0) {
4148                 if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4149                         un->un_busy_retry_count = val;
4150                 } else {
4151                         goto value_invalid;
4152                 }
4153                 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4154                     "busy retry count set to %d\n", un->un_busy_retry_count);
4155                 return;
4156         }
4157 
4158         if (strcasecmp(name, "retries-timeout") == 0) {
4159                 if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4160                         un->un_retry_count = val;
4161                 } else {
4162                         goto value_invalid;
4163                 }
4164                 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4165                     "timeout retry count set to %d\n", un->un_retry_count);
4166                 return;
4167         }
4168 
4169         if (strcasecmp(name, "retries-notready") == 0) {
4170                 if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4171                         un->un_notready_retry_count = val;
4172                 } else {
4173                         goto value_invalid;
4174                 }
4175                 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4176                     "notready retry count set to %d\n",
4177                     un->un_notready_retry_count);
4178                 return;
4179         }
4180 
4181         if (strcasecmp(name, "retries-reset") == 0) {
4182                 if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4183                         un->un_reset_retry_count = val;
4184                 } else {
4185                         goto value_invalid;
4186                 }
4187                 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4188                     "reset retry count set to %d\n",
4189                     un->un_reset_retry_count);
4190                 return;
4191         }
4192 
4193         if (strcasecmp(name, "throttle-max") == 0) {
4194                 if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4195                         un->un_saved_throttle = un->un_throttle = val;
4196                 } else {
4197                         goto value_invalid;
4198                 }
4199                 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4200                     "throttle set to %d\n", un->un_throttle);
4201         }
4202 
4203         if (strcasecmp(name, "throttle-min") == 0) {
4204                 if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4205                         un->un_min_throttle = val;
4206                 } else {
4207                         goto value_invalid;
4208                 }
4209                 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4210                     "min throttle set to %d\n", un->un_min_throttle);
4211         }
4212 
4213         if (strcasecmp(name, "rmw-type") == 0) {
4214                 if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4215                         un->un_f_rmw_type = val;
4216                 } else {
4217                         goto value_invalid;
4218                 }
4219                 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4220                     "RMW type set to %d\n", un->un_f_rmw_type);
4221         }
4222 
4223         if (strcasecmp(name, "physical-block-size") == 0) {
4224                 if (ddi_strtol(value, &endptr, 0, &val) == 0 &&
4225                     ISP2(val) && val >= un->un_tgt_blocksize &&
4226                     val >= un->un_sys_blocksize) {
4227                         un->un_phy_blocksize = val;
4228                 } else {
4229                         goto value_invalid;
4230                 }
4231                 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4232                     "physical block size set to %d\n", un->un_phy_blocksize);
4233         }
4234 
4235         if (strcasecmp(name, "retries-victim") == 0) {
4236                 if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4237                         un->un_victim_retry_count = val;
4238                 } else {
4239                         goto value_invalid;
4240                 }
4241                 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4242                     "victim retry count set to %d\n",
4243                     un->un_victim_retry_count);
4244                 return;
4245         }
4246 
4247         /*
4248          * Validate the throttle values.
4249          * If any of the numbers are invalid, set everything to defaults.
4250          */
4251         if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4252             (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4253             (un->un_min_throttle > un->un_throttle)) {
4254                 un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4255                 un->un_min_throttle = sd_min_throttle;
4256         }
4257 
4258         if (strcasecmp(name, "mmc-gesn-polling") == 0) {
4259                 if (strcasecmp(value, "true") == 0) {
4260                         un->un_f_mmc_gesn_polling = TRUE;
4261                 } else if (strcasecmp(value, "false") == 0) {
4262                         un->un_f_mmc_gesn_polling = FALSE;
4263                 } else {
4264                         goto value_invalid;
4265                 }
4266                 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4267                     "mmc-gesn-polling set to %d\n",
4268                     un->un_f_mmc_gesn_polling);
4269         }
4270 
4271         return;
4272 
4273 value_invalid:
4274         SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4275             "value of prop %s is invalid\n", name);
4276 }
4277 
4278 /*
4279  *    Function: sd_get_tunables_from_conf()
4280  *
4281  *
4282  *    This function reads the data list from the sd.conf file and pulls
4283  *    the values that can have numeric values as arguments and places
4284  *    the values in the appropriate sd_tunables member.
4285  *    Since the order of the data list members varies across platforms
4286  *    This function reads them from the data list in a platform specific
4287  *    order and places them into the correct sd_tunable member that is
4288  *    consistent across all platforms.
4289  */
4290 static void
4291 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
4292     sd_tunables *values)
4293 {
4294         int i;
4295         int mask;
4296 
4297         bzero(values, sizeof (sd_tunables));
4298 
4299         for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4300 
4301                 mask = 1 << i;
4302                 if (mask > flags) {
4303                         break;
4304                 }
4305 
4306                 switch (mask & flags) {
4307                 case 0: /* This mask bit not set in flags */
4308                         continue;
4309                 case SD_CONF_BSET_THROTTLE:
4310                         values->sdt_throttle = data_list[i];
4311                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
4312                             "sd_get_tunables_from_conf: throttle = %d\n",
4313                             values->sdt_throttle);
4314                         break;
4315                 case SD_CONF_BSET_CTYPE:
4316                         values->sdt_ctype = data_list[i];
4317                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
4318                             "sd_get_tunables_from_conf: ctype = %d\n",
4319                             values->sdt_ctype);
4320                         break;
4321                 case SD_CONF_BSET_NRR_COUNT:
4322                         values->sdt_not_rdy_retries = data_list[i];
4323                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
4324                             "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
4325                             values->sdt_not_rdy_retries);
4326                         break;
4327                 case SD_CONF_BSET_BSY_RETRY_COUNT:
4328                         values->sdt_busy_retries = data_list[i];
4329                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
4330                             "sd_get_tunables_from_conf: busy_retries = %d\n",
4331                             values->sdt_busy_retries);
4332                         break;
4333                 case SD_CONF_BSET_RST_RETRIES:
4334                         values->sdt_reset_retries = data_list[i];
4335                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
4336                             "sd_get_tunables_from_conf: reset_retries = %d\n",
4337                             values->sdt_reset_retries);
4338                         break;
4339                 case SD_CONF_BSET_RSV_REL_TIME:
4340                         values->sdt_reserv_rel_time = data_list[i];
4341                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
4342                             "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
4343                             values->sdt_reserv_rel_time);
4344                         break;
4345                 case SD_CONF_BSET_MIN_THROTTLE:
4346                         values->sdt_min_throttle = data_list[i];
4347                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
4348                             "sd_get_tunables_from_conf: min_throttle = %d\n",
4349                             values->sdt_min_throttle);
4350                         break;
4351                 case SD_CONF_BSET_DISKSORT_DISABLED:
4352                         values->sdt_disk_sort_dis = data_list[i];
4353                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
4354                             "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
4355                             values->sdt_disk_sort_dis);
4356                         break;
4357                 case SD_CONF_BSET_LUN_RESET_ENABLED:
4358                         values->sdt_lun_reset_enable = data_list[i];
4359                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
4360                             "sd_get_tunables_from_conf: lun_reset_enable = %d"
4361                             "\n", values->sdt_lun_reset_enable);
4362                         break;
4363                 case SD_CONF_BSET_CACHE_IS_NV:
4364                         values->sdt_suppress_cache_flush = data_list[i];
4365                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
4366                             "sd_get_tunables_from_conf: \
4367                             suppress_cache_flush = %d"
4368                             "\n", values->sdt_suppress_cache_flush);
4369                         break;
4370                 case SD_CONF_BSET_PC_DISABLED:
4371                         values->sdt_disk_sort_dis = data_list[i];
4372                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
4373                             "sd_get_tunables_from_conf: power_condition_dis = "
4374                             "%d\n", values->sdt_power_condition_dis);
4375                         break;
4376                 }
4377         }
4378 }
4379 
4380 /*
4381  *    Function: sd_process_sdconf_table
4382  *
4383  * Description: Search the static configuration table for a match on the
4384  *              inquiry vid/pid and update the driver soft state structure
4385  *              according to the table property values for the device.
4386  *
4387  *              The form of a configuration table entry is:
4388  *                <vid+pid>,<flags>,<property-data>
4389  *                "SEAGATE ST42400N",1,0x40000,
4390  *                0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
4391  *
4392  *   Arguments: un - driver soft state (unit) structure
4393  */
4394 
4395 static void
4396 sd_process_sdconf_table(struct sd_lun *un)
4397 {
4398         char    *id = NULL;
4399         int     table_index;
4400         int     idlen;
4401 
4402         ASSERT(un != NULL);
4403         for (table_index = 0; table_index < sd_disk_table_size;
4404             table_index++) {
4405                 id = sd_disk_table[table_index].device_id;
4406                 idlen = strlen(id);
4407 
4408                 /*
4409                  * The static configuration table currently does not
4410                  * implement version 10 properties. Additionally,
4411                  * multiple data-property-name entries are not
4412                  * implemented in the static configuration table.
4413                  */
4414                 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4415                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
4416                             "sd_process_sdconf_table: disk %s\n", id);
4417                         sd_set_vers1_properties(un,
4418                             sd_disk_table[table_index].flags,
4419                             sd_disk_table[table_index].properties);
4420                         break;
4421                 }
4422         }
4423 }
4424 
4425 
4426 /*
4427  *    Function: sd_sdconf_id_match
4428  *
4429  * Description: This local function implements a case sensitive vid/pid
4430  *              comparison as well as the boundary cases of wild card and
4431  *              multiple blanks.
4432  *
4433  *              Note: An implicit assumption made here is that the scsi
4434  *              inquiry structure will always keep the vid, pid and
4435  *              revision strings in consecutive sequence, so they can be
4436  *              read as a single string. If this assumption is not the
4437  *              case, a separate string, to be used for the check, needs
4438  *              to be built with these strings concatenated.
4439  *
4440  *   Arguments: un - driver soft state (unit) structure
4441  *              id - table or config file vid/pid
4442  *              idlen  - length of the vid/pid (bytes)
4443  *
4444  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4445  *              SD_FAILURE - Indicates no match with the inquiry vid/pid
4446  */
4447 
4448 static int
4449 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
4450 {
4451         struct scsi_inquiry     *sd_inq;
4452         int                     rval = SD_SUCCESS;
4453 
4454         ASSERT(un != NULL);
4455         sd_inq = un->un_sd->sd_inq;
4456         ASSERT(id != NULL);
4457 
4458         /*
4459          * We use the inq_vid as a pointer to a buffer containing the
4460          * vid and pid and use the entire vid/pid length of the table
4461          * entry for the comparison. This works because the inq_pid
4462          * data member follows inq_vid in the scsi_inquiry structure.
4463          */
4464         if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
4465                 /*
4466                  * The user id string is compared to the inquiry vid/pid
4467                  * using a case insensitive comparison and ignoring
4468                  * multiple spaces.
4469                  */
4470                 rval = sd_blank_cmp(un, id, idlen);
4471                 if (rval != SD_SUCCESS) {
4472                         /*
4473                          * User id strings that start and end with a "*"
4474                          * are a special case. These do not have a
4475                          * specific vendor, and the product string can
4476                          * appear anywhere in the 16 byte PID portion of
4477                          * the inquiry data. This is a simple strstr()
4478                          * type search for the user id in the inquiry data.
4479                          */
4480                         if ((id[0] == '*') && (id[idlen - 1] == '*')) {
4481                                 char    *pidptr = &id[1];
4482                                 int     i;
4483                                 int     j;
4484                                 int     pidstrlen = idlen - 2;
4485                                 j = sizeof (SD_INQUIRY(un)->inq_pid) -
4486                                     pidstrlen;
4487 
4488                                 if (j < 0) {
4489                                         return (SD_FAILURE);
4490                                 }
4491                                 for (i = 0; i < j; i++) {
4492                                         if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
4493                                             pidptr, pidstrlen) == 0) {
4494                                                 rval = SD_SUCCESS;
4495                                                 break;
4496                                         }
4497                                 }
4498                         }
4499                 }
4500         }
4501         return (rval);
4502 }
4503 
4504 
4505 /*
4506  *    Function: sd_blank_cmp
4507  *
4508  * Description: If the id string starts and ends with a space, treat
4509  *              multiple consecutive spaces as equivalent to a single
4510  *              space. For example, this causes a sd_disk_table entry
4511  *              of " NEC CDROM " to match a device's id string of
4512  *              "NEC       CDROM".
4513  *
4514  *              Note: The success exit condition for this routine is if
4515  *              the pointer to the table entry is '\0' and the cnt of
4516  *              the inquiry length is zero. This will happen if the inquiry
4517  *              string returned by the device is padded with spaces to be
4518  *              exactly 24 bytes in length (8 byte vid + 16 byte pid). The
4519  *              SCSI spec states that the inquiry string is to be padded with
4520  *              spaces.
4521  *
4522  *   Arguments: un - driver soft state (unit) structure
4523  *              id - table or config file vid/pid
4524  *              idlen  - length of the vid/pid (bytes)
4525  *
4526  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4527  *              SD_FAILURE - Indicates no match with the inquiry vid/pid
4528  */
4529 
4530 static int
4531 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
4532 {
4533         char            *p1;
4534         char            *p2;
4535         int             cnt;
4536         cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
4537             sizeof (SD_INQUIRY(un)->inq_pid);
4538 
4539         ASSERT(un != NULL);
4540         p2 = un->un_sd->sd_inq->inq_vid;
4541         ASSERT(id != NULL);
4542         p1 = id;
4543 
4544         if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
4545                 /*
4546                  * Note: string p1 is terminated by a NUL but string p2
4547                  * isn't.  The end of p2 is determined by cnt.
4548                  */
4549                 for (;;) {
4550                         /* skip over any extra blanks in both strings */
4551                         while ((*p1 != '\0') && (*p1 == ' ')) {
4552                                 p1++;
4553                         }
4554                         while ((cnt != 0) && (*p2 == ' ')) {
4555                                 p2++;
4556                                 cnt--;
4557                         }
4558 
4559                         /* compare the two strings */
4560                         if ((cnt == 0) ||
4561                             (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
4562                                 break;
4563                         }
4564                         while ((cnt > 0) &&
4565                             (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
4566                                 p1++;
4567                                 p2++;
4568                                 cnt--;
4569                         }
4570                 }
4571         }
4572 
4573         /* return SD_SUCCESS if both strings match */
4574         return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
4575 }
4576 
4577 
4578 /*
4579  *    Function: sd_chk_vers1_data
4580  *
4581  * Description: Verify the version 1 device properties provided by the
4582  *              user via the configuration file
4583  *
4584  *   Arguments: un           - driver soft state (unit) structure
4585  *              flags        - integer mask indicating properties to be set
4586  *              prop_list    - integer list of property values
4587  *              list_len     - number of the elements
4588  *
4589  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
4590  *              SD_FAILURE - Indicates the user provided data is invalid
4591  */
4592 
4593 static int
4594 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
4595     int list_len, char *dataname_ptr)
4596 {
4597         int i;
4598         int mask = 1;
4599         int index = 0;
4600 
4601         ASSERT(un != NULL);
4602 
4603         /* Check for a NULL property name and list */
4604         if (dataname_ptr == NULL) {
4605                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4606                     "sd_chk_vers1_data: NULL data property name.");
4607                 return (SD_FAILURE);
4608         }
4609         if (prop_list == NULL) {
4610                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4611                     "sd_chk_vers1_data: %s NULL data property list.",
4612                     dataname_ptr);
4613                 return (SD_FAILURE);
4614         }
4615 
4616         /* Display a warning if undefined bits are set in the flags */
4617         if (flags & ~SD_CONF_BIT_MASK) {
4618                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4619                     "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
4620                     "Properties not set.",
4621                     (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
4622                 return (SD_FAILURE);
4623         }
4624 
4625         /*
4626          * Verify the length of the list by identifying the highest bit set
4627          * in the flags and validating that the property list has a length
4628          * up to the index of this bit.
4629          */
4630         for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4631                 if (flags & mask) {
4632                         index++;
4633                 }
4634                 mask = 1 << i;
4635         }
4636         if (list_len < (index + 2)) {
4637                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4638                     "sd_chk_vers1_data: "
4639                     "Data property list %s size is incorrect. "
4640                     "Properties not set.", dataname_ptr);
4641                 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
4642                     "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
4643                 return (SD_FAILURE);
4644         }
4645         return (SD_SUCCESS);
4646 }
4647 
4648 
4649 /*
4650  *    Function: sd_set_vers1_properties
4651  *
4652  * Description: Set version 1 device properties based on a property list
4653  *              retrieved from the driver configuration file or static
4654  *              configuration table. Version 1 properties have the format:
4655  *
4656  *      <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
4657  *
4658  *              where the prop0 value will be used to set prop0 if bit0
4659  *              is set in the flags
4660  *
4661  *   Arguments: un           - driver soft state (unit) structure
4662  *              flags        - integer mask indicating properties to be set
4663  *              prop_list    - integer list of property values
4664  */
4665 
4666 static void
4667 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4668 {
4669         ASSERT(un != NULL);
4670 
4671         /*
4672          * Set the flag to indicate cache is to be disabled. An attempt
4673          * to disable the cache via sd_cache_control() will be made
4674          * later during attach once the basic initialization is complete.
4675          */
4676         if (flags & SD_CONF_BSET_NOCACHE) {
4677                 un->un_f_opt_disable_cache = TRUE;
4678                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
4679                     "sd_set_vers1_properties: caching disabled flag set\n");
4680         }
4681 
4682         /* CD-specific configuration parameters */
4683         if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4684                 un->un_f_cfg_playmsf_bcd = TRUE;
4685                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
4686                     "sd_set_vers1_properties: playmsf_bcd set\n");
4687         }
4688         if (flags & SD_CONF_BSET_READSUB_BCD) {
4689                 un->un_f_cfg_readsub_bcd = TRUE;
4690                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
4691                     "sd_set_vers1_properties: readsub_bcd set\n");
4692         }
4693         if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4694                 un->un_f_cfg_read_toc_trk_bcd = TRUE;
4695                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
4696                     "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4697         }
4698         if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4699                 un->un_f_cfg_read_toc_addr_bcd = TRUE;
4700                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
4701                     "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4702         }
4703         if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4704                 un->un_f_cfg_no_read_header = TRUE;
4705                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
4706                     "sd_set_vers1_properties: no_read_header set\n");
4707         }
4708         if (flags & SD_CONF_BSET_READ_CD_XD4) {
4709                 un->un_f_cfg_read_cd_xd4 = TRUE;
4710                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
4711                     "sd_set_vers1_properties: read_cd_xd4 set\n");
4712         }
4713 
4714         /* Support for devices which do not have valid/unique serial numbers */
4715         if (flags & SD_CONF_BSET_FAB_DEVID) {
4716                 un->un_f_opt_fab_devid = TRUE;
4717                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
4718                     "sd_set_vers1_properties: fab_devid bit set\n");
4719         }
4720 
4721         /* Support for user throttle configuration */
4722         if (flags & SD_CONF_BSET_THROTTLE) {
4723                 ASSERT(prop_list != NULL);
4724                 un->un_saved_throttle = un->un_throttle =
4725                     prop_list->sdt_throttle;
4726                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
4727                     "sd_set_vers1_properties: throttle set to %d\n",
4728                     prop_list->sdt_throttle);
4729         }
4730 
4731         /* Set the per disk retry count according to the conf file or table. */
4732         if (flags & SD_CONF_BSET_NRR_COUNT) {
4733                 ASSERT(prop_list != NULL);
4734                 if (prop_list->sdt_not_rdy_retries) {
4735                         un->un_notready_retry_count =
4736                             prop_list->sdt_not_rdy_retries;
4737                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
4738                             "sd_set_vers1_properties: not ready retry count"
4739                             " set to %d\n", un->un_notready_retry_count);
4740                 }
4741         }
4742 
4743         /* The controller type is reported for generic disk driver ioctls */
4744         if (flags & SD_CONF_BSET_CTYPE) {
4745                 ASSERT(prop_list != NULL);
4746                 switch (prop_list->sdt_ctype) {
4747                 case CTYPE_CDROM:
4748                         un->un_ctype = prop_list->sdt_ctype;
4749                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
4750                             "sd_set_vers1_properties: ctype set to "
4751                             "CTYPE_CDROM\n");
4752                         break;
4753                 case CTYPE_CCS:
4754                         un->un_ctype = prop_list->sdt_ctype;
4755                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
4756                             "sd_set_vers1_properties: ctype set to "
4757                             "CTYPE_CCS\n");
4758                         break;
4759                 case CTYPE_ROD:         /* RW optical */
4760                         un->un_ctype = prop_list->sdt_ctype;
4761                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
4762                             "sd_set_vers1_properties: ctype set to "
4763                             "CTYPE_ROD\n");
4764                         break;
4765                 default:
4766                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4767                             "sd_set_vers1_properties: Could not set "
4768                             "invalid ctype value (%d)",
4769                             prop_list->sdt_ctype);
4770                 }
4771         }
4772 
4773         /* Purple failover timeout */
4774         if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4775                 ASSERT(prop_list != NULL);
4776                 un->un_busy_retry_count =
4777                     prop_list->sdt_busy_retries;
4778                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
4779                     "sd_set_vers1_properties: "
4780                     "busy retry count set to %d\n",
4781                     un->un_busy_retry_count);
4782         }
4783 
4784         /* Purple reset retry count */
4785         if (flags & SD_CONF_BSET_RST_RETRIES) {
4786                 ASSERT(prop_list != NULL);
4787                 un->un_reset_retry_count =
4788                     prop_list->sdt_reset_retries;
4789                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
4790                     "sd_set_vers1_properties: "
4791                     "reset retry count set to %d\n",
4792                     un->un_reset_retry_count);
4793         }
4794 
4795         /* Purple reservation release timeout */
4796         if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4797                 ASSERT(prop_list != NULL);
4798                 un->un_reserve_release_time =
4799                     prop_list->sdt_reserv_rel_time;
4800                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
4801                     "sd_set_vers1_properties: "
4802                     "reservation release timeout set to %d\n",
4803                     un->un_reserve_release_time);
4804         }
4805 
4806         /*
4807          * Driver flag telling the driver to verify that no commands are pending
4808          * for a device before issuing a Test Unit Ready. This is a workaround
4809          * for a firmware bug in some Seagate eliteI drives.
4810          */
4811         if (flags & SD_CONF_BSET_TUR_CHECK) {
4812                 un->un_f_cfg_tur_check = TRUE;
4813                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
4814                     "sd_set_vers1_properties: tur queue check set\n");
4815         }
4816 
4817         if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4818                 un->un_min_throttle = prop_list->sdt_min_throttle;
4819                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
4820                     "sd_set_vers1_properties: min throttle set to %d\n",
4821                     un->un_min_throttle);
4822         }
4823 
4824         if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4825                 un->un_f_disksort_disabled =
4826                     (prop_list->sdt_disk_sort_dis != 0) ?
4827                     TRUE : FALSE;
4828                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
4829                     "sd_set_vers1_properties: disksort disabled "
4830                     "flag set to %d\n",
4831                     prop_list->sdt_disk_sort_dis);
4832         }
4833 
4834         if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4835                 un->un_f_lun_reset_enabled =
4836                     (prop_list->sdt_lun_reset_enable != 0) ?
4837                     TRUE : FALSE;
4838                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
4839                     "sd_set_vers1_properties: lun reset enabled "
4840                     "flag set to %d\n",
4841                     prop_list->sdt_lun_reset_enable);
4842         }
4843 
4844         if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4845                 un->un_f_suppress_cache_flush =
4846                     (prop_list->sdt_suppress_cache_flush != 0) ?
4847                     TRUE : FALSE;
4848                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
4849                     "sd_set_vers1_properties: suppress_cache_flush "
4850                     "flag set to %d\n",
4851                     prop_list->sdt_suppress_cache_flush);
4852         }
4853 
4854         if (flags & SD_CONF_BSET_PC_DISABLED) {
4855                 un->un_f_power_condition_disabled =
4856                     (prop_list->sdt_power_condition_dis != 0) ?
4857                     TRUE : FALSE;
4858                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
4859                     "sd_set_vers1_properties: power_condition_disabled "
4860                     "flag set to %d\n",
4861                     prop_list->sdt_power_condition_dis);
4862         }
4863 
4864         /*
4865          * Validate the throttle values.
4866          * If any of the numbers are invalid, set everything to defaults.
4867          */
4868         if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4869             (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4870             (un->un_min_throttle > un->un_throttle)) {
4871                 un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4872                 un->un_min_throttle = sd_min_throttle;
4873         }
4874 }
4875 
4876 /*
4877  *   Function: sd_is_lsi()
4878  *
4879  *   Description: Check for lsi devices, step through the static device
4880  *      table to match vid/pid.
4881  *
4882  *   Args: un - ptr to sd_lun
4883  *
4884  *   Notes:  When creating new LSI property, need to add the new LSI property
4885  *              to this function.
4886  */
4887 static void
4888 sd_is_lsi(struct sd_lun *un)
4889 {
4890         char    *id = NULL;
4891         int     table_index;
4892         int     idlen;
4893         void    *prop;
4894 
4895         ASSERT(un != NULL);
4896         for (table_index = 0; table_index < sd_disk_table_size;
4897             table_index++) {
4898                 id = sd_disk_table[table_index].device_id;
4899                 idlen = strlen(id);
4900                 if (idlen == 0) {
4901                         continue;
4902                 }
4903 
4904                 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4905                         prop = sd_disk_table[table_index].properties;
4906                         if (prop == &lsi_properties ||
4907                             prop == &lsi_oem_properties ||
4908                             prop == &lsi_properties_scsi ||
4909                             prop == &symbios_properties) {
4910                                 un->un_f_cfg_is_lsi = TRUE;
4911                         }
4912                         break;
4913                 }
4914         }
4915 }
4916 
4917 /*
4918  *    Function: sd_get_physical_geometry
4919  *
4920  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4921  *              MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4922  *              target, and use this information to initialize the physical
4923  *              geometry cache specified by pgeom_p.
4924  *
4925  *              MODE SENSE is an optional command, so failure in this case
4926  *              does not necessarily denote an error. We want to use the
4927  *              MODE SENSE commands to derive the physical geometry of the
4928  *              device, but if either command fails, the logical geometry is
4929  *              used as the fallback for disk label geometry in cmlb.
4930  *
4931  *              This requires that un->un_blockcount and un->un_tgt_blocksize
4932  *              have already been initialized for the current target and
4933  *              that the current values be passed as args so that we don't
4934  *              end up ever trying to use -1 as a valid value. This could
4935  *              happen if either value is reset while we're not holding
4936  *              the mutex.
4937  *
4938  *   Arguments: un - driver soft state (unit) structure
4939  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4940  *                      the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4941  *                      to use the USCSI "direct" chain and bypass the normal
4942  *                      command waitq.
4943  *
4944  *     Context: Kernel thread only (can sleep).
4945  */
4946 
4947 static int
4948 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4949         diskaddr_t capacity, int lbasize, int path_flag)
4950 {
4951         struct  mode_format     *page3p;
4952         struct  mode_geometry   *page4p;
4953         struct  mode_header     *headerp;
4954         int     sector_size;
4955         int     nsect;
4956         int     nhead;
4957         int     ncyl;
4958         int     intrlv;
4959         int     spc;
4960         diskaddr_t      modesense_capacity;
4961         int     rpm;
4962         int     bd_len;
4963         int     mode_header_length;
4964         uchar_t *p3bufp;
4965         uchar_t *p4bufp;
4966         int     cdbsize;
4967         int     ret = EIO;
4968         sd_ssc_t *ssc;
4969         int     status;
4970 
4971         ASSERT(un != NULL);
4972 
4973         if (lbasize == 0) {
4974                 if (ISCD(un)) {
4975                         lbasize = 2048;
4976                 } else {
4977                         lbasize = un->un_sys_blocksize;
4978                 }
4979         }
4980         pgeom_p->g_secsize = (unsigned short)lbasize;
4981 
4982         /*
4983          * If the unit is a cd/dvd drive MODE SENSE page three
4984          * and MODE SENSE page four are reserved (see SBC spec
4985          * and MMC spec). To prevent soft errors just return
4986          * using the default LBA size.
4987          */
4988         if (ISCD(un))
4989                 return (ret);
4990 
4991         cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4992 
4993         /*
4994          * Retrieve MODE SENSE page 3 - Format Device Page
4995          */
4996         p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4997         ssc = sd_ssc_init(un);
4998         status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp,
4999             SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag);
5000         if (status != 0) {
5001                 SD_ERROR(SD_LOG_COMMON, un,
5002                     "sd_get_physical_geometry: mode sense page 3 failed\n");
5003                 goto page3_exit;
5004         }
5005 
5006         /*
5007          * Determine size of Block Descriptors in order to locate the mode
5008          * page data.  ATAPI devices return 0, SCSI devices should return
5009          * MODE_BLK_DESC_LENGTH.
5010          */
5011         headerp = (struct mode_header *)p3bufp;
5012         if (un->un_f_cfg_is_atapi == TRUE) {
5013                 struct mode_header_grp2 *mhp =
5014                     (struct mode_header_grp2 *)headerp;
5015                 mode_header_length = MODE_HEADER_LENGTH_GRP2;
5016                 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5017         } else {
5018                 mode_header_length = MODE_HEADER_LENGTH;
5019                 bd_len = ((struct mode_header *)headerp)->bdesc_length;
5020         }
5021 
5022         if (bd_len > MODE_BLK_DESC_LENGTH) {
5023                 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5024                     "sd_get_physical_geometry: received unexpected bd_len "
5025                     "of %d, page3\n", bd_len);
5026                 status = EIO;
5027                 goto page3_exit;
5028         }
5029 
5030         page3p = (struct mode_format *)
5031             ((caddr_t)headerp + mode_header_length + bd_len);
5032 
5033         if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
5034                 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5035                     "sd_get_physical_geometry: mode sense pg3 code mismatch "
5036                     "%d\n", page3p->mode_page.code);
5037                 status = EIO;
5038                 goto page3_exit;
5039         }
5040 
5041         /*
5042          * Use this physical geometry data only if BOTH MODE SENSE commands
5043          * complete successfully; otherwise, revert to the logical geometry.
5044          * So, we need to save everything in temporary variables.
5045          */
5046         sector_size = BE_16(page3p->data_bytes_sect);
5047 
5048         /*
5049          * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
5050          */
5051         if (sector_size == 0) {
5052                 sector_size = un->un_sys_blocksize;
5053         } else {
5054                 sector_size &= ~(un->un_sys_blocksize - 1);
5055         }
5056 
5057         nsect  = BE_16(page3p->sect_track);
5058         intrlv = BE_16(page3p->interleave);
5059 
5060         SD_INFO(SD_LOG_COMMON, un,
5061             "sd_get_physical_geometry: Format Parameters (page 3)\n");
5062         SD_INFO(SD_LOG_COMMON, un,
5063             "   mode page: %d; nsect: %d; sector size: %d;\n",
5064             page3p->mode_page.code, nsect, sector_size);
5065         SD_INFO(SD_LOG_COMMON, un,
5066             "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
5067             BE_16(page3p->track_skew),
5068             BE_16(page3p->cylinder_skew));
5069 
5070         sd_ssc_assessment(ssc, SD_FMT_STANDARD);
5071 
5072         /*
5073          * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
5074          */
5075         p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
5076         status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp,
5077             SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag);
5078         if (status != 0) {
5079                 SD_ERROR(SD_LOG_COMMON, un,
5080                     "sd_get_physical_geometry: mode sense page 4 failed\n");
5081                 goto page4_exit;
5082         }
5083 
5084         /*
5085          * Determine size of Block Descriptors in order to locate the mode
5086          * page data.  ATAPI devices return 0, SCSI devices should return
5087          * MODE_BLK_DESC_LENGTH.
5088          */
5089         headerp = (struct mode_header *)p4bufp;
5090         if (un->un_f_cfg_is_atapi == TRUE) {
5091                 struct mode_header_grp2 *mhp =
5092                     (struct mode_header_grp2 *)headerp;
5093                 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5094         } else {
5095                 bd_len = ((struct mode_header *)headerp)->bdesc_length;
5096         }
5097 
5098         if (bd_len > MODE_BLK_DESC_LENGTH) {
5099                 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5100                     "sd_get_physical_geometry: received unexpected bd_len of "
5101                     "%d, page4\n", bd_len);
5102                 status = EIO;
5103                 goto page4_exit;
5104         }
5105 
5106         page4p = (struct mode_geometry *)
5107             ((caddr_t)headerp + mode_header_length + bd_len);
5108 
5109         if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
5110                 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5111                     "sd_get_physical_geometry: mode sense pg4 code mismatch "
5112                     "%d\n", page4p->mode_page.code);
5113                 status = EIO;
5114                 goto page4_exit;
5115         }
5116 
5117         /*
5118          * Stash the data now, after we know that both commands completed.
5119          */
5120 
5121 
5122         nhead = (int)page4p->heads;  /* uchar, so no conversion needed */
5123         spc   = nhead * nsect;
5124         ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
5125         rpm   = BE_16(page4p->rpm);
5126 
5127         modesense_capacity = spc * ncyl;
5128 
5129         SD_INFO(SD_LOG_COMMON, un,
5130             "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
5131         SD_INFO(SD_LOG_COMMON, un,
5132             "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
5133         SD_INFO(SD_LOG_COMMON, un,
5134             "   computed capacity(h*s*c): %d;\n", modesense_capacity);
5135         SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
5136             (void *)pgeom_p, capacity);
5137 
5138         /*
5139          * Compensate if the drive's geometry is not rectangular, i.e.,
5140          * the product of C * H * S returned by MODE SENSE >= that returned
5141          * by read capacity. This is an idiosyncrasy of the original x86
5142          * disk subsystem.
5143          */
5144         if (modesense_capacity >= capacity) {
5145                 SD_INFO(SD_LOG_COMMON, un,
5146                     "sd_get_physical_geometry: adjusting acyl; "
5147                     "old: %d; new: %d\n", pgeom_p->g_acyl,
5148                     (modesense_capacity - capacity + spc - 1) / spc);
5149                 if (sector_size != 0) {
5150                         /* 1243403: NEC D38x7 drives don't support sec size */
5151                         pgeom_p->g_secsize = (unsigned short)sector_size;
5152                 }
5153                 pgeom_p->g_nsect    = (unsigned short)nsect;
5154                 pgeom_p->g_nhead    = (unsigned short)nhead;
5155                 pgeom_p->g_capacity = capacity;
5156                 pgeom_p->g_acyl          =
5157                     (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
5158                 pgeom_p->g_ncyl          = ncyl - pgeom_p->g_acyl;
5159         }
5160 
5161         pgeom_p->g_rpm    = (unsigned short)rpm;
5162         pgeom_p->g_intrlv = (unsigned short)intrlv;
5163         ret = 0;
5164 
5165         SD_INFO(SD_LOG_COMMON, un,
5166             "sd_get_physical_geometry: mode sense geometry:\n");
5167         SD_INFO(SD_LOG_COMMON, un,
5168             "   nsect: %d; sector size: %d; interlv: %d\n",
5169             nsect, sector_size, intrlv);
5170         SD_INFO(SD_LOG_COMMON, un,
5171             "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
5172             nhead, ncyl, rpm, modesense_capacity);
5173         SD_INFO(SD_LOG_COMMON, un,
5174             "sd_get_physical_geometry: (cached)\n");
5175         SD_INFO(SD_LOG_COMMON, un,
5176             "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5177             pgeom_p->g_ncyl,  pgeom_p->g_acyl,
5178             pgeom_p->g_nhead, pgeom_p->g_nsect);
5179         SD_INFO(SD_LOG_COMMON, un,
5180             "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5181             pgeom_p->g_secsize, pgeom_p->g_capacity,
5182             pgeom_p->g_intrlv, pgeom_p->g_rpm);
5183         sd_ssc_assessment(ssc, SD_FMT_STANDARD);
5184 
5185 page4_exit:
5186         kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5187 
5188 page3_exit:
5189         kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5190 
5191         if (status != 0) {
5192                 if (status == EIO) {
5193                         /*
5194                          * Some disks do not support mode sense(6), we
5195                          * should ignore this kind of error(sense key is
5196                          * 0x5 - illegal request).
5197                          */
5198                         uint8_t *sensep;
5199                         int senlen;
5200 
5201                         sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
5202                         senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
5203                             ssc->ssc_uscsi_cmd->uscsi_rqresid);
5204 
5205                         if (senlen > 0 &&
5206                             scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
5207                                 sd_ssc_assessment(ssc,
5208                                     SD_FMT_IGNORE_COMPROMISE);
5209                         } else {
5210                                 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
5211                         }
5212                 } else {
5213                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5214                 }
5215         }
5216         sd_ssc_fini(ssc);
5217         return (ret);
5218 }
5219 
5220 /*
5221  *    Function: sd_get_virtual_geometry
5222  *
5223  * Description: Ask the controller to tell us about the target device.
5224  *
5225  *   Arguments: un - pointer to softstate
5226  *              capacity - disk capacity in #blocks
5227  *              lbasize - disk block size in bytes
5228  *
5229  *     Context: Kernel thread only
5230  */
5231 
5232 static int
5233 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
5234     diskaddr_t capacity, int lbasize)
5235 {
5236         uint_t  geombuf;
5237         int     spc;
5238 
5239         ASSERT(un != NULL);
5240 
5241         /* Set sector size, and total number of sectors */
5242         (void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5243         (void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5244 
5245         /* Let the HBA tell us its geometry */
5246         geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5247 
5248         /* A value of -1 indicates an undefined "geometry" property */
5249         if (geombuf == (-1)) {
5250                 return (EINVAL);
5251         }
5252 
5253         /* Initialize the logical geometry cache. */
5254         lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5255         lgeom_p->g_nsect   = geombuf & 0xffff;
5256         lgeom_p->g_secsize = un->un_sys_blocksize;
5257 
5258         spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5259 
5260         /*
5261          * Note: The driver originally converted the capacity value from
5262          * target blocks to system blocks. However, the capacity value passed
5263          * to this routine is already in terms of system blocks (this scaling
5264          * is done when the READ CAPACITY command is issued and processed).
5265          * This 'error' may have gone undetected because the usage of g_ncyl
5266          * (which is based upon g_capacity) is very limited within the driver
5267          */
5268         lgeom_p->g_capacity = capacity;
5269 
5270         /*
5271          * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5272          * hba may return zero values if the device has been removed.
5273          */
5274         if (spc == 0) {
5275                 lgeom_p->g_ncyl = 0;
5276         } else {
5277                 lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5278         }
5279         lgeom_p->g_acyl = 0;
5280 
5281         SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5282         return (0);
5283 
5284 }
5285 /*
5286  *    Function: sd_update_block_info
5287  *
5288  * Description: Calculate a byte count to sector count bitshift value
5289  *              from sector size.
5290  *
5291  *   Arguments: un: unit struct.
5292  *              lbasize: new target sector size
5293  *              capacity: new target capacity, ie. block count
5294  *
5295  *     Context: Kernel thread context
5296  */
5297 
5298 static void
5299 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5300 {
5301         if (lbasize != 0) {
5302                 un->un_tgt_blocksize = lbasize;
5303                 un->un_f_tgt_blocksize_is_valid = TRUE;
5304                 if (!un->un_f_has_removable_media) {
5305                         un->un_sys_blocksize = lbasize;
5306                 }
5307         }
5308 
5309         if (capacity != 0) {
5310                 un->un_blockcount            = capacity;
5311                 un->un_f_blockcount_is_valid = TRUE;
5312 
5313                 /*
5314                  * The capacity has changed so update the errstats.
5315                  */
5316                 if (un->un_errstats != NULL) {
5317                         struct sd_errstats *stp;
5318 
5319                         capacity *= un->un_sys_blocksize;
5320                         stp = (struct sd_errstats *)un->un_errstats->ks_data;
5321                         if (stp->sd_capacity.value.ui64 < capacity)
5322                                 stp->sd_capacity.value.ui64 = capacity;
5323                 }
5324         }
5325 }
5326 
5327 
5328 /*
5329  *    Function: sd_register_devid
5330  *
5331  * Description: This routine will obtain the device id information from the
5332  *              target, obtain the serial number, and register the device
5333  *              id with the ddi framework.
5334  *
5335  *   Arguments: devi - the system's dev_info_t for the device.
5336  *              un - driver soft state (unit) structure
5337  *              reservation_flag - indicates if a reservation conflict
5338  *              occurred during attach
5339  *
5340  *     Context: Kernel Thread
5341  */
5342 static void
5343 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag)
5344 {
5345         int             rval            = 0;
5346         uchar_t         *inq80          = NULL;
5347         size_t          inq80_len       = MAX_INQUIRY_SIZE;
5348         size_t          inq80_resid     = 0;
5349         uchar_t         *inq83          = NULL;
5350         size_t          inq83_len       = MAX_INQUIRY_SIZE;
5351         size_t          inq83_resid     = 0;
5352         int             dlen, len;
5353         char            *sn;
5354         struct sd_lun   *un;
5355 
5356         ASSERT(ssc != NULL);
5357         un = ssc->ssc_un;
5358         ASSERT(un != NULL);
5359         ASSERT(mutex_owned(SD_MUTEX(un)));
5360         ASSERT((SD_DEVINFO(un)) == devi);
5361 
5362 
5363         /*
5364          * We check the availability of the World Wide Name (0x83) and Unit
5365          * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5366          * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5367          * 0x83 is available, that is the best choice.  Our next choice is
5368          * 0x80.  If neither are available, we munge the devid from the device
5369          * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5370          * to fabricate a devid for non-Sun qualified disks.
5371          */
5372         if (sd_check_vpd_page_support(ssc) == 0) {
5373                 /* collect page 80 data if available */
5374                 if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5375 
5376                         mutex_exit(SD_MUTEX(un));
5377                         inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5378 
5379                         rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len,
5380                             0x01, 0x80, &inq80_resid);
5381 
5382                         if (rval != 0) {
5383                                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5384                                 kmem_free(inq80, inq80_len);
5385                                 inq80 = NULL;
5386                                 inq80_len = 0;
5387                         } else if (ddi_prop_exists(
5388                             DDI_DEV_T_NONE, SD_DEVINFO(un),
5389                             DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
5390                             INQUIRY_SERIAL_NO) == 0) {
5391                                 /*
5392                                  * If we don't already have a serial number
5393                                  * property, do quick verify of data returned
5394                                  * and define property.
5395                                  */
5396                                 dlen = inq80_len - inq80_resid;
5397                                 len = (size_t)inq80[3];
5398                                 if ((dlen >= 4) && ((len + 4) <= dlen)) {
5399                                         /*
5400                                          * Ensure sn termination, skip leading
5401                                          * blanks, and create property
5402                                          * 'inquiry-serial-no'.
5403                                          */
5404                                         sn = (char *)&inq80[4];
5405                                         sn[len] = 0;
5406                                         while (*sn && (*sn == ' '))
5407                                                 sn++;
5408                                         if (*sn) {
5409                                                 (void) ddi_prop_update_string(
5410                                                     DDI_DEV_T_NONE,
5411                                                     SD_DEVINFO(un),
5412                                                     INQUIRY_SERIAL_NO, sn);
5413                                         }
5414                                 }
5415                         }
5416                         mutex_enter(SD_MUTEX(un));
5417                 }
5418 
5419                 /* collect page 83 data if available */
5420                 if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5421                         mutex_exit(SD_MUTEX(un));
5422                         inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5423 
5424                         rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len,
5425                             0x01, 0x83, &inq83_resid);
5426 
5427                         if (rval != 0) {
5428                                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5429                                 kmem_free(inq83, inq83_len);
5430                                 inq83 = NULL;
5431                                 inq83_len = 0;
5432                         }
5433                         mutex_enter(SD_MUTEX(un));
5434                 }
5435         }
5436 
5437         /*
5438          * If transport has already registered a devid for this target
5439          * then that takes precedence over the driver's determination
5440          * of the devid.
5441          *
5442          * NOTE: The reason this check is done here instead of at the beginning
5443          * of the function is to allow the code above to create the
5444          * 'inquiry-serial-no' property.
5445          */
5446         if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
5447                 ASSERT(un->un_devid);
5448                 un->un_f_devid_transport_defined = TRUE;
5449                 goto cleanup; /* use devid registered by the transport */
5450         }
5451 
5452         /*
5453          * This is the case of antiquated Sun disk drives that have the
5454          * FAB_DEVID property set in the disk_table.  These drives
5455          * manage the devid's by storing them in last 2 available sectors
5456          * on the drive and have them fabricated by the ddi layer by calling
5457          * ddi_devid_init and passing the DEVID_FAB flag.
5458          */
5459         if (un->un_f_opt_fab_devid == TRUE) {
5460                 /*
5461                  * Depending on EINVAL isn't reliable, since a reserved disk
5462                  * may result in invalid geometry, so check to make sure a
5463                  * reservation conflict did not occur during attach.
5464                  */
5465                 if ((sd_get_devid(ssc) == EINVAL) &&
5466                     (reservation_flag != SD_TARGET_IS_RESERVED)) {
5467                         /*
5468                          * The devid is invalid AND there is no reservation
5469                          * conflict.  Fabricate a new devid.
5470                          */
5471                         (void) sd_create_devid(ssc);
5472                 }
5473 
5474                 /* Register the devid if it exists */
5475                 if (un->un_devid != NULL) {
5476                         (void) ddi_devid_register(SD_DEVINFO(un),
5477                             un->un_devid);
5478                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
5479                             "sd_register_devid: Devid Fabricated\n");
5480                 }
5481                 goto cleanup;
5482         }
5483 
5484         /* encode best devid possible based on data available */
5485         if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
5486             (char *)ddi_driver_name(SD_DEVINFO(un)),
5487             (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
5488             inq80, inq80_len - inq80_resid, inq83, inq83_len -
5489             inq83_resid, &un->un_devid) == DDI_SUCCESS) {
5490 
5491                 /* devid successfully encoded, register devid */
5492                 (void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
5493 
5494         } else {
5495                 /*
5496                  * Unable to encode a devid based on data available.
5497                  * This is not a Sun qualified disk.  Older Sun disk
5498                  * drives that have the SD_FAB_DEVID property
5499                  * set in the disk_table and non Sun qualified
5500                  * disks are treated in the same manner.  These
5501                  * drives manage the devid's by storing them in
5502                  * last 2 available sectors on the drive and
5503                  * have them fabricated by the ddi layer by
5504                  * calling ddi_devid_init and passing the
5505                  * DEVID_FAB flag.
5506                  * Create a fabricate devid only if there's no
5507                  * fabricate devid existed.
5508                  */
5509                 if (sd_get_devid(ssc) == EINVAL) {
5510                         (void) sd_create_devid(ssc);
5511                 }
5512                 un->un_f_opt_fab_devid = TRUE;
5513 
5514                 /* Register the devid if it exists */
5515                 if (un->un_devid != NULL) {
5516                         (void) ddi_devid_register(SD_DEVINFO(un),
5517                             un->un_devid);
5518                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
5519                             "sd_register_devid: devid fabricated using "
5520                             "ddi framework\n");
5521                 }
5522         }
5523 
5524 cleanup:
5525         /* clean up resources */
5526         if (inq80 != NULL) {
5527                 kmem_free(inq80, inq80_len);
5528         }
5529         if (inq83 != NULL) {
5530                 kmem_free(inq83, inq83_len);
5531         }
5532 }
5533 
5534 
5535 
5536 /*
5537  *    Function: sd_get_devid
5538  *
5539  * Description: This routine will return 0 if a valid device id has been
5540  *              obtained from the target and stored in the soft state. If a
5541  *              valid device id has not been previously read and stored, a
5542  *              read attempt will be made.
5543  *
5544  *   Arguments: un - driver soft state (unit) structure
5545  *
5546  * Return Code: 0 if we successfully get the device id
5547  *
5548  *     Context: Kernel Thread
5549  */
5550 
5551 static int
5552 sd_get_devid(sd_ssc_t *ssc)
5553 {
5554         struct dk_devid         *dkdevid;
5555         ddi_devid_t             tmpid;
5556         uint_t                  *ip;
5557         size_t                  sz;
5558         diskaddr_t              blk;
5559         int                     status;
5560         int                     chksum;
5561         int                     i;
5562         size_t                  buffer_size;
5563         struct sd_lun           *un;
5564 
5565         ASSERT(ssc != NULL);
5566         un = ssc->ssc_un;
5567         ASSERT(un != NULL);
5568         ASSERT(mutex_owned(SD_MUTEX(un)));
5569 
5570         SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
5571             un);
5572 
5573         if (un->un_devid != NULL) {
5574                 return (0);
5575         }
5576 
5577         mutex_exit(SD_MUTEX(un));
5578         if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5579             (void *)SD_PATH_DIRECT) != 0) {
5580                 mutex_enter(SD_MUTEX(un));
5581                 return (EINVAL);
5582         }
5583 
5584         /*
5585          * Read and verify device id, stored in the reserved cylinders at the
5586          * end of the disk. Backup label is on the odd sectors of the last
5587          * track of the last cylinder. Device id will be on track of the next
5588          * to last cylinder.
5589          */
5590         mutex_enter(SD_MUTEX(un));
5591         buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
5592         mutex_exit(SD_MUTEX(un));
5593         dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
5594         status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk,
5595             SD_PATH_DIRECT);
5596 
5597         if (status != 0) {
5598                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5599                 goto error;
5600         }
5601 
5602         /* Validate the revision */
5603         if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
5604             (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
5605                 status = EINVAL;
5606                 goto error;
5607         }
5608 
5609         /* Calculate the checksum */
5610         chksum = 0;
5611         ip = (uint_t *)dkdevid;
5612         for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int));
5613             i++) {
5614                 chksum ^= ip[i];
5615         }
5616 
5617         /* Compare the checksums */
5618         if (DKD_GETCHKSUM(dkdevid) != chksum) {
5619                 status = EINVAL;
5620                 goto error;
5621         }
5622 
5623         /* Validate the device id */
5624         if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
5625                 status = EINVAL;
5626                 goto error;
5627         }
5628 
5629         /*
5630          * Store the device id in the driver soft state
5631          */
5632         sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
5633         tmpid = kmem_alloc(sz, KM_SLEEP);
5634 
5635         mutex_enter(SD_MUTEX(un));
5636 
5637         un->un_devid = tmpid;
5638         bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
5639 
5640         kmem_free(dkdevid, buffer_size);
5641 
5642         SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
5643 
5644         return (status);
5645 error:
5646         mutex_enter(SD_MUTEX(un));
5647         kmem_free(dkdevid, buffer_size);
5648         return (status);
5649 }
5650 
5651 
5652 /*
5653  *    Function: sd_create_devid
5654  *
5655  * Description: This routine will fabricate the device id and write it
5656  *              to the disk.
5657  *
5658  *   Arguments: un - driver soft state (unit) structure
5659  *
5660  * Return Code: value of the fabricated device id
5661  *
5662  *     Context: Kernel Thread
5663  */
5664 
5665 static ddi_devid_t
5666 sd_create_devid(sd_ssc_t *ssc)
5667 {
5668         struct sd_lun   *un;
5669 
5670         ASSERT(ssc != NULL);
5671         un = ssc->ssc_un;
5672         ASSERT(un != NULL);
5673 
5674         /* Fabricate the devid */
5675         if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
5676             == DDI_FAILURE) {
5677                 return (NULL);
5678         }
5679 
5680         /* Write the devid to disk */
5681         if (sd_write_deviceid(ssc) != 0) {
5682                 ddi_devid_free(un->un_devid);
5683                 un->un_devid = NULL;
5684         }
5685 
5686         return (un->un_devid);
5687 }
5688 
5689 
5690 /*
5691  *    Function: sd_write_deviceid
5692  *
5693  * Description: This routine will write the device id to the disk
5694  *              reserved sector.
5695  *
5696  *   Arguments: un - driver soft state (unit) structure
5697  *
5698  * Return Code: EINVAL
5699  *              value returned by sd_send_scsi_cmd
5700  *
5701  *     Context: Kernel Thread
5702  */
5703 
5704 static int
5705 sd_write_deviceid(sd_ssc_t *ssc)
5706 {
5707         struct dk_devid         *dkdevid;
5708         uchar_t                 *buf;
5709         diskaddr_t              blk;
5710         uint_t                  *ip, chksum;
5711         int                     status;
5712         int                     i;
5713         struct sd_lun           *un;
5714 
5715         ASSERT(ssc != NULL);
5716         un = ssc->ssc_un;
5717         ASSERT(un != NULL);
5718         ASSERT(mutex_owned(SD_MUTEX(un)));
5719 
5720         mutex_exit(SD_MUTEX(un));
5721         if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5722             (void *)SD_PATH_DIRECT) != 0) {
5723                 mutex_enter(SD_MUTEX(un));
5724                 return (-1);
5725         }
5726 
5727 
5728         /* Allocate the buffer */
5729         buf = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
5730         dkdevid = (struct dk_devid *)buf;
5731 
5732         /* Fill in the revision */
5733         dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5734         dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5735 
5736         /* Copy in the device id */
5737         mutex_enter(SD_MUTEX(un));
5738         bcopy(un->un_devid, &dkdevid->dkd_devid,
5739             ddi_devid_sizeof(un->un_devid));
5740         mutex_exit(SD_MUTEX(un));
5741 
5742         /* Calculate the checksum */
5743         chksum = 0;
5744         ip = (uint_t *)dkdevid;
5745         for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int));
5746             i++) {
5747                 chksum ^= ip[i];
5748         }
5749 
5750         /* Fill-in checksum */
5751         DKD_FORMCHKSUM(chksum, dkdevid);
5752 
5753         /* Write the reserved sector */
5754         status = sd_send_scsi_WRITE(ssc, buf, un->un_sys_blocksize, blk,
5755             SD_PATH_DIRECT);
5756         if (status != 0)
5757                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5758 
5759         kmem_free(buf, un->un_sys_blocksize);
5760 
5761         mutex_enter(SD_MUTEX(un));
5762         return (status);
5763 }
5764 
5765 
5766 /*
5767  *    Function: sd_check_vpd_page_support
5768  *
5769  * Description: This routine sends an inquiry command with the EVPD bit set and
5770  *              a page code of 0x00 to the device. It is used to determine which
5771  *              vital product pages are available to find the devid. We are
5772  *              looking for pages 0x83 0x80 or 0xB1.  If we return a negative 1,
5773  *              the device does not support that command.
5774  *
5775  *   Arguments: un  - driver soft state (unit) structure
5776  *
5777  * Return Code: 0 - success
5778  *              1 - check condition
5779  *
5780  *     Context: This routine can sleep.
5781  */
5782 
5783 static int
5784 sd_check_vpd_page_support(sd_ssc_t *ssc)
5785 {
5786         uchar_t *page_list      = NULL;
5787         uchar_t page_length     = 0xff; /* Use max possible length */
5788         uchar_t evpd            = 0x01; /* Set the EVPD bit */
5789         uchar_t page_code       = 0x00; /* Supported VPD Pages */
5790         int     rval            = 0;
5791         int     counter;
5792         struct sd_lun           *un;
5793 
5794         ASSERT(ssc != NULL);
5795         un = ssc->ssc_un;
5796         ASSERT(un != NULL);
5797         ASSERT(mutex_owned(SD_MUTEX(un)));
5798 
5799         mutex_exit(SD_MUTEX(un));
5800 
5801         /*
5802          * We'll set the page length to the maximum to save figuring it out
5803          * with an additional call.
5804          */
5805         page_list =  kmem_zalloc(page_length, KM_SLEEP);
5806 
5807         rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd,
5808             page_code, NULL);
5809 
5810         if (rval != 0)
5811                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5812 
5813         mutex_enter(SD_MUTEX(un));
5814 
5815         /*
5816          * Now we must validate that the device accepted the command, as some
5817          * drives do not support it.  If the drive does support it, we will
5818          * return 0, and the supported pages will be in un_vpd_page_mask.  If
5819          * not, we return -1.
5820          */
5821         if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5822                 /* Loop to find one of the 2 pages we need */
5823                 counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5824 
5825                 /*
5826                  * Pages are returned in ascending order, and 0x83 is what we
5827                  * are hoping for.
5828                  */
5829                 while ((page_list[counter] <= 0xB1) &&
5830                     (counter <= (page_list[VPD_PAGE_LENGTH] +
5831                     VPD_HEAD_OFFSET))) {
5832                         /*
5833                          * Add 3 because page_list[3] is the number of
5834                          * pages minus 3
5835                          */
5836 
5837                         switch (page_list[counter]) {
5838                         case 0x00:
5839                                 un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5840                                 break;
5841                         case 0x80:
5842                                 un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5843                                 break;
5844                         case 0x81:
5845                                 un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5846                                 break;
5847                         case 0x82:
5848                                 un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5849                                 break;
5850                         case 0x83:
5851                                 un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5852                                 break;
5853                         case 0x86:
5854                                 un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5855                                 break;
5856                         case 0xB1:
5857                                 un->un_vpd_page_mask |= SD_VPD_DEV_CHARACTER_PG;
5858                                 break;
5859                         }
5860                         counter++;
5861                 }
5862 
5863         } else {
5864                 rval = -1;
5865 
5866                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
5867                     "sd_check_vpd_page_support: This drive does not implement "
5868                     "VPD pages.\n");
5869         }
5870 
5871         kmem_free(page_list, page_length);
5872 
5873         return (rval);
5874 }
5875 
5876 
5877 /*
5878  *    Function: sd_setup_pm
5879  *
5880  * Description: Initialize Power Management on the device
5881  *
5882  *     Context: Kernel Thread
5883  */
5884 
5885 static void
5886 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi)
5887 {
5888         uint_t          log_page_size;
5889         uchar_t         *log_page_data;
5890         int             rval = 0;
5891         struct sd_lun   *un;
5892 
5893         ASSERT(ssc != NULL);
5894         un = ssc->ssc_un;
5895         ASSERT(un != NULL);
5896 
5897         /*
5898          * Since we are called from attach, holding a mutex for
5899          * un is unnecessary. Because some of the routines called
5900          * from here require SD_MUTEX to not be held, assert this
5901          * right up front.
5902          */
5903         ASSERT(!mutex_owned(SD_MUTEX(un)));
5904         /*
5905          * Since the sd device does not have the 'reg' property,
5906          * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5907          * The following code is to tell cpr that this device
5908          * DOES need to be suspended and resumed.
5909          */
5910         (void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5911             "pm-hardware-state", "needs-suspend-resume");
5912 
5913         /*
5914          * This complies with the new power management framework
5915          * for certain desktop machines. Create the pm_components
5916          * property as a string array property.
5917          * If un_f_pm_supported is TRUE, that means the disk
5918          * attached HBA has set the "pm-capable" property and
5919          * the value of this property is bigger than 0.
5920          */
5921         if (un->un_f_pm_supported) {
5922                 /*
5923                  * not all devices have a motor, try it first.
5924                  * some devices may return ILLEGAL REQUEST, some
5925                  * will hang
5926                  * The following START_STOP_UNIT is used to check if target
5927                  * device has a motor.
5928                  */
5929                 un->un_f_start_stop_supported = TRUE;
5930 
5931                 if (un->un_f_power_condition_supported) {
5932                         rval = sd_send_scsi_START_STOP_UNIT(ssc,
5933                             SD_POWER_CONDITION, SD_TARGET_ACTIVE,
5934                             SD_PATH_DIRECT);
5935                         if (rval != 0) {
5936                                 un->un_f_power_condition_supported = FALSE;
5937                         }
5938                 }
5939                 if (!un->un_f_power_condition_supported) {
5940                         rval = sd_send_scsi_START_STOP_UNIT(ssc,
5941                             SD_START_STOP, SD_TARGET_START, SD_PATH_DIRECT);
5942                 }
5943                 if (rval != 0) {
5944                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5945                         un->un_f_start_stop_supported = FALSE;
5946                 }
5947 
5948                 /*
5949                  * create pm properties anyways otherwise the parent can't
5950                  * go to sleep
5951                  */
5952                 un->un_f_pm_is_enabled = TRUE;
5953                 (void) sd_create_pm_components(devi, un);
5954 
5955                 /*
5956                  * If it claims that log sense is supported, check it out.
5957                  */
5958                 if (un->un_f_log_sense_supported) {
5959                         rval = sd_log_page_supported(ssc,
5960                             START_STOP_CYCLE_PAGE);
5961                         if (rval == 1) {
5962                                 /* Page found, use it. */
5963                                 un->un_start_stop_cycle_page =
5964                                     START_STOP_CYCLE_PAGE;
5965                         } else {
5966                                 /*
5967                                  * Page not found or log sense is not
5968                                  * supported.
5969                                  * Notice we do not check the old style
5970                                  * START_STOP_CYCLE_VU_PAGE because this
5971                                  * code path does not apply to old disks.
5972                                  */
5973                                 un->un_f_log_sense_supported = FALSE;
5974                                 un->un_f_pm_log_sense_smart = FALSE;
5975                         }
5976                 }
5977 
5978                 return;
5979         }
5980 
5981         /*
5982          * For the disk whose attached HBA has not set the "pm-capable"
5983          * property, check if it supports the power management.
5984          */
5985         if (!un->un_f_log_sense_supported) {
5986                 un->un_power_level = SD_SPINDLE_ON;
5987                 un->un_f_pm_is_enabled = FALSE;
5988                 return;
5989         }
5990 
5991         rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE);
5992 
5993 #ifdef  SDDEBUG
5994         if (sd_force_pm_supported) {
5995                 /* Force a successful result */
5996                 rval = 1;
5997         }
5998 #endif
5999 
6000         /*
6001          * If the start-stop cycle counter log page is not supported
6002          * or if the pm-capable property is set to be false (0),
6003          * then we should not create the pm_components property.
6004          */
6005         if (rval == -1) {
6006                 /*
6007                  * Error.
6008                  * Reading log sense failed, most likely this is
6009                  * an older drive that does not support log sense.
6010                  * If this fails auto-pm is not supported.
6011                  */
6012                 un->un_power_level = SD_SPINDLE_ON;
6013                 un->un_f_pm_is_enabled = FALSE;
6014 
6015         } else if (rval == 0) {
6016                 /*
6017                  * Page not found.
6018                  * The start stop cycle counter is implemented as page
6019                  * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
6020                  * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
6021                  */
6022                 if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) {
6023                         /*
6024                          * Page found, use this one.
6025                          */
6026                         un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
6027                         un->un_f_pm_is_enabled = TRUE;
6028                 } else {
6029                         /*
6030                          * Error or page not found.
6031                          * auto-pm is not supported for this device.
6032                          */
6033                         un->un_power_level = SD_SPINDLE_ON;
6034                         un->un_f_pm_is_enabled = FALSE;
6035                 }
6036         } else {
6037                 /*
6038                  * Page found, use it.
6039                  */
6040                 un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6041                 un->un_f_pm_is_enabled = TRUE;
6042         }
6043 
6044 
6045         if (un->un_f_pm_is_enabled == TRUE) {
6046                 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6047                 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6048 
6049                 rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6050                     log_page_size, un->un_start_stop_cycle_page,
6051                     0x01, 0, SD_PATH_DIRECT);
6052 
6053                 if (rval != 0) {
6054                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6055                 }
6056 
6057 #ifdef  SDDEBUG
6058                 if (sd_force_pm_supported) {
6059                         /* Force a successful result */
6060                         rval = 0;
6061                 }
6062 #endif
6063 
6064                 /*
6065                  * If the Log sense for Page( Start/stop cycle counter page)
6066                  * succeeds, then power management is supported and we can
6067                  * enable auto-pm.
6068                  */
6069                 if (rval == 0)  {
6070                         (void) sd_create_pm_components(devi, un);
6071                 } else {
6072                         un->un_power_level = SD_SPINDLE_ON;
6073                         un->un_f_pm_is_enabled = FALSE;
6074                 }
6075 
6076                 kmem_free(log_page_data, log_page_size);
6077         }
6078 }
6079 
6080 
6081 /*
6082  *    Function: sd_create_pm_components
6083  *
6084  * Description: Initialize PM property.
6085  *
6086  *     Context: Kernel thread context
6087  */
6088 
6089 static void
6090 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6091 {
6092         ASSERT(!mutex_owned(SD_MUTEX(un)));
6093 
6094         if (un->un_f_power_condition_supported) {
6095                 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6096                     "pm-components", sd_pwr_pc.pm_comp, 5)
6097                     != DDI_PROP_SUCCESS) {
6098                         un->un_power_level = SD_SPINDLE_ACTIVE;
6099                         un->un_f_pm_is_enabled = FALSE;
6100                         return;
6101                 }
6102         } else {
6103                 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6104                     "pm-components", sd_pwr_ss.pm_comp, 3)
6105                     != DDI_PROP_SUCCESS) {
6106                         un->un_power_level = SD_SPINDLE_ON;
6107                         un->un_f_pm_is_enabled = FALSE;
6108                         return;
6109                 }
6110         }
6111         /*
6112          * When components are initially created they are idle,
6113          * power up any non-removables.
6114          * Note: the return value of pm_raise_power can't be used
6115          * for determining if PM should be enabled for this device.
6116          * Even if you check the return values and remove this
6117          * property created above, the PM framework will not honor the
6118          * change after the first call to pm_raise_power. Hence,
6119          * removal of that property does not help if pm_raise_power
6120          * fails. In the case of removable media, the start/stop
6121          * will fail if the media is not present.
6122          */
6123         if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
6124             SD_PM_STATE_ACTIVE(un)) == DDI_SUCCESS)) {
6125                 mutex_enter(SD_MUTEX(un));
6126                 un->un_power_level = SD_PM_STATE_ACTIVE(un);
6127                 mutex_enter(&un->un_pm_mutex);
6128                 /* Set to on and not busy. */
6129                 un->un_pm_count = 0;
6130         } else {
6131                 mutex_enter(SD_MUTEX(un));
6132                 un->un_power_level = SD_PM_STATE_STOPPED(un);
6133                 mutex_enter(&un->un_pm_mutex);
6134                 /* Set to off. */
6135                 un->un_pm_count = -1;
6136         }
6137         mutex_exit(&un->un_pm_mutex);
6138         mutex_exit(SD_MUTEX(un));
6139 }
6140 
6141 
6142 /*
6143  *    Function: sd_ddi_suspend
6144  *
6145  * Description: Performs system power-down operations. This includes
6146  *              setting the drive state to indicate its suspended so
6147  *              that no new commands will be accepted. Also, wait for
6148  *              all commands that are in transport or queued to a timer
6149  *              for retry to complete. All timeout threads are cancelled.
6150  *
6151  * Return Code: DDI_FAILURE or DDI_SUCCESS
6152  *
6153  *     Context: Kernel thread context
6154  */
6155 
6156 static int
6157 sd_ddi_suspend(dev_info_t *devi)
6158 {
6159         struct  sd_lun  *un;
6160         clock_t         wait_cmds_complete;
6161 
6162         un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6163         if (un == NULL) {
6164                 return (DDI_FAILURE);
6165         }
6166 
6167         SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6168 
6169         mutex_enter(SD_MUTEX(un));
6170 
6171         /* Return success if the device is already suspended. */
6172         if (un->un_state == SD_STATE_SUSPENDED) {
6173                 mutex_exit(SD_MUTEX(un));
6174                 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6175                     "device already suspended, exiting\n");
6176                 return (DDI_SUCCESS);
6177         }
6178 
6179         /* Return failure if the device is being used by HA */
6180         if (un->un_resvd_status &
6181             (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
6182                 mutex_exit(SD_MUTEX(un));
6183                 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6184                     "device in use by HA, exiting\n");
6185                 return (DDI_FAILURE);
6186         }
6187 
6188         /*
6189          * Return failure if the device is in a resource wait
6190          * or power changing state.
6191          */
6192         if ((un->un_state == SD_STATE_RWAIT) ||
6193             (un->un_state == SD_STATE_PM_CHANGING)) {
6194                 mutex_exit(SD_MUTEX(un));
6195                 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6196                     "device in resource wait state, exiting\n");
6197                 return (DDI_FAILURE);
6198         }
6199 
6200 
6201         un->un_save_state = un->un_last_state;
6202         New_state(un, SD_STATE_SUSPENDED);
6203 
6204         /*
6205          * Wait for all commands that are in transport or queued to a timer
6206          * for retry to complete.
6207          *
6208          * While waiting, no new commands will be accepted or sent because of
6209          * the new state we set above.
6210          *
6211          * Wait till current operation has completed. If we are in the resource
6212          * wait state (with an intr outstanding) then we need to wait till the
6213          * intr completes and starts the next cmd. We want to wait for
6214          * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
6215          */
6216         wait_cmds_complete = ddi_get_lbolt() +
6217             drv_sectohz(sd_wait_cmds_complete);
6218 
6219         while (un->un_ncmds_in_transport != 0) {
6220                 /*
6221                  * Fail if commands do not finish in the specified time.
6222                  */
6223                 if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
6224                     wait_cmds_complete) == -1) {
6225                         /*
6226                          * Undo the state changes made above. Everything
6227                          * must go back to it's original value.
6228                          */
6229                         Restore_state(un);
6230                         un->un_last_state = un->un_save_state;
6231                         /* Wake up any threads that might be waiting. */
6232                         cv_broadcast(&un->un_suspend_cv);
6233                         mutex_exit(SD_MUTEX(un));
6234                         SD_ERROR(SD_LOG_IO_PM, un,
6235                             "sd_ddi_suspend: failed due to outstanding cmds\n");
6236                         SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
6237                         return (DDI_FAILURE);
6238                 }
6239         }
6240 
6241         /*
6242          * Cancel SCSI watch thread and timeouts, if any are active
6243          */
6244 
6245         if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
6246                 opaque_t temp_token = un->un_swr_token;
6247                 mutex_exit(SD_MUTEX(un));
6248                 scsi_watch_suspend(temp_token);
6249                 mutex_enter(SD_MUTEX(un));
6250         }
6251 
6252         if (un->un_reset_throttle_timeid != NULL) {
6253                 timeout_id_t temp_id = un->un_reset_throttle_timeid;
6254                 un->un_reset_throttle_timeid = NULL;
6255                 mutex_exit(SD_MUTEX(un));
6256                 (void) untimeout(temp_id);
6257                 mutex_enter(SD_MUTEX(un));
6258         }
6259 
6260         if (un->un_dcvb_timeid != NULL) {
6261                 timeout_id_t temp_id = un->un_dcvb_timeid;
6262                 un->un_dcvb_timeid = NULL;
6263                 mutex_exit(SD_MUTEX(un));
6264                 (void) untimeout(temp_id);
6265                 mutex_enter(SD_MUTEX(un));
6266         }
6267 
6268         mutex_enter(&un->un_pm_mutex);
6269         if (un->un_pm_timeid != NULL) {
6270                 timeout_id_t temp_id = un->un_pm_timeid;
6271                 un->un_pm_timeid = NULL;
6272                 mutex_exit(&un->un_pm_mutex);
6273                 mutex_exit(SD_MUTEX(un));
6274                 (void) untimeout(temp_id);
6275                 mutex_enter(SD_MUTEX(un));
6276         } else {
6277                 mutex_exit(&un->un_pm_mutex);
6278         }
6279 
6280         if (un->un_rmw_msg_timeid != NULL) {
6281                 timeout_id_t temp_id = un->un_rmw_msg_timeid;
6282                 un->un_rmw_msg_timeid = NULL;
6283                 mutex_exit(SD_MUTEX(un));
6284                 (void) untimeout(temp_id);
6285                 mutex_enter(SD_MUTEX(un));
6286         }
6287 
6288         if (un->un_retry_timeid != NULL) {
6289                 timeout_id_t temp_id = un->un_retry_timeid;
6290                 un->un_retry_timeid = NULL;
6291                 mutex_exit(SD_MUTEX(un));
6292                 (void) untimeout(temp_id);
6293                 mutex_enter(SD_MUTEX(un));
6294 
6295                 if (un->un_retry_bp != NULL) {
6296                         un->un_retry_bp->av_forw = un->un_waitq_headp;
6297                         un->un_waitq_headp = un->un_retry_bp;
6298                         if (un->un_waitq_tailp == NULL) {
6299                                 un->un_waitq_tailp = un->un_retry_bp;
6300                         }
6301                         un->un_retry_bp = NULL;
6302                         un->un_retry_statp = NULL;
6303                 }
6304         }
6305 
6306         if (un->un_direct_priority_timeid != NULL) {
6307                 timeout_id_t temp_id = un->un_direct_priority_timeid;
6308                 un->un_direct_priority_timeid = NULL;
6309                 mutex_exit(SD_MUTEX(un));
6310                 (void) untimeout(temp_id);
6311                 mutex_enter(SD_MUTEX(un));
6312         }
6313 
6314         if (un->un_f_is_fibre == TRUE) {
6315                 /*
6316                  * Remove callbacks for insert and remove events
6317                  */
6318                 if (un->un_insert_event != NULL) {
6319                         mutex_exit(SD_MUTEX(un));
6320                         (void) ddi_remove_event_handler(un->un_insert_cb_id);
6321                         mutex_enter(SD_MUTEX(un));
6322                         un->un_insert_event = NULL;
6323                 }
6324 
6325                 if (un->un_remove_event != NULL) {
6326                         mutex_exit(SD_MUTEX(un));
6327                         (void) ddi_remove_event_handler(un->un_remove_cb_id);
6328                         mutex_enter(SD_MUTEX(un));
6329                         un->un_remove_event = NULL;
6330                 }
6331         }
6332 
6333         mutex_exit(SD_MUTEX(un));
6334 
6335         SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
6336 
6337         return (DDI_SUCCESS);
6338 }
6339 
6340 
6341 /*
6342  *    Function: sd_ddi_resume
6343  *
6344  * Description: Performs system power-up operations..
6345  *
6346  * Return Code: DDI_SUCCESS
6347  *              DDI_FAILURE
6348  *
6349  *     Context: Kernel thread context
6350  */
6351 
6352 static int
6353 sd_ddi_resume(dev_info_t *devi)
6354 {
6355         struct  sd_lun  *un;
6356 
6357         un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6358         if (un == NULL) {
6359                 return (DDI_FAILURE);
6360         }
6361 
6362         SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6363 
6364         mutex_enter(SD_MUTEX(un));
6365         Restore_state(un);
6366 
6367         /*
6368          * Restore the state which was saved to give the
6369          * the right state in un_last_state
6370          */
6371         un->un_last_state = un->un_save_state;
6372         /*
6373          * Note: throttle comes back at full.
6374          * Also note: this MUST be done before calling pm_raise_power
6375          * otherwise the system can get hung in biowait. The scenario where
6376          * this'll happen is under cpr suspend. Writing of the system
6377          * state goes through sddump, which writes 0 to un_throttle. If
6378          * writing the system state then fails, example if the partition is
6379          * too small, then cpr attempts a resume. If throttle isn't restored
6380          * from the saved value until after calling pm_raise_power then
6381          * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6382          * in biowait.
6383          */
6384         un->un_throttle = un->un_saved_throttle;
6385 
6386         /*
6387          * The chance of failure is very rare as the only command done in power
6388          * entry point is START command when you transition from 0->1 or
6389          * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6390          * which suspend was done. Ignore the return value as the resume should
6391          * not be failed. In the case of removable media the media need not be
6392          * inserted and hence there is a chance that raise power will fail with
6393          * media not present.
6394          */
6395         if (un->un_f_attach_spinup) {
6396                 mutex_exit(SD_MUTEX(un));
6397                 (void) pm_raise_power(SD_DEVINFO(un), 0,
6398                     SD_PM_STATE_ACTIVE(un));
6399                 mutex_enter(SD_MUTEX(un));
6400         }
6401 
6402         /*
6403          * Don't broadcast to the suspend cv and therefore possibly
6404          * start I/O until after power has been restored.
6405          */
6406         cv_broadcast(&un->un_suspend_cv);
6407         cv_broadcast(&un->un_state_cv);
6408 
6409         /* restart thread */
6410         if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6411                 scsi_watch_resume(un->un_swr_token);
6412         }
6413 
6414 #if (defined(__fibre))
6415         if (un->un_f_is_fibre == TRUE) {
6416                 /*
6417                  * Add callbacks for insert and remove events
6418                  */
6419                 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6420                         sd_init_event_callbacks(un);
6421                 }
6422         }
6423 #endif
6424 
6425         /*
6426          * Transport any pending commands to the target.
6427          *
6428          * If this is a low-activity device commands in queue will have to wait
6429          * until new commands come in, which may take awhile. Also, we
6430          * specifically don't check un_ncmds_in_transport because we know that
6431          * there really are no commands in progress after the unit was
6432          * suspended and we could have reached the throttle level, been
6433          * suspended, and have no new commands coming in for awhile. Highly
6434          * unlikely, but so is the low-activity disk scenario.
6435          */
6436         ddi_xbuf_dispatch(un->un_xbuf_attr);
6437 
6438         sd_start_cmds(un, NULL);
6439         mutex_exit(SD_MUTEX(un));
6440 
6441         SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6442 
6443         return (DDI_SUCCESS);
6444 }
6445 
6446 
6447 /*
6448  *    Function: sd_pm_state_change
6449  *
6450  * Description: Change the driver power state.
6451  *              Someone else is required to actually change the driver
6452  *              power level.
6453  *
6454  *   Arguments: un - driver soft state (unit) structure
6455  *              level - the power level that is changed to
6456  *              flag - to decide how to change the power state
6457  *
6458  * Return Code: DDI_SUCCESS
6459  *
6460  *     Context: Kernel thread context
6461  */
6462 static int
6463 sd_pm_state_change(struct sd_lun *un, int level, int flag)
6464 {
6465         ASSERT(un != NULL);
6466         SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: entry\n");
6467 
6468         ASSERT(!mutex_owned(SD_MUTEX(un)));
6469         mutex_enter(SD_MUTEX(un));
6470 
6471         if (flag == SD_PM_STATE_ROLLBACK || SD_PM_IS_IO_CAPABLE(un, level)) {
6472                 un->un_power_level = level;
6473                 ASSERT(!mutex_owned(&un->un_pm_mutex));
6474                 mutex_enter(&un->un_pm_mutex);
6475                 if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6476                         un->un_pm_count++;
6477                         ASSERT(un->un_pm_count == 0);
6478                 }
6479                 mutex_exit(&un->un_pm_mutex);
6480         } else {
6481                 /*
6482                  * Exit if power management is not enabled for this device,
6483                  * or if the device is being used by HA.
6484                  */
6485                 if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
6486                     (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
6487                         mutex_exit(SD_MUTEX(un));
6488                         SD_TRACE(SD_LOG_POWER, un,
6489                             "sd_pm_state_change: exiting\n");
6490                         return (DDI_FAILURE);
6491                 }
6492 
6493                 SD_INFO(SD_LOG_POWER, un, "sd_pm_state_change: "
6494                     "un_ncmds_in_driver=%ld\n", un->un_ncmds_in_driver);
6495 
6496                 /*
6497                  * See if the device is not busy, ie.:
6498                  *    - we have no commands in the driver for this device
6499                  *    - not waiting for resources
6500                  */
6501                 if ((un->un_ncmds_in_driver == 0) &&
6502                     (un->un_state != SD_STATE_RWAIT)) {
6503                         /*
6504                          * The device is not busy, so it is OK to go to low
6505                          * power state. Indicate low power, but rely on someone
6506                          * else to actually change it.
6507                          */
6508                         mutex_enter(&un->un_pm_mutex);
6509                         un->un_pm_count = -1;
6510                         mutex_exit(&un->un_pm_mutex);
6511                         un->un_power_level = level;
6512                 }
6513         }
6514 
6515         mutex_exit(SD_MUTEX(un));
6516 
6517         SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: exit\n");
6518 
6519         return (DDI_SUCCESS);
6520 }
6521 
6522 
6523 /*
6524  *    Function: sd_pm_idletimeout_handler
6525  *
6526  * Description: A timer routine that's active only while a device is busy.
6527  *              The purpose is to extend slightly the pm framework's busy
6528  *              view of the device to prevent busy/idle thrashing for
6529  *              back-to-back commands. Do this by comparing the current time
6530  *              to the time at which the last command completed and when the
6531  *              difference is greater than sd_pm_idletime, call
6532  *              pm_idle_component. In addition to indicating idle to the pm
6533  *              framework, update the chain type to again use the internal pm
6534  *              layers of the driver.
6535  *
6536  *   Arguments: arg - driver soft state (unit) structure
6537  *
6538  *     Context: Executes in a timeout(9F) thread context
6539  */
6540 
6541 static void
6542 sd_pm_idletimeout_handler(void *arg)
6543 {
6544         const hrtime_t idletime = sd_pm_idletime * NANOSEC;
6545         struct sd_lun *un = arg;
6546 
6547         mutex_enter(&sd_detach_mutex);
6548         if (un->un_detach_count != 0) {
6549                 /* Abort if the instance is detaching */
6550                 mutex_exit(&sd_detach_mutex);
6551                 return;
6552         }
6553         mutex_exit(&sd_detach_mutex);
6554 
6555         /*
6556          * Grab both mutexes, in the proper order, since we're accessing
6557          * both PM and softstate variables.
6558          */
6559         mutex_enter(SD_MUTEX(un));
6560         mutex_enter(&un->un_pm_mutex);
6561         if (((gethrtime() - un->un_pm_idle_time) > idletime) &&
6562             (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
6563                 /*
6564                  * Update the chain types.
6565                  * This takes affect on the next new command received.
6566                  */
6567                 if (un->un_f_non_devbsize_supported) {
6568                         un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6569                 } else {
6570                         un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6571                 }
6572                 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD;
6573 
6574                 SD_TRACE(SD_LOG_IO_PM, un,
6575                     "sd_pm_idletimeout_handler: idling device\n");
6576                 (void) pm_idle_component(SD_DEVINFO(un), 0);
6577                 un->un_pm_idle_timeid = NULL;
6578         } else {
6579                 un->un_pm_idle_timeid =
6580                     timeout(sd_pm_idletimeout_handler, un,
6581                     (drv_usectohz((clock_t)300000))); /* 300 ms. */
6582         }
6583         mutex_exit(&un->un_pm_mutex);
6584         mutex_exit(SD_MUTEX(un));
6585 }
6586 
6587 
6588 /*
6589  *    Function: sd_pm_timeout_handler
6590  *
6591  * Description: Callback to tell framework we are idle.
6592  *
6593  *     Context: timeout(9f) thread context.
6594  */
6595 
6596 static void
6597 sd_pm_timeout_handler(void *arg)
6598 {
6599         struct sd_lun *un = arg;
6600 
6601         (void) pm_idle_component(SD_DEVINFO(un), 0);
6602         mutex_enter(&un->un_pm_mutex);
6603         un->un_pm_timeid = NULL;
6604         mutex_exit(&un->un_pm_mutex);
6605 }
6606 
6607 
6608 /*
6609  *    Function: sdpower
6610  *
6611  * Description: PM entry point.
6612  *
6613  * Return Code: DDI_SUCCESS
6614  *              DDI_FAILURE
6615  *
6616  *     Context: Kernel thread context
6617  */
6618 
6619 static int
6620 sdpower(dev_info_t *devi, int component, int level)
6621 {
6622         struct sd_lun   *un;
6623         int             instance;
6624         int             rval = DDI_SUCCESS;
6625         uint_t          i, log_page_size, maxcycles, ncycles;
6626         uchar_t         *log_page_data;
6627         int             log_sense_page;
6628         int             medium_present;
6629         time_t          intvlp;
6630         struct pm_trans_data    sd_pm_tran_data;
6631         uchar_t         save_state;
6632         int             sval;
6633         uchar_t         state_before_pm;
6634         int             got_semaphore_here;
6635         sd_ssc_t        *ssc;
6636         int     last_power_level;
6637 
6638         instance = ddi_get_instance(devi);
6639 
6640         if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
6641             !SD_PM_IS_LEVEL_VALID(un, level) || component != 0) {
6642                 return (DDI_FAILURE);
6643         }
6644 
6645         ssc = sd_ssc_init(un);
6646 
6647         SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
6648 
6649         /*
6650          * Must synchronize power down with close.
6651          * Attempt to decrement/acquire the open/close semaphore,
6652          * but do NOT wait on it. If it's not greater than zero,
6653          * ie. it can't be decremented without waiting, then
6654          * someone else, either open or close, already has it
6655          * and the try returns 0. Use that knowledge here to determine
6656          * if it's OK to change the device power level.
6657          * Also, only increment it on exit if it was decremented, ie. gotten,
6658          * here.
6659          */
6660         got_semaphore_here = sema_tryp(&un->un_semoclose);
6661 
6662         mutex_enter(SD_MUTEX(un));
6663 
6664         SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
6665             un->un_ncmds_in_driver);
6666 
6667         /*
6668          * If un_ncmds_in_driver is non-zero it indicates commands are
6669          * already being processed in the driver, or if the semaphore was
6670          * not gotten here it indicates an open or close is being processed.
6671          * At the same time somebody is requesting to go to a lower power
6672          * that can't perform I/O, which can't happen, therefore we need to
6673          * return failure.
6674          */
6675         if ((!SD_PM_IS_IO_CAPABLE(un, level)) &&
6676             ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
6677                 mutex_exit(SD_MUTEX(un));
6678 
6679                 if (got_semaphore_here != 0) {
6680                         sema_v(&un->un_semoclose);
6681                 }
6682                 SD_TRACE(SD_LOG_IO_PM, un,
6683                     "sdpower: exit, device has queued cmds.\n");
6684 
6685                 goto sdpower_failed;
6686         }
6687 
6688         /*
6689          * if it is OFFLINE that means the disk is completely dead
6690          * in our case we have to put the disk in on or off by sending commands
6691          * Of course that will fail anyway so return back here.
6692          *
6693          * Power changes to a device that's OFFLINE or SUSPENDED
6694          * are not allowed.
6695          */
6696         if ((un->un_state == SD_STATE_OFFLINE) ||
6697             (un->un_state == SD_STATE_SUSPENDED)) {
6698                 mutex_exit(SD_MUTEX(un));
6699 
6700                 if (got_semaphore_here != 0) {
6701                         sema_v(&un->un_semoclose);
6702                 }
6703                 SD_TRACE(SD_LOG_IO_PM, un,
6704                     "sdpower: exit, device is off-line.\n");
6705 
6706                 goto sdpower_failed;
6707         }
6708 
6709         /*
6710          * Change the device's state to indicate it's power level
6711          * is being changed. Do this to prevent a power off in the
6712          * middle of commands, which is especially bad on devices
6713          * that are really powered off instead of just spun down.
6714          */
6715         state_before_pm = un->un_state;
6716         un->un_state = SD_STATE_PM_CHANGING;
6717 
6718         mutex_exit(SD_MUTEX(un));
6719 
6720         /*
6721          * If log sense command is not supported, bypass the
6722          * following checking, otherwise, check the log sense
6723          * information for this device.
6724          */
6725         if (SD_PM_STOP_MOTOR_NEEDED(un, level) &&
6726             un->un_f_log_sense_supported) {
6727                 /*
6728                  * Get the log sense information to understand whether the
6729                  * the powercycle counts have gone beyond the threshhold.
6730                  */
6731                 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6732                 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6733 
6734                 mutex_enter(SD_MUTEX(un));
6735                 log_sense_page = un->un_start_stop_cycle_page;
6736                 mutex_exit(SD_MUTEX(un));
6737 
6738                 rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6739                     log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
6740 
6741                 if (rval != 0) {
6742                         if (rval == EIO)
6743                                 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6744                         else
6745                                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6746                 }
6747 
6748 #ifdef  SDDEBUG
6749                 if (sd_force_pm_supported) {
6750                         /* Force a successful result */
6751                         rval = 0;
6752                 }
6753 #endif
6754                 if (rval != 0) {
6755                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
6756                             "Log Sense Failed\n");
6757 
6758                         kmem_free(log_page_data, log_page_size);
6759                         /* Cannot support power management on those drives */
6760 
6761                         if (got_semaphore_here != 0) {
6762                                 sema_v(&un->un_semoclose);
6763                         }
6764                         /*
6765                          * On exit put the state back to it's original value
6766                          * and broadcast to anyone waiting for the power
6767                          * change completion.
6768                          */
6769                         mutex_enter(SD_MUTEX(un));
6770                         un->un_state = state_before_pm;
6771                         cv_broadcast(&un->un_suspend_cv);
6772                         mutex_exit(SD_MUTEX(un));
6773                         SD_TRACE(SD_LOG_IO_PM, un,
6774                             "sdpower: exit, Log Sense Failed.\n");
6775 
6776                         goto sdpower_failed;
6777                 }
6778 
6779                 /*
6780                  * From the page data - Convert the essential information to
6781                  * pm_trans_data
6782                  */
6783                 maxcycles =
6784                     (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
6785                     (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
6786 
6787                 ncycles =
6788                     (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
6789                     (log_page_data[0x26] << 8)  | log_page_data[0x27];
6790 
6791                 if (un->un_f_pm_log_sense_smart) {
6792                         sd_pm_tran_data.un.smart_count.allowed = maxcycles;
6793                         sd_pm_tran_data.un.smart_count.consumed = ncycles;
6794                         sd_pm_tran_data.un.smart_count.flag = 0;
6795                         sd_pm_tran_data.format = DC_SMART_FORMAT;
6796                 } else {
6797                         sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
6798                         sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
6799                         for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
6800                                 sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
6801                                     log_page_data[8+i];
6802                         }
6803                         sd_pm_tran_data.un.scsi_cycles.flag = 0;
6804                         sd_pm_tran_data.format = DC_SCSI_FORMAT;
6805                 }
6806 
6807                 kmem_free(log_page_data, log_page_size);
6808 
6809                 /*
6810                  * Call pm_trans_check routine to get the Ok from
6811                  * the global policy
6812                  */
6813                 rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6814 #ifdef  SDDEBUG
6815                 if (sd_force_pm_supported) {
6816                         /* Force a successful result */
6817                         rval = 1;
6818                 }
6819 #endif
6820                 switch (rval) {
6821                 case 0:
6822                         /*
6823                          * Not Ok to Power cycle or error in parameters passed
6824                          * Would have given the advised time to consider power
6825                          * cycle. Based on the new intvlp parameter we are
6826                          * supposed to pretend we are busy so that pm framework
6827                          * will never call our power entry point. Because of
6828                          * that install a timeout handler and wait for the
6829                          * recommended time to elapse so that power management
6830                          * can be effective again.
6831                          *
6832                          * To effect this behavior, call pm_busy_component to
6833                          * indicate to the framework this device is busy.
6834                          * By not adjusting un_pm_count the rest of PM in
6835                          * the driver will function normally, and independent
6836                          * of this but because the framework is told the device
6837                          * is busy it won't attempt powering down until it gets
6838                          * a matching idle. The timeout handler sends this.
6839                          * Note: sd_pm_entry can't be called here to do this
6840                          * because sdpower may have been called as a result
6841                          * of a call to pm_raise_power from within sd_pm_entry.
6842                          *
6843                          * If a timeout handler is already active then
6844                          * don't install another.
6845                          */
6846                         mutex_enter(&un->un_pm_mutex);
6847                         if (un->un_pm_timeid == NULL) {
6848                                 un->un_pm_timeid =
6849                                     timeout(sd_pm_timeout_handler,
6850                                     un, drv_sectohz(intvlp));
6851                                 mutex_exit(&un->un_pm_mutex);
6852                                 (void) pm_busy_component(SD_DEVINFO(un), 0);
6853                         } else {
6854                                 mutex_exit(&un->un_pm_mutex);
6855                         }
6856                         if (got_semaphore_here != 0) {
6857                                 sema_v(&un->un_semoclose);
6858                         }
6859                         /*
6860                          * On exit put the state back to it's original value
6861                          * and broadcast to anyone waiting for the power
6862                          * change completion.
6863                          */
6864                         mutex_enter(SD_MUTEX(un));
6865                         un->un_state = state_before_pm;
6866                         cv_broadcast(&un->un_suspend_cv);
6867                         mutex_exit(SD_MUTEX(un));
6868 
6869                         SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6870                             "trans check Failed, not ok to power cycle.\n");
6871 
6872                         goto sdpower_failed;
6873                 case -1:
6874                         if (got_semaphore_here != 0) {
6875                                 sema_v(&un->un_semoclose);
6876                         }
6877                         /*
6878                          * On exit put the state back to it's original value
6879                          * and broadcast to anyone waiting for the power
6880                          * change completion.
6881                          */
6882                         mutex_enter(SD_MUTEX(un));
6883                         un->un_state = state_before_pm;
6884                         cv_broadcast(&un->un_suspend_cv);
6885                         mutex_exit(SD_MUTEX(un));
6886                         SD_TRACE(SD_LOG_IO_PM, un,
6887                             "sdpower: exit, trans check command Failed.\n");
6888 
6889                         goto sdpower_failed;
6890                 }
6891         }
6892 
6893         if (!SD_PM_IS_IO_CAPABLE(un, level)) {
6894                 /*
6895                  * Save the last state... if the STOP FAILS we need it
6896                  * for restoring
6897                  */
6898                 mutex_enter(SD_MUTEX(un));
6899                 save_state = un->un_last_state;
6900                 last_power_level = un->un_power_level;
6901                 /*
6902                  * There must not be any cmds. getting processed
6903                  * in the driver when we get here. Power to the
6904                  * device is potentially going off.
6905                  */
6906                 ASSERT(un->un_ncmds_in_driver == 0);
6907                 mutex_exit(SD_MUTEX(un));
6908 
6909                 /*
6910                  * For now PM suspend the device completely before spindle is
6911                  * turned off
6912                  */
6913                 if ((rval = sd_pm_state_change(un, level, SD_PM_STATE_CHANGE))
6914                     == DDI_FAILURE) {
6915                         if (got_semaphore_here != 0) {
6916                                 sema_v(&un->un_semoclose);
6917                         }
6918                         /*
6919                          * On exit put the state back to it's original value
6920                          * and broadcast to anyone waiting for the power
6921                          * change completion.
6922                          */
6923                         mutex_enter(SD_MUTEX(un));
6924                         un->un_state = state_before_pm;
6925                         un->un_power_level = last_power_level;
6926                         cv_broadcast(&un->un_suspend_cv);
6927                         mutex_exit(SD_MUTEX(un));
6928                         SD_TRACE(SD_LOG_IO_PM, un,
6929                             "sdpower: exit, PM suspend Failed.\n");
6930 
6931                         goto sdpower_failed;
6932                 }
6933         }
6934 
6935         /*
6936          * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6937          * close, or strategy. Dump no long uses this routine, it uses it's
6938          * own code so it can be done in polled mode.
6939          */
6940 
6941         medium_present = TRUE;
6942 
6943         /*
6944          * When powering up, issue a TUR in case the device is at unit
6945          * attention.  Don't do retries. Bypass the PM layer, otherwise
6946          * a deadlock on un_pm_busy_cv will occur.
6947          */
6948         if (SD_PM_IS_IO_CAPABLE(un, level)) {
6949                 sval = sd_send_scsi_TEST_UNIT_READY(ssc,
6950                     SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6951                 if (sval != 0)
6952                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6953         }
6954 
6955         if (un->un_f_power_condition_supported) {
6956                 char *pm_condition_name[] = {"STOPPED", "STANDBY",
6957                     "IDLE", "ACTIVE"};
6958                 SD_TRACE(SD_LOG_IO_PM, un,
6959                     "sdpower: sending \'%s\' power condition",
6960                     pm_condition_name[level]);
6961                 sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION,
6962                     sd_pl2pc[level], SD_PATH_DIRECT);
6963         } else {
6964                 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6965                     ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6966                 sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
6967                     ((level == SD_SPINDLE_ON) ? SD_TARGET_START :
6968                     SD_TARGET_STOP), SD_PATH_DIRECT);
6969         }
6970         if (sval != 0) {
6971                 if (sval == EIO)
6972                         sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6973                 else
6974                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6975         }
6976 
6977         /* Command failed, check for media present. */
6978         if ((sval == ENXIO) && un->un_f_has_removable_media) {
6979                 medium_present = FALSE;
6980         }
6981 
6982         /*
6983          * The conditions of interest here are:
6984          *   if a spindle off with media present fails,
6985          *      then restore the state and return an error.
6986          *   else if a spindle on fails,
6987          *      then return an error (there's no state to restore).
6988          * In all other cases we setup for the new state
6989          * and return success.
6990          */
6991         if (!SD_PM_IS_IO_CAPABLE(un, level)) {
6992                 if ((medium_present == TRUE) && (sval != 0)) {
6993                         /* The stop command from above failed */
6994                         rval = DDI_FAILURE;
6995                         /*
6996                          * The stop command failed, and we have media
6997                          * present. Put the level back by calling the
6998                          * sd_pm_resume() and set the state back to
6999                          * it's previous value.
7000                          */
7001                         (void) sd_pm_state_change(un, last_power_level,
7002                             SD_PM_STATE_ROLLBACK);
7003                         mutex_enter(SD_MUTEX(un));
7004                         un->un_last_state = save_state;
7005                         mutex_exit(SD_MUTEX(un));
7006                 } else if (un->un_f_monitor_media_state) {
7007                         /*
7008                          * The stop command from above succeeded.
7009                          * Terminate watch thread in case of removable media
7010                          * devices going into low power state. This is as per
7011                          * the requirements of pm framework, otherwise commands
7012                          * will be generated for the device (through watch
7013                          * thread), even when the device is in low power state.
7014                          */
7015                         mutex_enter(SD_MUTEX(un));
7016                         un->un_f_watcht_stopped = FALSE;
7017                         if (un->un_swr_token != NULL) {
7018                                 opaque_t temp_token = un->un_swr_token;
7019                                 un->un_f_watcht_stopped = TRUE;
7020                                 un->un_swr_token = NULL;
7021                                 mutex_exit(SD_MUTEX(un));
7022                                 (void) scsi_watch_request_terminate(temp_token,
7023                                     SCSI_WATCH_TERMINATE_ALL_WAIT);
7024                         } else {
7025                                 mutex_exit(SD_MUTEX(un));
7026                         }
7027                 }
7028         } else {
7029                 /*
7030                  * The level requested is I/O capable.
7031                  * Legacy behavior: return success on a failed spinup
7032                  * if there is no media in the drive.
7033                  * Do this by looking at medium_present here.
7034                  */
7035                 if ((sval != 0) && medium_present) {
7036                         /* The start command from above failed */
7037                         rval = DDI_FAILURE;
7038                 } else {
7039                         /*
7040                          * The start command from above succeeded
7041                          * PM resume the devices now that we have
7042                          * started the disks
7043                          */
7044                         (void) sd_pm_state_change(un, level,
7045                             SD_PM_STATE_CHANGE);
7046 
7047                         /*
7048                          * Resume the watch thread since it was suspended
7049                          * when the device went into low power mode.
7050                          */
7051                         if (un->un_f_monitor_media_state) {
7052                                 mutex_enter(SD_MUTEX(un));
7053                                 if (un->un_f_watcht_stopped == TRUE) {
7054                                         opaque_t temp_token;
7055 
7056                                         un->un_f_watcht_stopped = FALSE;
7057                                         mutex_exit(SD_MUTEX(un));
7058                                         temp_token =
7059                                             sd_watch_request_submit(un);
7060                                         mutex_enter(SD_MUTEX(un));
7061                                         un->un_swr_token = temp_token;
7062                                 }
7063                                 mutex_exit(SD_MUTEX(un));
7064                         }
7065                 }
7066         }
7067 
7068         if (got_semaphore_here != 0) {
7069                 sema_v(&un->un_semoclose);
7070         }
7071         /*
7072          * On exit put the state back to it's original value
7073          * and broadcast to anyone waiting for the power
7074          * change completion.
7075          */
7076         mutex_enter(SD_MUTEX(un));
7077         un->un_state = state_before_pm;
7078         cv_broadcast(&un->un_suspend_cv);
7079         mutex_exit(SD_MUTEX(un));
7080 
7081         SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7082 
7083         sd_ssc_fini(ssc);
7084         return (rval);
7085 
7086 sdpower_failed:
7087 
7088         sd_ssc_fini(ssc);
7089         return (DDI_FAILURE);
7090 }
7091 
7092 
7093 
7094 /*
7095  *    Function: sdattach
7096  *
7097  * Description: Driver's attach(9e) entry point function.
7098  *
7099  *   Arguments: devi - opaque device info handle
7100  *              cmd  - attach  type
7101  *
7102  * Return Code: DDI_SUCCESS
7103  *              DDI_FAILURE
7104  *
7105  *     Context: Kernel thread context
7106  */
7107 
7108 static int
7109 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7110 {
7111         switch (cmd) {
7112         case DDI_ATTACH:
7113                 return (sd_unit_attach(devi));
7114         case DDI_RESUME:
7115                 return (sd_ddi_resume(devi));
7116         default:
7117                 break;
7118         }
7119         return (DDI_FAILURE);
7120 }
7121 
7122 
7123 /*
7124  *    Function: sddetach
7125  *
7126  * Description: Driver's detach(9E) entry point function.
7127  *
7128  *   Arguments: devi - opaque device info handle
7129  *              cmd  - detach  type
7130  *
7131  * Return Code: DDI_SUCCESS
7132  *              DDI_FAILURE
7133  *
7134  *     Context: Kernel thread context
7135  */
7136 
7137 static int
7138 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7139 {
7140         switch (cmd) {
7141         case DDI_DETACH:
7142                 return (sd_unit_detach(devi));
7143         case DDI_SUSPEND:
7144                 return (sd_ddi_suspend(devi));
7145         default:
7146                 break;
7147         }
7148         return (DDI_FAILURE);
7149 }
7150 
7151 
7152 /*
7153  *     Function: sd_sync_with_callback
7154  *
7155  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7156  *               state while the callback routine is active.
7157  *
7158  *    Arguments: un: softstate structure for the instance
7159  *
7160  *      Context: Kernel thread context
7161  */
7162 
7163 static void
7164 sd_sync_with_callback(struct sd_lun *un)
7165 {
7166         ASSERT(un != NULL);
7167 
7168         mutex_enter(SD_MUTEX(un));
7169 
7170         ASSERT(un->un_in_callback >= 0);
7171 
7172         while (un->un_in_callback > 0) {
7173                 mutex_exit(SD_MUTEX(un));
7174                 delay(2);
7175                 mutex_enter(SD_MUTEX(un));
7176         }
7177 
7178         mutex_exit(SD_MUTEX(un));
7179 }
7180 
7181 /*
7182  *    Function: sd_unit_attach
7183  *
7184  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7185  *              the soft state structure for the device and performs
7186  *              all necessary structure and device initializations.
7187  *
7188  *   Arguments: devi: the system's dev_info_t for the device.
7189  *
7190  * Return Code: DDI_SUCCESS if attach is successful.
7191  *              DDI_FAILURE if any part of the attach fails.
7192  *
7193  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7194  *              Kernel thread context only.  Can sleep.
7195  */
7196 
7197 static int
7198 sd_unit_attach(dev_info_t *devi)
7199 {
7200         struct  scsi_device     *devp;
7201         struct  sd_lun          *un;
7202         char                    *variantp;
7203         char                    name_str[48];
7204         int     reservation_flag = SD_TARGET_IS_UNRESERVED;
7205         int     instance;
7206         int     rval;
7207         int     wc_enabled;
7208         int     tgt;
7209         uint64_t        capacity;
7210         uint_t          lbasize = 0;
7211         dev_info_t      *pdip = ddi_get_parent(devi);
7212         int             offbyone = 0;
7213         int             geom_label_valid = 0;
7214         sd_ssc_t        *ssc;
7215         int             status;
7216         struct sd_fm_internal   *sfip = NULL;
7217         int             max_xfer_size;
7218 
7219         /*
7220          * Retrieve the target driver's private data area. This was set
7221          * up by the HBA.
7222          */
7223         devp = ddi_get_driver_private(devi);
7224 
7225         /*
7226          * Retrieve the target ID of the device.
7227          */
7228         tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7229             SCSI_ADDR_PROP_TARGET, -1);
7230 
7231         /*
7232          * Since we have no idea what state things were left in by the last
7233          * user of the device, set up some 'default' settings, ie. turn 'em
7234          * off. The scsi_ifsetcap calls force re-negotiations with the drive.
7235          * Do this before the scsi_probe, which sends an inquiry.
7236          * This is a fix for bug (4430280).
7237          * Of special importance is wide-xfer. The drive could have been left
7238          * in wide transfer mode by the last driver to communicate with it,
7239          * this includes us. If that's the case, and if the following is not
7240          * setup properly or we don't re-negotiate with the drive prior to
7241          * transferring data to/from the drive, it causes bus parity errors,
7242          * data overruns, and unexpected interrupts. This first occurred when
7243          * the fix for bug (4378686) was made.
7244          */
7245         (void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
7246         (void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
7247         (void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
7248 
7249         /*
7250          * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
7251          * on a target. Setting it per lun instance actually sets the
7252          * capability of this target, which affects those luns already
7253          * attached on the same target. So during attach, we can only disable
7254          * this capability only when no other lun has been attached on this
7255          * target. By doing this, we assume a target has the same tagged-qing
7256          * capability for every lun. The condition can be removed when HBA
7257          * is changed to support per lun based tagged-qing capability.
7258          */
7259         if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7260                 (void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
7261         }
7262 
7263         /*
7264          * Use scsi_probe() to issue an INQUIRY command to the device.
7265          * This call will allocate and fill in the scsi_inquiry structure
7266          * and point the sd_inq member of the scsi_device structure to it.
7267          * If the attach succeeds, then this memory will not be de-allocated
7268          * (via scsi_unprobe()) until the instance is detached.
7269          */
7270         if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
7271                 goto probe_failed;
7272         }
7273 
7274         /*
7275          * Check the device type as specified in the inquiry data and
7276          * claim it if it is of a type that we support.
7277          */
7278         switch (devp->sd_inq->inq_dtype) {
7279         case DTYPE_DIRECT:
7280                 break;
7281         case DTYPE_RODIRECT:
7282                 break;
7283         case DTYPE_OPTICAL:
7284                 break;
7285         case DTYPE_NOTPRESENT:
7286         default:
7287                 /* Unsupported device type; fail the attach. */
7288                 goto probe_failed;
7289         }
7290 
7291         /*
7292          * Allocate the soft state structure for this unit.
7293          *
7294          * We rely upon this memory being set to all zeroes by
7295          * ddi_soft_state_zalloc().  We assume that any member of the
7296          * soft state structure that is not explicitly initialized by
7297          * this routine will have a value of zero.
7298          */
7299         instance = ddi_get_instance(devp->sd_dev);
7300 #ifndef XPV_HVM_DRIVER
7301         if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
7302                 goto probe_failed;
7303         }
7304 #endif /* !XPV_HVM_DRIVER */
7305 
7306         /*
7307          * Retrieve a pointer to the newly-allocated soft state.
7308          *
7309          * This should NEVER fail if the ddi_soft_state_zalloc() call above
7310          * was successful, unless something has gone horribly wrong and the
7311          * ddi's soft state internals are corrupt (in which case it is
7312          * probably better to halt here than just fail the attach....)
7313          */
7314         if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
7315                 panic("sd_unit_attach: NULL soft state on instance:0x%x",
7316                     instance);
7317                 /*NOTREACHED*/
7318         }
7319 
7320         /*
7321          * Link the back ptr of the driver soft state to the scsi_device
7322          * struct for this lun.
7323          * Save a pointer to the softstate in the driver-private area of
7324          * the scsi_device struct.
7325          * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
7326          * we first set un->un_sd below.
7327          */
7328         un->un_sd = devp;
7329         devp->sd_private = (opaque_t)un;
7330 
7331         /*
7332          * The following must be after devp is stored in the soft state struct.
7333          */
7334 #ifdef SDDEBUG
7335         SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7336             "%s_unit_attach: un:0x%p instance:%d\n",
7337             ddi_driver_name(devi), un, instance);
7338 #endif
7339 
7340         /*
7341          * Set up the device type and node type (for the minor nodes).
7342          * By default we assume that the device can at least support the
7343          * Common Command Set. Call it a CD-ROM if it reports itself
7344          * as a RODIRECT device.
7345          */
7346         switch (devp->sd_inq->inq_dtype) {
7347         case DTYPE_RODIRECT:
7348                 un->un_node_type = DDI_NT_CD_CHAN;
7349                 un->un_ctype  = CTYPE_CDROM;
7350                 break;
7351         case DTYPE_OPTICAL:
7352                 un->un_node_type = DDI_NT_BLOCK_CHAN;
7353                 un->un_ctype  = CTYPE_ROD;
7354                 break;
7355         default:
7356                 un->un_node_type = DDI_NT_BLOCK_CHAN;
7357                 un->un_ctype  = CTYPE_CCS;
7358                 break;
7359         }
7360 
7361         /*
7362          * Try to read the interconnect type from the HBA.
7363          *
7364          * Note: This driver is currently compiled as two binaries, a parallel
7365          * scsi version (sd) and a fibre channel version (ssd). All functional
7366          * differences are determined at compile time. In the future a single
7367          * binary will be provided and the interconnect type will be used to
7368          * differentiate between fibre and parallel scsi behaviors. At that time
7369          * it will be necessary for all fibre channel HBAs to support this
7370          * property.
7371          *
7372          * set un_f_is_fiber to TRUE ( default fiber )
7373          */
7374         un->un_f_is_fibre = TRUE;
7375         switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
7376         case INTERCONNECT_SSA:
7377                 un->un_interconnect_type = SD_INTERCONNECT_SSA;
7378                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
7379                     "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
7380                 break;
7381         case INTERCONNECT_PARALLEL:
7382                 un->un_f_is_fibre = FALSE;
7383                 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7384                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
7385                     "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7386                 break;
7387         case INTERCONNECT_SAS:
7388                 un->un_f_is_fibre = FALSE;
7389                 un->un_interconnect_type = SD_INTERCONNECT_SAS;
7390                 un->un_node_type = DDI_NT_BLOCK_SAS;
7391                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
7392                     "sd_unit_attach: un:0x%p SD_INTERCONNECT_SAS\n", un);
7393                 break;
7394         case INTERCONNECT_SATA:
7395                 un->un_f_is_fibre = FALSE;
7396                 un->un_interconnect_type = SD_INTERCONNECT_SATA;
7397                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
7398                     "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
7399                 break;
7400         case INTERCONNECT_FIBRE:
7401                 un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7402                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
7403                     "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7404                 break;
7405         case INTERCONNECT_FABRIC:
7406                 un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7407                 un->un_node_type = DDI_NT_BLOCK_FABRIC;
7408                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
7409                     "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7410                 break;
7411         default:
7412 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7413                 /*
7414                  * The HBA does not support the "interconnect-type" property
7415                  * (or did not provide a recognized type).
7416                  *
7417                  * Note: This will be obsoleted when a single fibre channel
7418                  * and parallel scsi driver is delivered. In the meantime the
7419                  * interconnect type will be set to the platform default.If that
7420                  * type is not parallel SCSI, it means that we should be
7421                  * assuming "ssd" semantics. However, here this also means that
7422                  * the FC HBA is not supporting the "interconnect-type" property
7423                  * like we expect it to, so log this occurrence.
7424                  */
7425                 un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7426                 if (!SD_IS_PARALLEL_SCSI(un)) {
7427                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
7428                             "sd_unit_attach: un:0x%p Assuming "
7429                             "INTERCONNECT_FIBRE\n", un);
7430                 } else {
7431                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
7432                             "sd_unit_attach: un:0x%p Assuming "
7433                             "INTERCONNECT_PARALLEL\n", un);
7434                         un->un_f_is_fibre = FALSE;
7435                 }
7436 #else
7437                 /*
7438                  * Note: This source will be implemented when a single fibre
7439                  * channel and parallel scsi driver is delivered. The default
7440                  * will be to assume that if a device does not support the
7441                  * "interconnect-type" property it is a parallel SCSI HBA and
7442                  * we will set the interconnect type for parallel scsi.
7443                  */
7444                 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7445                 un->un_f_is_fibre = FALSE;
7446 #endif
7447                 break;
7448         }
7449 
7450         if (un->un_f_is_fibre == TRUE) {
7451                 if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7452                     SCSI_VERSION_3) {
7453                         switch (un->un_interconnect_type) {
7454                         case SD_INTERCONNECT_FIBRE:
7455                         case SD_INTERCONNECT_SSA:
7456                                 un->un_node_type = DDI_NT_BLOCK_WWN;
7457                                 break;
7458                         default:
7459                                 break;
7460                         }
7461                 }
7462         }
7463 
7464         /*
7465          * Initialize the Request Sense command for the target
7466          */
7467         if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7468                 goto alloc_rqs_failed;
7469         }
7470 
7471         /*
7472          * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7473          * with separate binary for sd and ssd.
7474          *
7475          * x86 has 1 binary, un_retry_count is set base on connection type.
7476          * The hardcoded values will go away when Sparc uses 1 binary
7477          * for sd and ssd.  This hardcoded values need to match
7478          * SD_RETRY_COUNT in sddef.h
7479          * The value used is base on interconnect type.
7480          * fibre = 3, parallel = 5
7481          */
7482 #if defined(__i386) || defined(__amd64)
7483         un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7484 #else
7485         un->un_retry_count = SD_RETRY_COUNT;
7486 #endif
7487 
7488         /*
7489          * Set the per disk retry count to the default number of retries
7490          * for disks and CDROMs. This value can be overridden by the
7491          * disk property list or an entry in sd.conf.
7492          */
7493         un->un_notready_retry_count =
7494             ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7495             : DISK_NOT_READY_RETRY_COUNT(un);
7496 
7497         /*
7498          * Set the busy retry count to the default value of un_retry_count.
7499          * This can be overridden by entries in sd.conf or the device
7500          * config table.
7501          */
7502         un->un_busy_retry_count = un->un_retry_count;
7503 
7504         /*
7505          * Init the reset threshold for retries.  This number determines
7506          * how many retries must be performed before a reset can be issued
7507          * (for certain error conditions). This can be overridden by entries
7508          * in sd.conf or the device config table.
7509          */
7510         un->un_reset_retry_count = (un->un_retry_count / 2);
7511 
7512         /*
7513          * Set the victim_retry_count to the default un_retry_count
7514          */
7515         un->un_victim_retry_count = (2 * un->un_retry_count);
7516 
7517         /*
7518          * Set the reservation release timeout to the default value of
7519          * 5 seconds. This can be overridden by entries in ssd.conf or the
7520          * device config table.
7521          */
7522         un->un_reserve_release_time = 5;
7523 
7524         /*
7525          * Set up the default maximum transfer size. Note that this may
7526          * get updated later in the attach, when setting up default wide
7527          * operations for disks.
7528          */
7529 #if defined(__i386) || defined(__amd64)
7530         un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7531         un->un_partial_dma_supported = 1;
7532 #else
7533         un->un_max_xfer_size = (uint_t)maxphys;
7534 #endif
7535 
7536         /*
7537          * Get "allow bus device reset" property (defaults to "enabled" if
7538          * the property was not defined). This is to disable bus resets for
7539          * certain kinds of error recovery. Note: In the future when a run-time
7540          * fibre check is available the soft state flag should default to
7541          * enabled.
7542          */
7543         if (un->un_f_is_fibre == TRUE) {
7544                 un->un_f_allow_bus_device_reset = TRUE;
7545         } else {
7546                 if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7547                     "allow-bus-device-reset", 1) != 0) {
7548                         un->un_f_allow_bus_device_reset = TRUE;
7549                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
7550                             "sd_unit_attach: un:0x%p Bus device reset "
7551                             "enabled\n", un);
7552                 } else {
7553                         un->un_f_allow_bus_device_reset = FALSE;
7554                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
7555                             "sd_unit_attach: un:0x%p Bus device reset "
7556                             "disabled\n", un);
7557                 }
7558         }
7559 
7560         /*
7561          * Check if this is an ATAPI device. ATAPI devices use Group 1
7562          * Read/Write commands and Group 2 Mode Sense/Select commands.
7563          *
7564          * Note: The "obsolete" way of doing this is to check for the "atapi"
7565          * property. The new "variant" property with a value of "atapi" has been
7566          * introduced so that future 'variants' of standard SCSI behavior (like
7567          * atapi) could be specified by the underlying HBA drivers by supplying
7568          * a new value for the "variant" property, instead of having to define a
7569          * new property.
7570          */
7571         if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7572                 un->un_f_cfg_is_atapi = TRUE;
7573                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
7574                     "sd_unit_attach: un:0x%p Atapi device\n", un);
7575         }
7576         if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7577             &variantp) == DDI_PROP_SUCCESS) {
7578                 if (strcmp(variantp, "atapi") == 0) {
7579                         un->un_f_cfg_is_atapi = TRUE;
7580                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
7581                             "sd_unit_attach: un:0x%p Atapi device\n", un);
7582                 }
7583                 ddi_prop_free(variantp);
7584         }
7585 
7586         un->un_cmd_timeout   = SD_IO_TIME;
7587 
7588         un->un_busy_timeout  = SD_BSY_TIMEOUT;
7589 
7590         /* Info on current states, statuses, etc. (Updated frequently) */
7591         un->un_state         = SD_STATE_NORMAL;
7592         un->un_last_state    = SD_STATE_NORMAL;
7593 
7594         /* Control & status info for command throttling */
7595         un->un_throttle              = sd_max_throttle;
7596         un->un_saved_throttle        = sd_max_throttle;
7597         un->un_min_throttle  = sd_min_throttle;
7598 
7599         if (un->un_f_is_fibre == TRUE) {
7600                 un->un_f_use_adaptive_throttle = TRUE;
7601         } else {
7602                 un->un_f_use_adaptive_throttle = FALSE;
7603         }
7604 
7605         /* Removable media support. */
7606         cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7607         un->un_mediastate            = DKIO_NONE;
7608         un->un_specified_mediastate  = DKIO_NONE;
7609 
7610         /* CVs for suspend/resume (PM or DR) */
7611         cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7612         cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7613 
7614         /* Power management support. */
7615         un->un_power_level = SD_SPINDLE_UNINIT;
7616 
7617         cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
7618         un->un_f_wcc_inprog = 0;
7619 
7620         /*
7621          * The open/close semaphore is used to serialize threads executing
7622          * in the driver's open & close entry point routines for a given
7623          * instance.
7624          */
7625         (void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
7626 
7627         /*
7628          * The conf file entry and softstate variable is a forceful override,
7629          * meaning a non-zero value must be entered to change the default.
7630          */
7631         un->un_f_disksort_disabled = FALSE;
7632         un->un_f_rmw_type = SD_RMW_TYPE_DEFAULT;
7633         un->un_f_enable_rmw = FALSE;
7634 
7635         /*
7636          * GET EVENT STATUS NOTIFICATION media polling enabled by default, but
7637          * can be overridden via [s]sd-config-list "mmc-gesn-polling" property.
7638          */
7639         un->un_f_mmc_gesn_polling = TRUE;
7640 
7641         /*
7642          * physical sector size defaults to DEV_BSIZE currently. We can
7643          * override this value via the driver configuration file so we must
7644          * set it before calling sd_read_unit_properties().
7645          */
7646         un->un_phy_blocksize = DEV_BSIZE;
7647 
7648         /*
7649          * Retrieve the properties from the static driver table or the driver
7650          * configuration file (.conf) for this unit and update the soft state
7651          * for the device as needed for the indicated properties.
7652          * Note: the property configuration needs to occur here as some of the
7653          * following routines may have dependencies on soft state flags set
7654          * as part of the driver property configuration.
7655          */
7656         sd_read_unit_properties(un);
7657         SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7658             "sd_unit_attach: un:0x%p property configuration complete.\n", un);
7659 
7660         /*
7661          * Only if a device has "hotpluggable" property, it is
7662          * treated as hotpluggable device. Otherwise, it is
7663          * regarded as non-hotpluggable one.
7664          */
7665         if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
7666             -1) != -1) {
7667                 un->un_f_is_hotpluggable = TRUE;
7668         }
7669 
7670         /*
7671          * set unit's attributes(flags) according to "hotpluggable" and
7672          * RMB bit in INQUIRY data.
7673          */
7674         sd_set_unit_attributes(un, devi);
7675 
7676         /*
7677          * By default, we mark the capacity, lbasize, and geometry
7678          * as invalid. Only if we successfully read a valid capacity
7679          * will we update the un_blockcount and un_tgt_blocksize with the
7680          * valid values (the geometry will be validated later).
7681          */
7682         un->un_f_blockcount_is_valid = FALSE;
7683         un->un_f_tgt_blocksize_is_valid      = FALSE;
7684 
7685         /*
7686          * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
7687          * otherwise.
7688          */
7689         un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
7690         un->un_blockcount = 0;
7691 
7692         /*
7693          * Set up the per-instance info needed to determine the correct
7694          * CDBs and other info for issuing commands to the target.
7695          */
7696         sd_init_cdb_limits(un);
7697 
7698         /*
7699          * Set up the IO chains to use, based upon the target type.
7700          */
7701         if (un->un_f_non_devbsize_supported) {
7702                 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7703         } else {
7704                 un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7705         }
7706         un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7707         un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
7708         un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
7709 
7710         un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
7711             sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
7712             ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
7713         ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
7714 
7715 
7716         if (ISCD(un)) {
7717                 un->un_additional_codes = sd_additional_codes;
7718         } else {
7719                 un->un_additional_codes = NULL;
7720         }
7721 
7722         /*
7723          * Create the kstats here so they can be available for attach-time
7724          * routines that send commands to the unit (either polled or via
7725          * sd_send_scsi_cmd).
7726          *
7727          * Note: This is a critical sequence that needs to be maintained:
7728          *      1) Instantiate the kstats here, before any routines using the
7729          *         iopath (i.e. sd_send_scsi_cmd).
7730          *      2) Instantiate and initialize the partition stats
7731          *         (sd_set_pstats).
7732          *      3) Initialize the error stats (sd_set_errstats), following
7733          *         sd_validate_geometry(),sd_register_devid(),
7734          *         and sd_cache_control().
7735          */
7736 
7737         un->un_stats = kstat_create(sd_label, instance,
7738             NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
7739         if (un->un_stats != NULL) {
7740                 un->un_stats->ks_lock = SD_MUTEX(un);
7741                 kstat_install(un->un_stats);
7742         }
7743         SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7744             "sd_unit_attach: un:0x%p un_stats created\n", un);
7745 
7746         sd_create_errstats(un, instance);
7747         if (un->un_errstats == NULL) {
7748                 goto create_errstats_failed;
7749         }
7750         SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7751             "sd_unit_attach: un:0x%p errstats created\n", un);
7752 
7753         /*
7754          * The following if/else code was relocated here from below as part
7755          * of the fix for bug (4430280). However with the default setup added
7756          * on entry to this routine, it's no longer absolutely necessary for
7757          * this to be before the call to sd_spin_up_unit.
7758          */
7759         if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
7760                 int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) ||
7761                     (devp->sd_inq->inq_ansi == 5)) &&
7762                     devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque;
7763 
7764                 /*
7765                  * If tagged queueing is supported by the target
7766                  * and by the host adapter then we will enable it
7767                  */
7768                 un->un_tagflags = 0;
7769                 if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag &&
7770                     (un->un_f_arq_enabled == TRUE)) {
7771                         if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
7772                             1, 1) == 1) {
7773                                 un->un_tagflags = FLAG_STAG;
7774                                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
7775                                     "sd_unit_attach: un:0x%p tag queueing "
7776                                     "enabled\n", un);
7777                         } else if (scsi_ifgetcap(SD_ADDRESS(un),
7778                             "untagged-qing", 0) == 1) {
7779                                 un->un_f_opt_queueing = TRUE;
7780                                 un->un_saved_throttle = un->un_throttle =
7781                                     min(un->un_throttle, 3);
7782                         } else {
7783                                 un->un_f_opt_queueing = FALSE;
7784                                 un->un_saved_throttle = un->un_throttle = 1;
7785                         }
7786                 } else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
7787                     == 1) && (un->un_f_arq_enabled == TRUE)) {
7788                         /* The Host Adapter supports internal queueing. */
7789                         un->un_f_opt_queueing = TRUE;
7790                         un->un_saved_throttle = un->un_throttle =
7791                             min(un->un_throttle, 3);
7792                 } else {
7793                         un->un_f_opt_queueing = FALSE;
7794                         un->un_saved_throttle = un->un_throttle = 1;
7795                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
7796                             "sd_unit_attach: un:0x%p no tag queueing\n", un);
7797                 }
7798 
7799                 /*
7800                  * Enable large transfers for SATA/SAS drives
7801                  */
7802                 if (SD_IS_SERIAL(un)) {
7803                         un->un_max_xfer_size =
7804                             ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7805                             sd_max_xfer_size, SD_MAX_XFER_SIZE);
7806                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
7807                             "sd_unit_attach: un:0x%p max transfer "
7808                             "size=0x%x\n", un, un->un_max_xfer_size);
7809 
7810                 }
7811 
7812                 /* Setup or tear down default wide operations for disks */
7813 
7814                 /*
7815                  * Note: Legacy: it may be possible for both "sd_max_xfer_size"
7816                  * and "ssd_max_xfer_size" to exist simultaneously on the same
7817                  * system and be set to different values. In the future this
7818                  * code may need to be updated when the ssd module is
7819                  * obsoleted and removed from the system. (4299588)
7820                  */
7821                 if (SD_IS_PARALLEL_SCSI(un) &&
7822                     (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
7823                     (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
7824                         if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7825                             1, 1) == 1) {
7826                                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
7827                                     "sd_unit_attach: un:0x%p Wide Transfer "
7828                                     "enabled\n", un);
7829                         }
7830 
7831                         /*
7832                          * If tagged queuing has also been enabled, then
7833                          * enable large xfers
7834                          */
7835                         if (un->un_saved_throttle == sd_max_throttle) {
7836                                 un->un_max_xfer_size =
7837                                     ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7838                                     sd_max_xfer_size, SD_MAX_XFER_SIZE);
7839                                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
7840                                     "sd_unit_attach: un:0x%p max transfer "
7841                                     "size=0x%x\n", un, un->un_max_xfer_size);
7842                         }
7843                 } else {
7844                         if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7845                             0, 1) == 1) {
7846                                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
7847                                     "sd_unit_attach: un:0x%p "
7848                                     "Wide Transfer disabled\n", un);
7849                         }
7850                 }
7851         } else {
7852                 un->un_tagflags = FLAG_STAG;
7853                 un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
7854                     devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
7855         }
7856 
7857         /*
7858          * If this target supports LUN reset, try to enable it.
7859          */
7860         if (un->un_f_lun_reset_enabled) {
7861                 if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
7862                         SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7863                             "un:0x%p lun_reset capability set\n", un);
7864                 } else {
7865                         SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7866                             "un:0x%p lun-reset capability not set\n", un);
7867                 }
7868         }
7869 
7870         /*
7871          * Adjust the maximum transfer size. This is to fix
7872          * the problem of partial DMA support on SPARC. Some
7873          * HBA driver, like aac, has very small dma_attr_maxxfer
7874          * size, which requires partial DMA support on SPARC.
7875          * In the future the SPARC pci nexus driver may solve
7876          * the problem instead of this fix.
7877          */
7878         max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
7879         if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
7880                 /* We need DMA partial even on sparc to ensure sddump() works */
7881                 un->un_max_xfer_size = max_xfer_size;
7882                 if (un->un_partial_dma_supported == 0)
7883                         un->un_partial_dma_supported = 1;
7884         }
7885         if (ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7886             DDI_PROP_DONTPASS, "buf_break", 0) == 1) {
7887                 if (ddi_xbuf_attr_setup_brk(un->un_xbuf_attr,
7888                     un->un_max_xfer_size) == 1) {
7889                         un->un_buf_breakup_supported = 1;
7890                         SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7891                             "un:0x%p Buf breakup enabled\n", un);
7892                 }
7893         }
7894 
7895         /*
7896          * Set PKT_DMA_PARTIAL flag.
7897          */
7898         if (un->un_partial_dma_supported == 1) {
7899                 un->un_pkt_flags = PKT_DMA_PARTIAL;
7900         } else {
7901                 un->un_pkt_flags = 0;
7902         }
7903 
7904         /* Initialize sd_ssc_t for internal uscsi commands */
7905         ssc = sd_ssc_init(un);
7906         scsi_fm_init(devp);
7907 
7908         /*
7909          * Allocate memory for SCSI FMA stuffs.
7910          */
7911         un->un_fm_private =
7912             kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP);
7913         sfip = (struct sd_fm_internal *)un->un_fm_private;
7914         sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd;
7915         sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo;
7916         sfip->fm_ssc.ssc_un = un;
7917 
7918         if (ISCD(un) ||
7919             un->un_f_has_removable_media ||
7920             devp->sd_fm_capable == DDI_FM_NOT_CAPABLE) {
7921                 /*
7922                  * We don't touch CDROM or the DDI_FM_NOT_CAPABLE device.
7923                  * Their log are unchanged.
7924                  */
7925                 sfip->fm_log_level = SD_FM_LOG_NSUP;
7926         } else {
7927                 /*
7928                  * If enter here, it should be non-CDROM and FM-capable
7929                  * device, and it will not keep the old scsi_log as before
7930                  * in /var/adm/messages. However, the property
7931                  * "fm-scsi-log" will control whether the FM telemetry will
7932                  * be logged in /var/adm/messages.
7933                  */
7934                 int fm_scsi_log;
7935                 fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7936                     DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0);
7937 
7938                 if (fm_scsi_log)
7939                         sfip->fm_log_level = SD_FM_LOG_EREPORT;
7940                 else
7941                         sfip->fm_log_level = SD_FM_LOG_SILENT;
7942         }
7943 
7944         /*
7945          * At this point in the attach, we have enough info in the
7946          * soft state to be able to issue commands to the target.
7947          *
7948          * All command paths used below MUST issue their commands as
7949          * SD_PATH_DIRECT. This is important as intermediate layers
7950          * are not all initialized yet (such as PM).
7951          */
7952 
7953         /*
7954          * Send a TEST UNIT READY command to the device. This should clear
7955          * any outstanding UNIT ATTENTION that may be present.
7956          *
7957          * Note: Don't check for success, just track if there is a reservation,
7958          * this is a throw away command to clear any unit attentions.
7959          *
7960          * Note: This MUST be the first command issued to the target during
7961          * attach to ensure power on UNIT ATTENTIONS are cleared.
7962          * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7963          * with attempts at spinning up a device with no media.
7964          */
7965         status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
7966         if (status != 0) {
7967                 if (status == EACCES)
7968                         reservation_flag = SD_TARGET_IS_RESERVED;
7969                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7970         }
7971 
7972         /*
7973          * If the device is NOT a removable media device, attempt to spin
7974          * it up (using the START_STOP_UNIT command) and read its capacity
7975          * (using the READ CAPACITY command).  Note, however, that either
7976          * of these could fail and in some cases we would continue with
7977          * the attach despite the failure (see below).
7978          */
7979         if (un->un_f_descr_format_supported) {
7980 
7981                 switch (sd_spin_up_unit(ssc)) {
7982                 case 0:
7983                         /*
7984                          * Spin-up was successful; now try to read the
7985                          * capacity.  If successful then save the results
7986                          * and mark the capacity & lbasize as valid.
7987                          */
7988                         SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7989                             "sd_unit_attach: un:0x%p spin-up successful\n", un);
7990 
7991                         status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
7992                             &lbasize, SD_PATH_DIRECT);
7993 
7994                         switch (status) {
7995                         case 0: {
7996                                 if (capacity > DK_MAX_BLOCKS) {
7997 #ifdef _LP64
7998                                         if ((capacity + 1) >
7999                                             SD_GROUP1_MAX_ADDRESS) {
8000                                                 /*
8001                                                  * Enable descriptor format
8002                                                  * sense data so that we can
8003                                                  * get 64 bit sense data
8004                                                  * fields.
8005                                                  */
8006                                                 sd_enable_descr_sense(ssc);
8007                                         }
8008 #else
8009                                         /* 32-bit kernels can't handle this */
8010                                         scsi_log(SD_DEVINFO(un),
8011                                             sd_label, CE_WARN,
8012                                             "disk has %llu blocks, which "
8013                                             "is too large for a 32-bit "
8014                                             "kernel", capacity);
8015 
8016 #if defined(__i386) || defined(__amd64)
8017                                         /*
8018                                          * 1TB disk was treated as (1T - 512)B
8019                                          * in the past, so that it might have
8020                                          * valid VTOC and solaris partitions,
8021                                          * we have to allow it to continue to
8022                                          * work.
8023                                          */
8024                                         if (capacity -1 > DK_MAX_BLOCKS)
8025 #endif
8026                                         goto spinup_failed;
8027 #endif
8028                                 }
8029 
8030                                 /*
8031                                  * Here it's not necessary to check the case:
8032                                  * the capacity of the device is bigger than
8033                                  * what the max hba cdb can support. Because
8034                                  * sd_send_scsi_READ_CAPACITY will retrieve
8035                                  * the capacity by sending USCSI command, which
8036                                  * is constrained by the max hba cdb. Actually,
8037                                  * sd_send_scsi_READ_CAPACITY will return
8038                                  * EINVAL when using bigger cdb than required
8039                                  * cdb length. Will handle this case in
8040                                  * "case EINVAL".
8041                                  */
8042 
8043                                 /*
8044                                  * The following relies on
8045                                  * sd_send_scsi_READ_CAPACITY never
8046                                  * returning 0 for capacity and/or lbasize.
8047                                  */
8048                                 sd_update_block_info(un, lbasize, capacity);
8049 
8050                                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
8051                                     "sd_unit_attach: un:0x%p capacity = %ld "
8052                                     "blocks; lbasize= %ld.\n", un,
8053                                     un->un_blockcount, un->un_tgt_blocksize);
8054 
8055                                 break;
8056                         }
8057                         case EINVAL:
8058                                 /*
8059                                  * In the case where the max-cdb-length property
8060                                  * is smaller than the required CDB length for
8061                                  * a SCSI device, a target driver can fail to
8062                                  * attach to that device.
8063                                  */
8064                                 scsi_log(SD_DEVINFO(un),
8065                                     sd_label, CE_WARN,
8066                                     "disk capacity is too large "
8067                                     "for current cdb length");
8068                                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8069 
8070                                 goto spinup_failed;
8071                         case EACCES:
8072                                 /*
8073                                  * Should never get here if the spin-up
8074                                  * succeeded, but code it in anyway.
8075                                  * From here, just continue with the attach...
8076                                  */
8077                                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
8078                                     "sd_unit_attach: un:0x%p "
8079                                     "sd_send_scsi_READ_CAPACITY "
8080                                     "returned reservation conflict\n", un);
8081                                 reservation_flag = SD_TARGET_IS_RESERVED;
8082                                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8083                                 break;
8084                         default:
8085                                 /*
8086                                  * Likewise, should never get here if the
8087                                  * spin-up succeeded. Just continue with
8088                                  * the attach...
8089                                  */
8090                                 if (status == EIO)
8091                                         sd_ssc_assessment(ssc,
8092                                             SD_FMT_STATUS_CHECK);
8093                                 else
8094                                         sd_ssc_assessment(ssc,
8095                                             SD_FMT_IGNORE);
8096                                 break;
8097                         }
8098                         break;
8099                 case EACCES:
8100                         /*
8101                          * Device is reserved by another host.  In this case
8102                          * we could not spin it up or read the capacity, but
8103                          * we continue with the attach anyway.
8104                          */
8105                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
8106                             "sd_unit_attach: un:0x%p spin-up reservation "
8107                             "conflict.\n", un);
8108                         reservation_flag = SD_TARGET_IS_RESERVED;
8109                         break;
8110                 default:
8111                         /* Fail the attach if the spin-up failed. */
8112                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
8113                             "sd_unit_attach: un:0x%p spin-up failed.", un);
8114                         goto spinup_failed;
8115                 }
8116 
8117         }
8118 
8119         /*
8120          * Check to see if this is a MMC drive
8121          */
8122         if (ISCD(un)) {
8123                 sd_set_mmc_caps(ssc);
8124         }
8125 
8126         /*
8127          * Add a zero-length attribute to tell the world we support
8128          * kernel ioctls (for layered drivers)
8129          */
8130         (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8131             DDI_KERNEL_IOCTL, NULL, 0);
8132 
8133         /*
8134          * Add a boolean property to tell the world we support
8135          * the B_FAILFAST flag (for layered drivers)
8136          */
8137         (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8138             "ddi-failfast-supported", NULL, 0);
8139 
8140         /*
8141          * Initialize power management
8142          */
8143         mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8144         cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8145         sd_setup_pm(ssc, devi);
8146         if (un->un_f_pm_is_enabled == FALSE) {
8147                 /*
8148                  * For performance, point to a jump table that does
8149                  * not include pm.
8150                  * The direct and priority chains don't change with PM.
8151                  *
8152                  * Note: this is currently done based on individual device
8153                  * capabilities. When an interface for determining system
8154                  * power enabled state becomes available, or when additional
8155                  * layers are added to the command chain, these values will
8156                  * have to be re-evaluated for correctness.
8157                  */
8158                 if (un->un_f_non_devbsize_supported) {
8159                         un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8160                 } else {
8161                         un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8162                 }
8163                 un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8164         }
8165 
8166         /*
8167          * This property is set to 0 by HA software to avoid retries
8168          * on a reserved disk. (The preferred property name is
8169          * "retry-on-reservation-conflict") (1189689)
8170          *
8171          * Note: The use of a global here can have unintended consequences. A
8172          * per instance variable is preferable to match the capabilities of
8173          * different underlying hba's (4402600)
8174          */
8175         sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8176             DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8177             sd_retry_on_reservation_conflict);
8178         if (sd_retry_on_reservation_conflict != 0) {
8179                 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8180                     devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8181                     sd_retry_on_reservation_conflict);
8182         }
8183 
8184         /* Set up options for QFULL handling. */
8185         if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8186             "qfull-retries", -1)) != -1) {
8187                 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8188                     rval, 1);
8189         }
8190         if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8191             "qfull-retry-interval", -1)) != -1) {
8192                 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8193                     rval, 1);
8194         }
8195 
8196         /*
8197          * This just prints a message that announces the existence of the
8198          * device. The message is always printed in the system logfile, but
8199          * only appears on the console if the system is booted with the
8200          * -v (verbose) argument.
8201          */
8202         ddi_report_dev(devi);
8203 
8204         un->un_mediastate = DKIO_NONE;
8205 
8206         /*
8207          * Check if this is a SSD(Solid State Drive).
8208          */
8209         sd_check_solid_state(ssc);
8210 
8211         /*
8212          * Check whether the drive is in emulation mode.
8213          */
8214         sd_check_emulation_mode(ssc);
8215 
8216         cmlb_alloc_handle(&un->un_cmlbhandle);
8217 
8218 #if defined(__i386) || defined(__amd64)
8219         /*
8220          * On x86, compensate for off-by-1 legacy error
8221          */
8222         if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
8223             (lbasize == un->un_sys_blocksize))
8224                 offbyone = CMLB_OFF_BY_ONE;
8225 #endif
8226 
8227         if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
8228             VOID2BOOLEAN(un->un_f_has_removable_media != 0),
8229             VOID2BOOLEAN(un->un_f_is_hotpluggable != 0),
8230             un->un_node_type, offbyone, un->un_cmlbhandle,
8231             (void *)SD_PATH_DIRECT) != 0) {
8232                 goto cmlb_attach_failed;
8233         }
8234 
8235 
8236         /*
8237          * Read and validate the device's geometry (ie, disk label)
8238          * A new unformatted drive will not have a valid geometry, but
8239          * the driver needs to successfully attach to this device so
8240          * the drive can be formatted via ioctls.
8241          */
8242         geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
8243             (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
8244 
8245         mutex_enter(SD_MUTEX(un));
8246 
8247         /*
8248          * Read and initialize the devid for the unit.
8249          */
8250         if (un->un_f_devid_supported) {
8251                 sd_register_devid(ssc, devi, reservation_flag);
8252         }
8253         mutex_exit(SD_MUTEX(un));
8254 
8255 #if (defined(__fibre))
8256         /*
8257          * Register callbacks for fibre only.  You can't do this solely
8258          * on the basis of the devid_type because this is hba specific.
8259          * We need to query our hba capabilities to find out whether to
8260          * register or not.
8261          */
8262         if (un->un_f_is_fibre) {
8263                 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8264                         sd_init_event_callbacks(un);
8265                         SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8266                             "sd_unit_attach: un:0x%p event callbacks inserted",
8267                             un);
8268                 }
8269         }
8270 #endif
8271 
8272         if (un->un_f_opt_disable_cache == TRUE) {
8273                 /*
8274                  * Disable both read cache and write cache.  This is
8275                  * the historic behavior of the keywords in the config file.
8276                  */
8277                 if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
8278                     0) {
8279                         SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8280                             "sd_unit_attach: un:0x%p Could not disable "
8281                             "caching", un);
8282                         goto devid_failed;
8283                 }
8284         }
8285 
8286         /*
8287          * Check the value of the WCE bit now and
8288          * set un_f_write_cache_enabled accordingly.
8289          */
8290         (void) sd_get_write_cache_enabled(ssc, &wc_enabled);
8291         mutex_enter(SD_MUTEX(un));
8292         un->un_f_write_cache_enabled = (wc_enabled != 0);
8293         mutex_exit(SD_MUTEX(un));
8294 
8295         if ((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR &&
8296             un->un_tgt_blocksize != DEV_BSIZE) ||
8297             un->un_f_enable_rmw) {
8298                 if (!(un->un_wm_cache)) {
8299                         (void) snprintf(name_str, sizeof (name_str),
8300                             "%s%d_cache",
8301                             ddi_driver_name(SD_DEVINFO(un)),
8302                             ddi_get_instance(SD_DEVINFO(un)));
8303                         un->un_wm_cache = kmem_cache_create(
8304                             name_str, sizeof (struct sd_w_map),
8305                             8, sd_wm_cache_constructor,
8306                             sd_wm_cache_destructor, NULL,
8307                             (void *)un, NULL, 0);
8308                         if (!(un->un_wm_cache)) {
8309                                 goto wm_cache_failed;
8310                         }
8311                 }
8312         }
8313 
8314         /*
8315          * Check the value of the NV_SUP bit and set
8316          * un_f_suppress_cache_flush accordingly.
8317          */
8318         sd_get_nv_sup(ssc);
8319 
8320         /*
8321          * Find out what type of reservation this disk supports.
8322          */
8323         status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL);
8324 
8325         switch (status) {
8326         case 0:
8327                 /*
8328                  * SCSI-3 reservations are supported.
8329                  */
8330                 un->un_reservation_type = SD_SCSI3_RESERVATION;
8331                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
8332                     "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
8333                 break;
8334         case ENOTSUP:
8335                 /*
8336                  * The PERSISTENT RESERVE IN command would not be recognized by
8337                  * a SCSI-2 device, so assume the reservation type is SCSI-2.
8338                  */
8339                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
8340                     "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
8341                 un->un_reservation_type = SD_SCSI2_RESERVATION;
8342 
8343                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8344                 break;
8345         default:
8346                 /*
8347                  * default to SCSI-3 reservations
8348                  */
8349                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
8350                     "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
8351                 un->un_reservation_type = SD_SCSI3_RESERVATION;
8352 
8353                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8354                 break;
8355         }
8356 
8357         /*
8358          * Set the pstat and error stat values here, so data obtained during the
8359          * previous attach-time routines is available.
8360          *
8361          * Note: This is a critical sequence that needs to be maintained:
8362          *      1) Instantiate the kstats before any routines using the iopath
8363          *         (i.e. sd_send_scsi_cmd).
8364          *      2) Initialize the error stats (sd_set_errstats) and partition
8365          *         stats (sd_set_pstats)here, following
8366          *         cmlb_validate_geometry(), sd_register_devid(), and
8367          *         sd_cache_control().
8368          */
8369 
8370         if (un->un_f_pkstats_enabled && geom_label_valid) {
8371                 sd_set_pstats(un);
8372                 SD_TRACE(SD_LOG_IO_PARTITION, un,
8373                     "sd_unit_attach: un:0x%p pstats created and set\n", un);
8374         }
8375 
8376         sd_set_errstats(un);
8377         SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8378             "sd_unit_attach: un:0x%p errstats set\n", un);
8379 
8380 
8381         /*
8382          * After successfully attaching an instance, we record the information
8383          * of how many luns have been attached on the relative target and
8384          * controller for parallel SCSI. This information is used when sd tries
8385          * to set the tagged queuing capability in HBA.
8386          */
8387         if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8388                 sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
8389         }
8390 
8391         SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8392             "sd_unit_attach: un:0x%p exit success\n", un);
8393 
8394         /* Uninitialize sd_ssc_t pointer */
8395         sd_ssc_fini(ssc);
8396 
8397         return (DDI_SUCCESS);
8398 
8399         /*
8400          * An error occurred during the attach; clean up & return failure.
8401          */
8402 wm_cache_failed:
8403 devid_failed:
8404 
8405 setup_pm_failed:
8406         ddi_remove_minor_node(devi, NULL);
8407 
8408 cmlb_attach_failed:
8409         /*
8410          * Cleanup from the scsi_ifsetcap() calls (437868)
8411          */
8412         (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8413         (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8414 
8415         /*
8416          * Refer to the comments of setting tagged-qing in the beginning of
8417          * sd_unit_attach. We can only disable tagged queuing when there is
8418          * no lun attached on the target.
8419          */
8420         if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
8421                 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8422         }
8423 
8424         if (un->un_f_is_fibre == FALSE) {
8425                 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8426         }
8427 
8428 spinup_failed:
8429 
8430         /* Uninitialize sd_ssc_t pointer */
8431         sd_ssc_fini(ssc);
8432 
8433         mutex_enter(SD_MUTEX(un));
8434 
8435         /* Deallocate SCSI FMA memory spaces */
8436         kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8437 
8438         /* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
8439         if (un->un_direct_priority_timeid != NULL) {
8440                 timeout_id_t temp_id = un->un_direct_priority_timeid;
8441                 un->un_direct_priority_timeid = NULL;
8442                 mutex_exit(SD_MUTEX(un));
8443                 (void) untimeout(temp_id);
8444                 mutex_enter(SD_MUTEX(un));
8445         }
8446 
8447         /* Cancel any pending start/stop timeouts */
8448         if (un->un_startstop_timeid != NULL) {
8449                 timeout_id_t temp_id = un->un_startstop_timeid;
8450                 un->un_startstop_timeid = NULL;
8451                 mutex_exit(SD_MUTEX(un));
8452                 (void) untimeout(temp_id);
8453                 mutex_enter(SD_MUTEX(un));
8454         }
8455 
8456         /* Cancel any pending reset-throttle timeouts */
8457         if (un->un_reset_throttle_timeid != NULL) {
8458                 timeout_id_t temp_id = un->un_reset_throttle_timeid;
8459                 un->un_reset_throttle_timeid = NULL;
8460                 mutex_exit(SD_MUTEX(un));
8461                 (void) untimeout(temp_id);
8462                 mutex_enter(SD_MUTEX(un));
8463         }
8464 
8465         /* Cancel rmw warning message timeouts */
8466         if (un->un_rmw_msg_timeid != NULL) {
8467                 timeout_id_t temp_id = un->un_rmw_msg_timeid;
8468                 un->un_rmw_msg_timeid = NULL;
8469                 mutex_exit(SD_MUTEX(un));
8470                 (void) untimeout(temp_id);
8471                 mutex_enter(SD_MUTEX(un));
8472         }
8473 
8474         /* Cancel any pending retry timeouts */
8475         if (un->un_retry_timeid != NULL) {
8476                 timeout_id_t temp_id = un->un_retry_timeid;
8477                 un->un_retry_timeid = NULL;
8478                 mutex_exit(SD_MUTEX(un));
8479                 (void) untimeout(temp_id);
8480                 mutex_enter(SD_MUTEX(un));
8481         }
8482 
8483         /* Cancel any pending delayed cv broadcast timeouts */
8484         if (un->un_dcvb_timeid != NULL) {
8485                 timeout_id_t temp_id = un->un_dcvb_timeid;
8486                 un->un_dcvb_timeid = NULL;
8487                 mutex_exit(SD_MUTEX(un));
8488                 (void) untimeout(temp_id);
8489                 mutex_enter(SD_MUTEX(un));
8490         }
8491 
8492         mutex_exit(SD_MUTEX(un));
8493 
8494         /* There should not be any in-progress I/O so ASSERT this check */
8495         ASSERT(un->un_ncmds_in_transport == 0);
8496         ASSERT(un->un_ncmds_in_driver == 0);
8497 
8498         /* Do not free the softstate if the callback routine is active */
8499         sd_sync_with_callback(un);
8500 
8501         /*
8502          * Partition stats apparently are not used with removables. These would
8503          * not have been created during attach, so no need to clean them up...
8504          */
8505         if (un->un_errstats != NULL) {
8506                 kstat_delete(un->un_errstats);
8507                 un->un_errstats = NULL;
8508         }
8509 
8510 create_errstats_failed:
8511 
8512         if (un->un_stats != NULL) {
8513                 kstat_delete(un->un_stats);
8514                 un->un_stats = NULL;
8515         }
8516 
8517         ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8518         ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8519 
8520         ddi_prop_remove_all(devi);
8521         sema_destroy(&un->un_semoclose);
8522         cv_destroy(&un->un_state_cv);
8523 
8524 getrbuf_failed:
8525 
8526         sd_free_rqs(un);
8527 
8528 alloc_rqs_failed:
8529 
8530         devp->sd_private = NULL;
8531         bzero(un, sizeof (struct sd_lun));      /* Clear any stale data! */
8532 
8533 get_softstate_failed:
8534         /*
8535          * Note: the man pages are unclear as to whether or not doing a
8536          * ddi_soft_state_free(sd_state, instance) is the right way to
8537          * clean up after the ddi_soft_state_zalloc() if the subsequent
8538          * ddi_get_soft_state() fails.  The implication seems to be
8539          * that the get_soft_state cannot fail if the zalloc succeeds.
8540          */
8541 #ifndef XPV_HVM_DRIVER
8542         ddi_soft_state_free(sd_state, instance);
8543 #endif /* !XPV_HVM_DRIVER */
8544 
8545 probe_failed:
8546         scsi_unprobe(devp);
8547 
8548         return (DDI_FAILURE);
8549 }
8550 
8551 
8552 /*
8553  *    Function: sd_unit_detach
8554  *
8555  * Description: Performs DDI_DETACH processing for sddetach().
8556  *
8557  * Return Code: DDI_SUCCESS
8558  *              DDI_FAILURE
8559  *
8560  *     Context: Kernel thread context
8561  */
8562 
8563 static int
8564 sd_unit_detach(dev_info_t *devi)
8565 {
8566         struct scsi_device      *devp;
8567         struct sd_lun           *un;
8568         int                     i;
8569         int                     tgt;
8570         dev_t                   dev;
8571         dev_info_t              *pdip = ddi_get_parent(devi);
8572 #ifndef XPV_HVM_DRIVER
8573         int                     instance = ddi_get_instance(devi);
8574 #endif /* !XPV_HVM_DRIVER */
8575 
8576         mutex_enter(&sd_detach_mutex);
8577 
8578         /*
8579          * Fail the detach for any of the following:
8580          *  - Unable to get the sd_lun struct for the instance
8581          *  - A layered driver has an outstanding open on the instance
8582          *  - Another thread is already detaching this instance
8583          *  - Another thread is currently performing an open
8584          */
8585         devp = ddi_get_driver_private(devi);
8586         if ((devp == NULL) ||
8587             ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8588             (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8589             (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8590                 mutex_exit(&sd_detach_mutex);
8591                 return (DDI_FAILURE);
8592         }
8593 
8594         SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8595 
8596         /*
8597          * Mark this instance as currently in a detach, to inhibit any
8598          * opens from a layered driver.
8599          */
8600         un->un_detach_count++;
8601         mutex_exit(&sd_detach_mutex);
8602 
8603         tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8604             SCSI_ADDR_PROP_TARGET, -1);
8605 
8606         dev = sd_make_device(SD_DEVINFO(un));
8607 
8608 #ifndef lint
8609         _NOTE(COMPETING_THREADS_NOW);
8610 #endif
8611 
8612         mutex_enter(SD_MUTEX(un));
8613 
8614         /*
8615          * Fail the detach if there are any outstanding layered
8616          * opens on this device.
8617          */
8618         for (i = 0; i < NDKMAP; i++) {
8619                 if (un->un_ocmap.lyropen[i] != 0) {
8620                         goto err_notclosed;
8621                 }
8622         }
8623 
8624         /*
8625          * Verify there are NO outstanding commands issued to this device.
8626          * ie, un_ncmds_in_transport == 0.
8627          * It's possible to have outstanding commands through the physio
8628          * code path, even though everything's closed.
8629          */
8630         if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8631             (un->un_direct_priority_timeid != NULL) ||
8632             (un->un_state == SD_STATE_RWAIT)) {
8633                 mutex_exit(SD_MUTEX(un));
8634                 SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8635                     "sd_dr_detach: Detach failure due to outstanding cmds\n");
8636                 goto err_stillbusy;
8637         }
8638 
8639         /*
8640          * If we have the device reserved, release the reservation.
8641          */
8642         if ((un->un_resvd_status & SD_RESERVE) &&
8643             !(un->un_resvd_status & SD_LOST_RESERVE)) {
8644                 mutex_exit(SD_MUTEX(un));
8645                 /*
8646                  * Note: sd_reserve_release sends a command to the device
8647                  * via the sd_ioctlcmd() path, and can sleep.
8648                  */
8649                 if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8650                         SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8651                             "sd_dr_detach: Cannot release reservation \n");
8652                 }
8653         } else {
8654                 mutex_exit(SD_MUTEX(un));
8655         }
8656 
8657         /*
8658          * Untimeout any reserve recover, throttle reset, restart unit
8659          * and delayed broadcast timeout threads. Protect the timeout pointer
8660          * from getting nulled by their callback functions.
8661          */
8662         mutex_enter(SD_MUTEX(un));
8663         if (un->un_resvd_timeid != NULL) {
8664                 timeout_id_t temp_id = un->un_resvd_timeid;
8665                 un->un_resvd_timeid = NULL;
8666                 mutex_exit(SD_MUTEX(un));
8667                 (void) untimeout(temp_id);
8668                 mutex_enter(SD_MUTEX(un));
8669         }
8670 
8671         if (un->un_reset_throttle_timeid != NULL) {
8672                 timeout_id_t temp_id = un->un_reset_throttle_timeid;
8673                 un->un_reset_throttle_timeid = NULL;
8674                 mutex_exit(SD_MUTEX(un));
8675                 (void) untimeout(temp_id);
8676                 mutex_enter(SD_MUTEX(un));
8677         }
8678 
8679         if (un->un_startstop_timeid != NULL) {
8680                 timeout_id_t temp_id = un->un_startstop_timeid;
8681                 un->un_startstop_timeid = NULL;
8682                 mutex_exit(SD_MUTEX(un));
8683                 (void) untimeout(temp_id);
8684                 mutex_enter(SD_MUTEX(un));
8685         }
8686 
8687         if (un->un_rmw_msg_timeid != NULL) {
8688                 timeout_id_t temp_id = un->un_rmw_msg_timeid;
8689                 un->un_rmw_msg_timeid = NULL;
8690                 mutex_exit(SD_MUTEX(un));
8691                 (void) untimeout(temp_id);
8692                 mutex_enter(SD_MUTEX(un));
8693         }
8694 
8695         if (un->un_dcvb_timeid != NULL) {
8696                 timeout_id_t temp_id = un->un_dcvb_timeid;
8697                 un->un_dcvb_timeid = NULL;
8698                 mutex_exit(SD_MUTEX(un));
8699                 (void) untimeout(temp_id);
8700         } else {
8701                 mutex_exit(SD_MUTEX(un));
8702         }
8703 
8704         /* Remove any pending reservation reclaim requests for this device */
8705         sd_rmv_resv_reclaim_req(dev);
8706 
8707         mutex_enter(SD_MUTEX(un));
8708 
8709         /* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8710         if (un->un_direct_priority_timeid != NULL) {
8711                 timeout_id_t temp_id = un->un_direct_priority_timeid;
8712                 un->un_direct_priority_timeid = NULL;
8713                 mutex_exit(SD_MUTEX(un));
8714                 (void) untimeout(temp_id);
8715                 mutex_enter(SD_MUTEX(un));
8716         }
8717 
8718         /* Cancel any active multi-host disk watch thread requests */
8719         if (un->un_mhd_token != NULL) {
8720                 mutex_exit(SD_MUTEX(un));
8721                  _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8722                 if (scsi_watch_request_terminate(un->un_mhd_token,
8723                     SCSI_WATCH_TERMINATE_NOWAIT)) {
8724                         SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8725                             "sd_dr_detach: Cannot cancel mhd watch request\n");
8726                         /*
8727                          * Note: We are returning here after having removed
8728                          * some driver timeouts above. This is consistent with
8729                          * the legacy implementation but perhaps the watch
8730                          * terminate call should be made with the wait flag set.
8731                          */
8732                         goto err_stillbusy;
8733                 }
8734                 mutex_enter(SD_MUTEX(un));
8735                 un->un_mhd_token = NULL;
8736         }
8737 
8738         if (un->un_swr_token != NULL) {
8739                 mutex_exit(SD_MUTEX(un));
8740                 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8741                 if (scsi_watch_request_terminate(un->un_swr_token,
8742                     SCSI_WATCH_TERMINATE_NOWAIT)) {
8743                         SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8744                             "sd_dr_detach: Cannot cancel swr watch request\n");
8745                         /*
8746                          * Note: We are returning here after having removed
8747                          * some driver timeouts above. This is consistent with
8748                          * the legacy implementation but perhaps the watch
8749                          * terminate call should be made with the wait flag set.
8750                          */
8751                         goto err_stillbusy;
8752                 }
8753                 mutex_enter(SD_MUTEX(un));
8754                 un->un_swr_token = NULL;
8755         }
8756 
8757         mutex_exit(SD_MUTEX(un));
8758 
8759         /*
8760          * Clear any scsi_reset_notifies. We clear the reset notifies
8761          * if we have not registered one.
8762          * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8763          */
8764         (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8765             sd_mhd_reset_notify_cb, (caddr_t)un);
8766 
8767         /*
8768          * protect the timeout pointers from getting nulled by
8769          * their callback functions during the cancellation process.
8770          * In such a scenario untimeout can be invoked with a null value.
8771          */
8772         _NOTE(NO_COMPETING_THREADS_NOW);
8773 
8774         mutex_enter(&un->un_pm_mutex);
8775         if (un->un_pm_idle_timeid != NULL) {
8776                 timeout_id_t temp_id = un->un_pm_idle_timeid;
8777                 un->un_pm_idle_timeid = NULL;
8778                 mutex_exit(&un->un_pm_mutex);
8779 
8780                 /*
8781                  * Timeout is active; cancel it.
8782                  * Note that it'll never be active on a device
8783                  * that does not support PM therefore we don't
8784                  * have to check before calling pm_idle_component.
8785                  */
8786                 (void) untimeout(temp_id);
8787                 (void) pm_idle_component(SD_DEVINFO(un), 0);
8788                 mutex_enter(&un->un_pm_mutex);
8789         }
8790 
8791         /*
8792          * Check whether there is already a timeout scheduled for power
8793          * management. If yes then don't lower the power here, that's.
8794          * the timeout handler's job.
8795          */
8796         if (un->un_pm_timeid != NULL) {
8797                 timeout_id_t temp_id = un->un_pm_timeid;
8798                 un->un_pm_timeid = NULL;
8799                 mutex_exit(&un->un_pm_mutex);
8800                 /*
8801                  * Timeout is active; cancel it.
8802                  * Note that it'll never be active on a device
8803                  * that does not support PM therefore we don't
8804                  * have to check before calling pm_idle_component.
8805                  */
8806                 (void) untimeout(temp_id);
8807                 (void) pm_idle_component(SD_DEVINFO(un), 0);
8808 
8809         } else {
8810                 mutex_exit(&un->un_pm_mutex);
8811                 if ((un->un_f_pm_is_enabled == TRUE) &&
8812                     (pm_lower_power(SD_DEVINFO(un), 0, SD_PM_STATE_STOPPED(un))
8813                     != DDI_SUCCESS)) {
8814                         SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8815                     "sd_dr_detach: Lower power request failed, ignoring.\n");
8816                         /*
8817                          * Fix for bug: 4297749, item # 13
8818                          * The above test now includes a check to see if PM is
8819                          * supported by this device before call
8820                          * pm_lower_power().
8821                          * Note, the following is not dead code. The call to
8822                          * pm_lower_power above will generate a call back into
8823                          * our sdpower routine which might result in a timeout
8824                          * handler getting activated. Therefore the following
8825                          * code is valid and necessary.
8826                          */
8827                         mutex_enter(&un->un_pm_mutex);
8828                         if (un->un_pm_timeid != NULL) {
8829                                 timeout_id_t temp_id = un->un_pm_timeid;
8830                                 un->un_pm_timeid = NULL;
8831                                 mutex_exit(&un->un_pm_mutex);
8832                                 (void) untimeout(temp_id);
8833                                 (void) pm_idle_component(SD_DEVINFO(un), 0);
8834                         } else {
8835                                 mutex_exit(&un->un_pm_mutex);
8836                         }
8837                 }
8838         }
8839 
8840         /*
8841          * Cleanup from the scsi_ifsetcap() calls (437868)
8842          * Relocated here from above to be after the call to
8843          * pm_lower_power, which was getting errors.
8844          */
8845         (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8846         (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8847 
8848         /*
8849          * Currently, tagged queuing is supported per target based by HBA.
8850          * Setting this per lun instance actually sets the capability of this
8851          * target in HBA, which affects those luns already attached on the
8852          * same target. So during detach, we can only disable this capability
8853          * only when this is the only lun left on this target. By doing
8854          * this, we assume a target has the same tagged queuing capability
8855          * for every lun. The condition can be removed when HBA is changed to
8856          * support per lun based tagged queuing capability.
8857          */
8858         if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
8859                 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8860         }
8861 
8862         if (un->un_f_is_fibre == FALSE) {
8863                 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8864         }
8865 
8866         /*
8867          * Remove any event callbacks, fibre only
8868          */
8869         if (un->un_f_is_fibre == TRUE) {
8870                 if ((un->un_insert_event != NULL) &&
8871                     (ddi_remove_event_handler(un->un_insert_cb_id) !=
8872                     DDI_SUCCESS)) {
8873                         /*
8874                          * Note: We are returning here after having done
8875                          * substantial cleanup above. This is consistent
8876                          * with the legacy implementation but this may not
8877                          * be the right thing to do.
8878                          */
8879                         SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8880                             "sd_dr_detach: Cannot cancel insert event\n");
8881                         goto err_remove_event;
8882                 }
8883                 un->un_insert_event = NULL;
8884 
8885                 if ((un->un_remove_event != NULL) &&
8886                     (ddi_remove_event_handler(un->un_remove_cb_id) !=
8887                     DDI_SUCCESS)) {
8888                         /*
8889                          * Note: We are returning here after having done
8890                          * substantial cleanup above. This is consistent
8891                          * with the legacy implementation but this may not
8892                          * be the right thing to do.
8893                          */
8894                         SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8895                             "sd_dr_detach: Cannot cancel remove event\n");
8896                         goto err_remove_event;
8897                 }
8898                 un->un_remove_event = NULL;
8899         }
8900 
8901         /* Do not free the softstate if the callback routine is active */
8902         sd_sync_with_callback(un);
8903 
8904         cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
8905         cmlb_free_handle(&un->un_cmlbhandle);
8906 
8907         /*
8908          * Hold the detach mutex here, to make sure that no other threads ever
8909          * can access a (partially) freed soft state structure.
8910          */
8911         mutex_enter(&sd_detach_mutex);
8912 
8913         /*
8914          * Clean up the soft state struct.
8915          * Cleanup is done in reverse order of allocs/inits.
8916          * At this point there should be no competing threads anymore.
8917          */
8918 
8919         scsi_fm_fini(devp);
8920 
8921         /*
8922          * Deallocate memory for SCSI FMA.
8923          */
8924         kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8925 
8926         /*
8927          * Unregister and free device id if it was not registered
8928          * by the transport.
8929          */
8930         if (un->un_f_devid_transport_defined == FALSE)
8931                 ddi_devid_unregister(devi);
8932 
8933         /*
8934          * free the devid structure if allocated before (by ddi_devid_init()
8935          * or ddi_devid_get()).
8936          */
8937         if (un->un_devid) {
8938                 ddi_devid_free(un->un_devid);
8939                 un->un_devid = NULL;
8940         }
8941 
8942         /*
8943          * Destroy wmap cache if it exists.
8944          */
8945         if (un->un_wm_cache != NULL) {
8946                 kmem_cache_destroy(un->un_wm_cache);
8947                 un->un_wm_cache = NULL;
8948         }
8949 
8950         /*
8951          * kstat cleanup is done in detach for all device types (4363169).
8952          * We do not want to fail detach if the device kstats are not deleted
8953          * since there is a confusion about the devo_refcnt for the device.
8954          * We just delete the kstats and let detach complete successfully.
8955          */
8956         if (un->un_stats != NULL) {
8957                 kstat_delete(un->un_stats);
8958                 un->un_stats = NULL;
8959         }
8960         if (un->un_errstats != NULL) {
8961                 kstat_delete(un->un_errstats);
8962                 un->un_errstats = NULL;
8963         }
8964 
8965         /* Remove partition stats */
8966         if (un->un_f_pkstats_enabled) {
8967                 for (i = 0; i < NSDMAP; i++) {
8968                         if (un->un_pstats[i] != NULL) {
8969                                 kstat_delete(un->un_pstats[i]);
8970                                 un->un_pstats[i] = NULL;
8971                         }
8972                 }
8973         }
8974 
8975         /* Remove xbuf registration */
8976         ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8977         ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8978 
8979         /* Remove driver properties */
8980         ddi_prop_remove_all(devi);
8981 
8982         mutex_destroy(&un->un_pm_mutex);
8983         cv_destroy(&un->un_pm_busy_cv);
8984 
8985         cv_destroy(&un->un_wcc_cv);
8986 
8987         /* Open/close semaphore */
8988         sema_destroy(&un->un_semoclose);
8989 
8990         /* Removable media condvar. */
8991         cv_destroy(&un->un_state_cv);
8992 
8993         /* Suspend/resume condvar. */
8994         cv_destroy(&un->un_suspend_cv);
8995         cv_destroy(&un->un_disk_busy_cv);
8996 
8997         sd_free_rqs(un);
8998 
8999         /* Free up soft state */
9000         devp->sd_private = NULL;
9001 
9002         bzero(un, sizeof (struct sd_lun));
9003 #ifndef XPV_HVM_DRIVER
9004         ddi_soft_state_free(sd_state, instance);
9005 #endif /* !XPV_HVM_DRIVER */
9006 
9007         mutex_exit(&sd_detach_mutex);
9008 
9009         /* This frees up the INQUIRY data associated with the device. */
9010         scsi_unprobe(devp);
9011 
9012         /*
9013          * After successfully detaching an instance, we update the information
9014          * of how many luns have been attached in the relative target and
9015          * controller for parallel SCSI. This information is used when sd tries
9016          * to set the tagged queuing capability in HBA.
9017          * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
9018          * check if the device is parallel SCSI. However, we don't need to
9019          * check here because we've already checked during attach. No device
9020          * that is not parallel SCSI is in the chain.
9021          */
9022         if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
9023                 sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
9024         }
9025 
9026         return (DDI_SUCCESS);
9027 
9028 err_notclosed:
9029         mutex_exit(SD_MUTEX(un));
9030 
9031 err_stillbusy:
9032         _NOTE(NO_COMPETING_THREADS_NOW);
9033 
9034 err_remove_event:
9035         mutex_enter(&sd_detach_mutex);
9036         un->un_detach_count--;
9037         mutex_exit(&sd_detach_mutex);
9038 
9039         SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9040         return (DDI_FAILURE);
9041 }
9042 
9043 
9044 /*
9045  *    Function: sd_create_errstats
9046  *
9047  * Description: This routine instantiates the device error stats.
9048  *
9049  *              Note: During attach the stats are instantiated first so they are
9050  *              available for attach-time routines that utilize the driver
9051  *              iopath to send commands to the device. The stats are initialized
9052  *              separately so data obtained during some attach-time routines is
9053  *              available. (4362483)
9054  *
9055  *   Arguments: un - driver soft state (unit) structure
9056  *              instance - driver instance
9057  *
9058  *     Context: Kernel thread context
9059  */
9060 
9061 static void
9062 sd_create_errstats(struct sd_lun *un, int instance)
9063 {
9064         struct  sd_errstats     *stp;
9065         char    kstatmodule_err[KSTAT_STRLEN];
9066         char    kstatname[KSTAT_STRLEN];
9067         int     ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9068 
9069         ASSERT(un != NULL);
9070 
9071         if (un->un_errstats != NULL) {
9072                 return;
9073         }
9074 
9075         (void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9076             "%serr", sd_label);
9077         (void) snprintf(kstatname, sizeof (kstatname),
9078             "%s%d,err", sd_label, instance);
9079 
9080         un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9081             "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9082 
9083         if (un->un_errstats == NULL) {
9084                 SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9085                     "sd_create_errstats: Failed kstat_create\n");
9086                 return;
9087         }
9088 
9089         stp = (struct sd_errstats *)un->un_errstats->ks_data;
9090         kstat_named_init(&stp->sd_softerrs,      "Soft Errors",
9091             KSTAT_DATA_UINT32);
9092         kstat_named_init(&stp->sd_harderrs,      "Hard Errors",
9093             KSTAT_DATA_UINT32);
9094         kstat_named_init(&stp->sd_transerrs,     "Transport Errors",
9095             KSTAT_DATA_UINT32);
9096         kstat_named_init(&stp->sd_vid,           "Vendor",
9097             KSTAT_DATA_CHAR);
9098         kstat_named_init(&stp->sd_pid,           "Product",
9099             KSTAT_DATA_CHAR);
9100         kstat_named_init(&stp->sd_revision,      "Revision",
9101             KSTAT_DATA_CHAR);
9102         kstat_named_init(&stp->sd_serial,        "Serial No",
9103             KSTAT_DATA_CHAR);
9104         kstat_named_init(&stp->sd_capacity,      "Size",
9105             KSTAT_DATA_ULONGLONG);
9106         kstat_named_init(&stp->sd_rq_media_err,  "Media Error",
9107             KSTAT_DATA_UINT32);
9108         kstat_named_init(&stp->sd_rq_ntrdy_err,  "Device Not Ready",
9109             KSTAT_DATA_UINT32);
9110         kstat_named_init(&stp->sd_rq_nodev_err,  "No Device",
9111             KSTAT_DATA_UINT32);
9112         kstat_named_init(&stp->sd_rq_recov_err,  "Recoverable",
9113             KSTAT_DATA_UINT32);
9114         kstat_named_init(&stp->sd_rq_illrq_err,  "Illegal Request",
9115             KSTAT_DATA_UINT32);
9116         kstat_named_init(&stp->sd_rq_pfa_err,    "Predictive Failure Analysis",
9117             KSTAT_DATA_UINT32);
9118 
9119         un->un_errstats->ks_private = un;
9120         un->un_errstats->ks_update  = nulldev;
9121 
9122         kstat_install(un->un_errstats);
9123 }
9124 
9125 
9126 /*
9127  *    Function: sd_set_errstats
9128  *
9129  * Description: This routine sets the value of the vendor id, product id,
9130  *              revision, serial number, and capacity device error stats.
9131  *
9132  *              Note: During attach the stats are instantiated first so they are
9133  *              available for attach-time routines that utilize the driver
9134  *              iopath to send commands to the device. The stats are initialized
9135  *              separately so data obtained during some attach-time routines is
9136  *              available. (4362483)
9137  *
9138  *   Arguments: un - driver soft state (unit) structure
9139  *
9140  *     Context: Kernel thread context
9141  */
9142 
9143 static void
9144 sd_set_errstats(struct sd_lun *un)
9145 {
9146         struct  sd_errstats     *stp;
9147         char                    *sn;
9148 
9149         ASSERT(un != NULL);
9150         ASSERT(un->un_errstats != NULL);
9151         stp = (struct sd_errstats *)un->un_errstats->ks_data;
9152         ASSERT(stp != NULL);
9153         (void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9154         (void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9155         (void) strncpy(stp->sd_revision.value.c,
9156             un->un_sd->sd_inq->inq_revision, 4);
9157 
9158         /*
9159          * All the errstats are persistent across detach/attach,
9160          * so reset all the errstats here in case of the hot
9161          * replacement of disk drives, except for not changed
9162          * Sun qualified drives.
9163          */
9164         if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
9165             (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9166             sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
9167                 stp->sd_softerrs.value.ui32 = 0;
9168                 stp->sd_harderrs.value.ui32 = 0;
9169                 stp->sd_transerrs.value.ui32 = 0;
9170                 stp->sd_rq_media_err.value.ui32 = 0;
9171                 stp->sd_rq_ntrdy_err.value.ui32 = 0;
9172                 stp->sd_rq_nodev_err.value.ui32 = 0;
9173                 stp->sd_rq_recov_err.value.ui32 = 0;
9174                 stp->sd_rq_illrq_err.value.ui32 = 0;
9175                 stp->sd_rq_pfa_err.value.ui32 = 0;
9176         }
9177 
9178         /*
9179          * Set the "Serial No" kstat for Sun qualified drives (indicated by
9180          * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9181          * (4376302))
9182          */
9183         if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9184                 bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9185                     sizeof (SD_INQUIRY(un)->inq_serial));
9186         } else {
9187                 /*
9188                  * Set the "Serial No" kstat for non-Sun qualified drives
9189                  */
9190                 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, SD_DEVINFO(un),
9191                     DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
9192                     INQUIRY_SERIAL_NO, &sn) == DDI_SUCCESS) {
9193                         (void) strlcpy(stp->sd_serial.value.c, sn,
9194                             sizeof (stp->sd_serial.value.c));
9195                         ddi_prop_free(sn);
9196                 }
9197         }
9198 
9199         if (un->un_f_blockcount_is_valid != TRUE) {
9200                 /*
9201                  * Set capacity error stat to 0 for no media. This ensures
9202                  * a valid capacity is displayed in response to 'iostat -E'
9203                  * when no media is present in the device.
9204                  */
9205                 stp->sd_capacity.value.ui64 = 0;
9206         } else {
9207                 /*
9208                  * Multiply un_blockcount by un->un_sys_blocksize to get
9209                  * capacity.
9210                  *
9211                  * Note: for non-512 blocksize devices "un_blockcount" has been
9212                  * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9213                  * (un_tgt_blocksize / un->un_sys_blocksize).
9214                  */
9215                 stp->sd_capacity.value.ui64 = (uint64_t)
9216                     ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9217         }
9218 }
9219 
9220 
9221 /*
9222  *    Function: sd_set_pstats
9223  *
9224  * Description: This routine instantiates and initializes the partition
9225  *              stats for each partition with more than zero blocks.
9226  *              (4363169)
9227  *
9228  *   Arguments: un - driver soft state (unit) structure
9229  *
9230  *     Context: Kernel thread context
9231  */
9232 
9233 static void
9234 sd_set_pstats(struct sd_lun *un)
9235 {
9236         char    kstatname[KSTAT_STRLEN];
9237         int     instance;
9238         int     i;
9239         diskaddr_t      nblks = 0;
9240         char    *partname = NULL;
9241 
9242         ASSERT(un != NULL);
9243 
9244         instance = ddi_get_instance(SD_DEVINFO(un));
9245 
9246         /* Note:x86: is this a VTOC8/VTOC16 difference? */
9247         for (i = 0; i < NSDMAP; i++) {
9248 
9249                 if (cmlb_partinfo(un->un_cmlbhandle, i,
9250                     &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
9251                         continue;
9252                 mutex_enter(SD_MUTEX(un));
9253 
9254                 if ((un->un_pstats[i] == NULL) &&
9255                     (nblks != 0)) {
9256 
9257                         (void) snprintf(kstatname, sizeof (kstatname),
9258                             "%s%d,%s", sd_label, instance,
9259                             partname);
9260 
9261                         un->un_pstats[i] = kstat_create(sd_label,
9262                             instance, kstatname, "partition", KSTAT_TYPE_IO,
9263                             1, KSTAT_FLAG_PERSISTENT);
9264                         if (un->un_pstats[i] != NULL) {
9265                                 un->un_pstats[i]->ks_lock = SD_MUTEX(un);
9266                                 kstat_install(un->un_pstats[i]);
9267                         }
9268                 }
9269                 mutex_exit(SD_MUTEX(un));
9270         }
9271 }
9272 
9273 
9274 #if (defined(__fibre))
9275 /*
9276  *    Function: sd_init_event_callbacks
9277  *
9278  * Description: This routine initializes the insertion and removal event
9279  *              callbacks. (fibre only)
9280  *
9281  *   Arguments: un - driver soft state (unit) structure
9282  *
9283  *     Context: Kernel thread context
9284  */
9285 
9286 static void
9287 sd_init_event_callbacks(struct sd_lun *un)
9288 {
9289         ASSERT(un != NULL);
9290 
9291         if ((un->un_insert_event == NULL) &&
9292             (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
9293             &un->un_insert_event) == DDI_SUCCESS)) {
9294                 /*
9295                  * Add the callback for an insertion event
9296                  */
9297                 (void) ddi_add_event_handler(SD_DEVINFO(un),
9298                     un->un_insert_event, sd_event_callback, (void *)un,
9299                     &(un->un_insert_cb_id));
9300         }
9301 
9302         if ((un->un_remove_event == NULL) &&
9303             (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
9304             &un->un_remove_event) == DDI_SUCCESS)) {
9305                 /*
9306                  * Add the callback for a removal event
9307                  */
9308                 (void) ddi_add_event_handler(SD_DEVINFO(un),
9309                     un->un_remove_event, sd_event_callback, (void *)un,
9310                     &(un->un_remove_cb_id));
9311         }
9312 }
9313 
9314 
9315 /*
9316  *    Function: sd_event_callback
9317  *
9318  * Description: This routine handles insert/remove events (photon). The
9319  *              state is changed to OFFLINE which can be used to supress
9320  *              error msgs. (fibre only)
9321  *
9322  *   Arguments: un - driver soft state (unit) structure
9323  *
9324  *     Context: Callout thread context
9325  */
9326 /* ARGSUSED */
9327 static void
9328 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
9329     void *bus_impldata)
9330 {
9331         struct sd_lun *un = (struct sd_lun *)arg;
9332 
9333         _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
9334         if (event == un->un_insert_event) {
9335                 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
9336                 mutex_enter(SD_MUTEX(un));
9337                 if (un->un_state == SD_STATE_OFFLINE) {
9338                         if (un->un_last_state != SD_STATE_SUSPENDED) {
9339                                 un->un_state = un->un_last_state;
9340                         } else {
9341                                 /*
9342                                  * We have gone through SUSPEND/RESUME while
9343                                  * we were offline. Restore the last state
9344                                  */
9345                                 un->un_state = un->un_save_state;
9346                         }
9347                 }
9348                 mutex_exit(SD_MUTEX(un));
9349 
9350         _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
9351         } else if (event == un->un_remove_event) {
9352                 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
9353                 mutex_enter(SD_MUTEX(un));
9354                 /*
9355                  * We need to handle an event callback that occurs during
9356                  * the suspend operation, since we don't prevent it.
9357                  */
9358                 if (un->un_state != SD_STATE_OFFLINE) {
9359                         if (un->un_state != SD_STATE_SUSPENDED) {
9360                                 New_state(un, SD_STATE_OFFLINE);
9361                         } else {
9362                                 un->un_last_state = SD_STATE_OFFLINE;
9363                         }
9364                 }
9365                 mutex_exit(SD_MUTEX(un));
9366         } else {
9367                 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
9368                     "!Unknown event\n");
9369         }
9370 
9371 }
9372 #endif
9373 
9374 /*
9375  *    Function: sd_cache_control()
9376  *
9377  * Description: This routine is the driver entry point for setting
9378  *              read and write caching by modifying the WCE (write cache
9379  *              enable) and RCD (read cache disable) bits of mode
9380  *              page 8 (MODEPAGE_CACHING).
9381  *
9382  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9383  *                      structure for this target.
9384  *              rcd_flag - flag for controlling the read cache
9385  *              wce_flag - flag for controlling the write cache
9386  *
9387  * Return Code: EIO
9388  *              code returned by sd_send_scsi_MODE_SENSE and
9389  *              sd_send_scsi_MODE_SELECT
9390  *
9391  *     Context: Kernel Thread
9392  */
9393 
9394 static int
9395 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag)
9396 {
9397         struct mode_caching     *mode_caching_page;
9398         uchar_t                 *header;
9399         size_t                  buflen;
9400         int                     hdrlen;
9401         int                     bd_len;
9402         int                     rval = 0;
9403         struct mode_header_grp2 *mhp;
9404         struct sd_lun           *un;
9405         int                     status;
9406 
9407         ASSERT(ssc != NULL);
9408         un = ssc->ssc_un;
9409         ASSERT(un != NULL);
9410 
9411         /*
9412          * Do a test unit ready, otherwise a mode sense may not work if this
9413          * is the first command sent to the device after boot.
9414          */
9415         status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9416         if (status != 0)
9417                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9418 
9419         if (un->un_f_cfg_is_atapi == TRUE) {
9420                 hdrlen = MODE_HEADER_LENGTH_GRP2;
9421         } else {
9422                 hdrlen = MODE_HEADER_LENGTH;
9423         }
9424 
9425         /*
9426          * Allocate memory for the retrieved mode page and its headers.  Set
9427          * a pointer to the page itself.  Use mode_cache_scsi3 to insure
9428          * we get all of the mode sense data otherwise, the mode select
9429          * will fail.  mode_cache_scsi3 is a superset of mode_caching.
9430          */
9431         buflen = hdrlen + MODE_BLK_DESC_LENGTH +
9432             sizeof (struct mode_cache_scsi3);
9433 
9434         header = kmem_zalloc(buflen, KM_SLEEP);
9435 
9436         /* Get the information from the device. */
9437         if (un->un_f_cfg_is_atapi == TRUE) {
9438                 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9439                     MODEPAGE_CACHING, SD_PATH_DIRECT);
9440         } else {
9441                 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9442                     MODEPAGE_CACHING, SD_PATH_DIRECT);
9443         }
9444 
9445         if (rval != 0) {
9446                 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9447                     "sd_cache_control: Mode Sense Failed\n");
9448                 goto mode_sense_failed;
9449         }
9450 
9451         /*
9452          * Determine size of Block Descriptors in order to locate
9453          * the mode page data. ATAPI devices return 0, SCSI devices
9454          * should return MODE_BLK_DESC_LENGTH.
9455          */
9456         if (un->un_f_cfg_is_atapi == TRUE) {
9457                 mhp     = (struct mode_header_grp2 *)header;
9458                 bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9459         } else {
9460                 bd_len  = ((struct mode_header *)header)->bdesc_length;
9461         }
9462 
9463         if (bd_len > MODE_BLK_DESC_LENGTH) {
9464                 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9465                     "sd_cache_control: Mode Sense returned invalid block "
9466                     "descriptor length\n");
9467                 rval = EIO;
9468                 goto mode_sense_failed;
9469         }
9470 
9471         mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9472         if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9473                 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9474                     "sd_cache_control: Mode Sense caching page code mismatch "
9475                     "%d\n", mode_caching_page->mode_page.code);
9476                 rval = EIO;
9477                 goto mode_sense_failed;
9478         }
9479 
9480         /* Check the relevant bits on successful mode sense. */
9481         if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
9482             (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
9483             (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
9484             (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
9485 
9486                 size_t sbuflen;
9487                 uchar_t save_pg;
9488 
9489                 /*
9490                  * Construct select buffer length based on the
9491                  * length of the sense data returned.
9492                  */
9493                 sbuflen =  hdrlen + bd_len +
9494                     sizeof (struct mode_page) +
9495                     (int)mode_caching_page->mode_page.length;
9496 
9497                 /*
9498                  * Set the caching bits as requested.
9499                  */
9500                 if (rcd_flag == SD_CACHE_ENABLE)
9501                         mode_caching_page->rcd = 0;
9502                 else if (rcd_flag == SD_CACHE_DISABLE)
9503                         mode_caching_page->rcd = 1;
9504 
9505                 if (wce_flag == SD_CACHE_ENABLE)
9506                         mode_caching_page->wce = 1;
9507                 else if (wce_flag == SD_CACHE_DISABLE)
9508                         mode_caching_page->wce = 0;
9509 
9510                 /*
9511                  * Save the page if the mode sense says the
9512                  * drive supports it.
9513                  */
9514                 save_pg = mode_caching_page->mode_page.ps ?
9515                     SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
9516 
9517                 /* Clear reserved bits before mode select. */
9518                 mode_caching_page->mode_page.ps = 0;
9519 
9520                 /*
9521                  * Clear out mode header for mode select.
9522                  * The rest of the retrieved page will be reused.
9523                  */
9524                 bzero(header, hdrlen);
9525 
9526                 if (un->un_f_cfg_is_atapi == TRUE) {
9527                         mhp = (struct mode_header_grp2 *)header;
9528                         mhp->bdesc_length_hi = bd_len >> 8;
9529                         mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
9530                 } else {
9531                         ((struct mode_header *)header)->bdesc_length = bd_len;
9532                 }
9533 
9534                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9535 
9536                 /* Issue mode select to change the cache settings */
9537                 if (un->un_f_cfg_is_atapi == TRUE) {
9538                         rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, header,
9539                             sbuflen, save_pg, SD_PATH_DIRECT);
9540                 } else {
9541                         rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
9542                             sbuflen, save_pg, SD_PATH_DIRECT);
9543                 }
9544 
9545         }
9546 
9547 
9548 mode_sense_failed:
9549 
9550         kmem_free(header, buflen);
9551 
9552         if (rval != 0) {
9553                 if (rval == EIO)
9554                         sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9555                 else
9556                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9557         }
9558         return (rval);
9559 }
9560 
9561 
9562 /*
9563  *    Function: sd_get_write_cache_enabled()
9564  *
9565  * Description: This routine is the driver entry point for determining if
9566  *              write caching is enabled.  It examines the WCE (write cache
9567  *              enable) bits of mode page 8 (MODEPAGE_CACHING).
9568  *
9569  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9570  *                      structure for this target.
9571  *              is_enabled - pointer to int where write cache enabled state
9572  *              is returned (non-zero -> write cache enabled)
9573  *
9574  *
9575  * Return Code: EIO
9576  *              code returned by sd_send_scsi_MODE_SENSE
9577  *
9578  *     Context: Kernel Thread
9579  *
9580  * NOTE: If ioctl is added to disable write cache, this sequence should
9581  * be followed so that no locking is required for accesses to
9582  * un->un_f_write_cache_enabled:
9583  *      do mode select to clear wce
9584  *      do synchronize cache to flush cache
9585  *      set un->un_f_write_cache_enabled = FALSE
9586  *
9587  * Conversely, an ioctl to enable the write cache should be done
9588  * in this order:
9589  *      set un->un_f_write_cache_enabled = TRUE
9590  *      do mode select to set wce
9591  */
9592 
9593 static int
9594 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled)
9595 {
9596         struct mode_caching     *mode_caching_page;
9597         uchar_t                 *header;
9598         size_t                  buflen;
9599         int                     hdrlen;
9600         int                     bd_len;
9601         int                     rval = 0;
9602         struct sd_lun           *un;
9603         int                     status;
9604 
9605         ASSERT(ssc != NULL);
9606         un = ssc->ssc_un;
9607         ASSERT(un != NULL);
9608         ASSERT(is_enabled != NULL);
9609 
9610         /* in case of error, flag as enabled */
9611         *is_enabled = TRUE;
9612 
9613         /*
9614          * Do a test unit ready, otherwise a mode sense may not work if this
9615          * is the first command sent to the device after boot.
9616          */
9617         status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9618 
9619         if (status != 0)
9620                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9621 
9622         if (un->un_f_cfg_is_atapi == TRUE) {
9623                 hdrlen = MODE_HEADER_LENGTH_GRP2;
9624         } else {
9625                 hdrlen = MODE_HEADER_LENGTH;
9626         }
9627 
9628         /*
9629          * Allocate memory for the retrieved mode page and its headers.  Set
9630          * a pointer to the page itself.
9631          */
9632         buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9633         header = kmem_zalloc(buflen, KM_SLEEP);
9634 
9635         /* Get the information from the device. */
9636         if (un->un_f_cfg_is_atapi == TRUE) {
9637                 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9638                     MODEPAGE_CACHING, SD_PATH_DIRECT);
9639         } else {
9640                 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9641                     MODEPAGE_CACHING, SD_PATH_DIRECT);
9642         }
9643 
9644         if (rval != 0) {
9645                 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9646                     "sd_get_write_cache_enabled: Mode Sense Failed\n");
9647                 goto mode_sense_failed;
9648         }
9649 
9650         /*
9651          * Determine size of Block Descriptors in order to locate
9652          * the mode page data. ATAPI devices return 0, SCSI devices
9653          * should return MODE_BLK_DESC_LENGTH.
9654          */
9655         if (un->un_f_cfg_is_atapi == TRUE) {
9656                 struct mode_header_grp2 *mhp;
9657                 mhp     = (struct mode_header_grp2 *)header;
9658                 bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9659         } else {
9660                 bd_len  = ((struct mode_header *)header)->bdesc_length;
9661         }
9662 
9663         if (bd_len > MODE_BLK_DESC_LENGTH) {
9664                 /* FMA should make upset complain here */
9665                 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9666                     "sd_get_write_cache_enabled: Mode Sense returned invalid "
9667                     "block descriptor length\n");
9668                 rval = EIO;
9669                 goto mode_sense_failed;
9670         }
9671 
9672         mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9673         if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9674                 /* FMA could make upset complain here */
9675                 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9676                     "sd_get_write_cache_enabled: Mode Sense caching page "
9677                     "code mismatch %d\n", mode_caching_page->mode_page.code);
9678                 rval = EIO;
9679                 goto mode_sense_failed;
9680         }
9681         *is_enabled = mode_caching_page->wce;
9682 
9683 mode_sense_failed:
9684         if (rval == 0) {
9685                 sd_ssc_assessment(ssc, SD_FMT_STANDARD);
9686         } else if (rval == EIO) {
9687                 /*
9688                  * Some disks do not support mode sense(6), we
9689                  * should ignore this kind of error(sense key is
9690                  * 0x5 - illegal request).
9691                  */
9692                 uint8_t *sensep;
9693                 int senlen;
9694 
9695                 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
9696                 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
9697                     ssc->ssc_uscsi_cmd->uscsi_rqresid);
9698 
9699                 if (senlen > 0 &&
9700                     scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
9701                         sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
9702                 } else {
9703                         sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9704                 }
9705         } else {
9706                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9707         }
9708         kmem_free(header, buflen);
9709         return (rval);
9710 }
9711 
9712 /*
9713  *    Function: sd_get_nv_sup()
9714  *
9715  * Description: This routine is the driver entry point for
9716  * determining whether non-volatile cache is supported. This
9717  * determination process works as follows:
9718  *
9719  * 1. sd first queries sd.conf on whether
9720  * suppress_cache_flush bit is set for this device.
9721  *
9722  * 2. if not there, then queries the internal disk table.
9723  *
9724  * 3. if either sd.conf or internal disk table specifies
9725  * cache flush be suppressed, we don't bother checking
9726  * NV_SUP bit.
9727  *
9728  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
9729  * the optional INQUIRY VPD page 0x86. If the device
9730  * supports VPD page 0x86, sd examines the NV_SUP
9731  * (non-volatile cache support) bit in the INQUIRY VPD page
9732  * 0x86:
9733  *   o If NV_SUP bit is set, sd assumes the device has a
9734  *   non-volatile cache and set the
9735  *   un_f_sync_nv_supported to TRUE.
9736  *   o Otherwise cache is not non-volatile,
9737  *   un_f_sync_nv_supported is set to FALSE.
9738  *
9739  * Arguments: un - driver soft state (unit) structure
9740  *
9741  * Return Code:
9742  *
9743  *     Context: Kernel Thread
9744  */
9745 
9746 static void
9747 sd_get_nv_sup(sd_ssc_t *ssc)
9748 {
9749         int             rval            = 0;
9750         uchar_t         *inq86          = NULL;
9751         size_t          inq86_len       = MAX_INQUIRY_SIZE;
9752         size_t          inq86_resid     = 0;
9753         struct          dk_callback *dkc;
9754         struct sd_lun   *un;
9755 
9756         ASSERT(ssc != NULL);
9757         un = ssc->ssc_un;
9758         ASSERT(un != NULL);
9759 
9760         mutex_enter(SD_MUTEX(un));
9761 
9762         /*
9763          * Be conservative on the device's support of
9764          * SYNC_NV bit: un_f_sync_nv_supported is
9765          * initialized to be false.
9766          */
9767         un->un_f_sync_nv_supported = FALSE;
9768 
9769         /*
9770          * If either sd.conf or internal disk table
9771          * specifies cache flush be suppressed, then
9772          * we don't bother checking NV_SUP bit.
9773          */
9774         if (un->un_f_suppress_cache_flush == TRUE) {
9775                 mutex_exit(SD_MUTEX(un));
9776                 return;
9777         }
9778 
9779         if (sd_check_vpd_page_support(ssc) == 0 &&
9780             un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
9781                 mutex_exit(SD_MUTEX(un));
9782                 /* collect page 86 data if available */
9783                 inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
9784 
9785                 rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len,
9786                     0x01, 0x86, &inq86_resid);
9787 
9788                 if (rval == 0 && (inq86_len - inq86_resid > 6)) {
9789                         SD_TRACE(SD_LOG_COMMON, un,
9790                             "sd_get_nv_sup: \
9791                             successfully get VPD page: %x \
9792                             PAGE LENGTH: %x BYTE 6: %x\n",
9793                             inq86[1], inq86[3], inq86[6]);
9794 
9795                         mutex_enter(SD_MUTEX(un));
9796                         /*
9797                          * check the value of NV_SUP bit: only if the device
9798                          * reports NV_SUP bit to be 1, the
9799                          * un_f_sync_nv_supported bit will be set to true.
9800                          */
9801                         if (inq86[6] & SD_VPD_NV_SUP) {
9802                                 un->un_f_sync_nv_supported = TRUE;
9803                         }
9804                         mutex_exit(SD_MUTEX(un));
9805                 } else if (rval != 0) {
9806                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9807                 }
9808 
9809                 kmem_free(inq86, inq86_len);
9810         } else {
9811                 mutex_exit(SD_MUTEX(un));
9812         }
9813 
9814         /*
9815          * Send a SYNC CACHE command to check whether
9816          * SYNC_NV bit is supported. This command should have
9817          * un_f_sync_nv_supported set to correct value.
9818          */
9819         mutex_enter(SD_MUTEX(un));
9820         if (un->un_f_sync_nv_supported) {
9821                 mutex_exit(SD_MUTEX(un));
9822                 dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
9823                 dkc->dkc_flag = FLUSH_VOLATILE;
9824                 (void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
9825 
9826                 /*
9827                  * Send a TEST UNIT READY command to the device. This should
9828                  * clear any outstanding UNIT ATTENTION that may be present.
9829                  */
9830                 rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
9831                 if (rval != 0)
9832                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9833 
9834                 kmem_free(dkc, sizeof (struct dk_callback));
9835         } else {
9836                 mutex_exit(SD_MUTEX(un));
9837         }
9838 
9839         SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
9840             un_f_suppress_cache_flush is set to %d\n",
9841             un->un_f_suppress_cache_flush);
9842 }
9843 
9844 /*
9845  *    Function: sd_make_device
9846  *
9847  * Description: Utility routine to return the Solaris device number from
9848  *              the data in the device's dev_info structure.
9849  *
9850  * Return Code: The Solaris device number
9851  *
9852  *     Context: Any
9853  */
9854 
9855 static dev_t
9856 sd_make_device(dev_info_t *devi)
9857 {
9858         return (makedevice(ddi_driver_major(devi),
9859             ddi_get_instance(devi) << SDUNIT_SHIFT));
9860 }
9861 
9862 
9863 /*
9864  *    Function: sd_pm_entry
9865  *
9866  * Description: Called at the start of a new command to manage power
9867  *              and busy status of a device. This includes determining whether
9868  *              the current power state of the device is sufficient for
9869  *              performing the command or whether it must be changed.
9870  *              The PM framework is notified appropriately.
9871  *              Only with a return status of DDI_SUCCESS will the
9872  *              component be busy to the framework.
9873  *
9874  *              All callers of sd_pm_entry must check the return status
9875  *              and only call sd_pm_exit it it was DDI_SUCCESS. A status
9876  *              of DDI_FAILURE indicates the device failed to power up.
9877  *              In this case un_pm_count has been adjusted so the result
9878  *              on exit is still powered down, ie. count is less than 0.
9879  *              Calling sd_pm_exit with this count value hits an ASSERT.
9880  *
9881  * Return Code: DDI_SUCCESS or DDI_FAILURE
9882  *
9883  *     Context: Kernel thread context.
9884  */
9885 
9886 static int
9887 sd_pm_entry(struct sd_lun *un)
9888 {
9889         int return_status = DDI_SUCCESS;
9890 
9891         ASSERT(!mutex_owned(SD_MUTEX(un)));
9892         ASSERT(!mutex_owned(&un->un_pm_mutex));
9893 
9894         SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9895 
9896         if (un->un_f_pm_is_enabled == FALSE) {
9897                 SD_TRACE(SD_LOG_IO_PM, un,
9898                     "sd_pm_entry: exiting, PM not enabled\n");
9899                 return (return_status);
9900         }
9901 
9902         /*
9903          * Just increment a counter if PM is enabled. On the transition from
9904          * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9905          * the count with each IO and mark the device as idle when the count
9906          * hits 0.
9907          *
9908          * If the count is less than 0 the device is powered down. If a powered
9909          * down device is successfully powered up then the count must be
9910          * incremented to reflect the power up. Note that it'll get incremented
9911          * a second time to become busy.
9912          *
9913          * Because the following has the potential to change the device state
9914          * and must release the un_pm_mutex to do so, only one thread can be
9915          * allowed through at a time.
9916          */
9917 
9918         mutex_enter(&un->un_pm_mutex);
9919         while (un->un_pm_busy == TRUE) {
9920                 cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9921         }
9922         un->un_pm_busy = TRUE;
9923 
9924         if (un->un_pm_count < 1) {
9925 
9926                 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9927 
9928                 /*
9929                  * Indicate we are now busy so the framework won't attempt to
9930                  * power down the device. This call will only fail if either
9931                  * we passed a bad component number or the device has no
9932                  * components. Neither of these should ever happen.
9933                  */
9934                 mutex_exit(&un->un_pm_mutex);
9935                 return_status = pm_busy_component(SD_DEVINFO(un), 0);
9936                 ASSERT(return_status == DDI_SUCCESS);
9937 
9938                 mutex_enter(&un->un_pm_mutex);
9939 
9940                 if (un->un_pm_count < 0) {
9941                         mutex_exit(&un->un_pm_mutex);
9942 
9943                         SD_TRACE(SD_LOG_IO_PM, un,
9944                             "sd_pm_entry: power up component\n");
9945 
9946                         /*
9947                          * pm_raise_power will cause sdpower to be called
9948                          * which brings the device power level to the
9949                          * desired state, If successful, un_pm_count and
9950                          * un_power_level will be updated appropriately.
9951                          */
9952                         return_status = pm_raise_power(SD_DEVINFO(un), 0,
9953                             SD_PM_STATE_ACTIVE(un));
9954 
9955                         mutex_enter(&un->un_pm_mutex);
9956 
9957                         if (return_status != DDI_SUCCESS) {
9958                                 /*
9959                                  * Power up failed.
9960                                  * Idle the device and adjust the count
9961                                  * so the result on exit is that we're
9962                                  * still powered down, ie. count is less than 0.
9963                                  */
9964                                 SD_TRACE(SD_LOG_IO_PM, un,
9965                                     "sd_pm_entry: power up failed,"
9966                                     " idle the component\n");
9967 
9968                                 (void) pm_idle_component(SD_DEVINFO(un), 0);
9969                                 un->un_pm_count--;
9970                         } else {
9971                                 /*
9972                                  * Device is powered up, verify the
9973                                  * count is non-negative.
9974                                  * This is debug only.
9975                                  */
9976                                 ASSERT(un->un_pm_count == 0);
9977                         }
9978                 }
9979 
9980                 if (return_status == DDI_SUCCESS) {
9981                         /*
9982                          * For performance, now that the device has been tagged
9983                          * as busy, and it's known to be powered up, update the
9984                          * chain types to use jump tables that do not include
9985                          * pm. This significantly lowers the overhead and
9986                          * therefore improves performance.
9987                          */
9988 
9989                         mutex_exit(&un->un_pm_mutex);
9990                         mutex_enter(SD_MUTEX(un));
9991                         SD_TRACE(SD_LOG_IO_PM, un,
9992                             "sd_pm_entry: changing uscsi_chain_type from %d\n",
9993                             un->un_uscsi_chain_type);
9994 
9995                         if (un->un_f_non_devbsize_supported) {
9996                                 un->un_buf_chain_type =
9997                                     SD_CHAIN_INFO_RMMEDIA_NO_PM;
9998                         } else {
9999                                 un->un_buf_chain_type =
10000                                     SD_CHAIN_INFO_DISK_NO_PM;
10001                         }
10002                         un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
10003 
10004                         SD_TRACE(SD_LOG_IO_PM, un,
10005                             "             changed  uscsi_chain_type to   %d\n",
10006                             un->un_uscsi_chain_type);
10007                         mutex_exit(SD_MUTEX(un));
10008                         mutex_enter(&un->un_pm_mutex);
10009 
10010                         if (un->un_pm_idle_timeid == NULL) {
10011                                 /* 300 ms. */
10012                                 un->un_pm_idle_timeid =
10013                                     timeout(sd_pm_idletimeout_handler, un,
10014                                     (drv_usectohz((clock_t)300000)));
10015                                 /*
10016                                  * Include an extra call to busy which keeps the
10017                                  * device busy with-respect-to the PM layer
10018                                  * until the timer fires, at which time it'll
10019                                  * get the extra idle call.
10020                                  */
10021                                 (void) pm_busy_component(SD_DEVINFO(un), 0);
10022                         }
10023                 }
10024         }
10025         un->un_pm_busy = FALSE;
10026         /* Next... */
10027         cv_signal(&un->un_pm_busy_cv);
10028 
10029         un->un_pm_count++;
10030 
10031         SD_TRACE(SD_LOG_IO_PM, un,
10032             "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
10033 
10034         mutex_exit(&un->un_pm_mutex);
10035 
10036         return (return_status);
10037 }
10038 
10039 
10040 /*
10041  *    Function: sd_pm_exit
10042  *
10043  * Description: Called at the completion of a command to manage busy
10044  *              status for the device. If the device becomes idle the
10045  *              PM framework is notified.
10046  *
10047  *     Context: Kernel thread context
10048  */
10049 
10050 static void
10051 sd_pm_exit(struct sd_lun *un)
10052 {
10053         ASSERT(!mutex_owned(SD_MUTEX(un)));
10054         ASSERT(!mutex_owned(&un->un_pm_mutex));
10055 
10056         SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
10057 
10058         /*
10059          * After attach the following flag is only read, so don't
10060          * take the penalty of acquiring a mutex for it.
10061          */
10062         if (un->un_f_pm_is_enabled == TRUE) {
10063 
10064                 mutex_enter(&un->un_pm_mutex);
10065                 un->un_pm_count--;
10066 
10067                 SD_TRACE(SD_LOG_IO_PM, un,
10068                     "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
10069 
10070                 ASSERT(un->un_pm_count >= 0);
10071                 if (un->un_pm_count == 0) {
10072                         mutex_exit(&un->un_pm_mutex);
10073 
10074                         SD_TRACE(SD_LOG_IO_PM, un,
10075                             "sd_pm_exit: idle component\n");
10076 
10077                         (void) pm_idle_component(SD_DEVINFO(un), 0);
10078 
10079                 } else {
10080                         mutex_exit(&un->un_pm_mutex);
10081                 }
10082         }
10083 
10084         SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
10085 }
10086 
10087 
10088 /*
10089  *    Function: sdopen
10090  *
10091  * Description: Driver's open(9e) entry point function.
10092  *
10093  *   Arguments: dev_i   - pointer to device number
10094  *              flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
10095  *              otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10096  *              cred_p  - user credential pointer
10097  *
10098  * Return Code: EINVAL
10099  *              ENXIO
10100  *              EIO
10101  *              EROFS
10102  *              EBUSY
10103  *
10104  *     Context: Kernel thread context
10105  */
10106 /* ARGSUSED */
10107 static int
10108 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
10109 {
10110         struct sd_lun   *un;
10111         int             nodelay;
10112         int             part;
10113         uint64_t        partmask;
10114         int             instance;
10115         dev_t           dev;
10116         int             rval = EIO;
10117         diskaddr_t      nblks = 0;
10118         diskaddr_t      label_cap;
10119 
10120         /* Validate the open type */
10121         if (otyp >= OTYPCNT) {
10122                 return (EINVAL);
10123         }
10124 
10125         dev = *dev_p;
10126         instance = SDUNIT(dev);
10127         mutex_enter(&sd_detach_mutex);
10128 
10129         /*
10130          * Fail the open if there is no softstate for the instance, or
10131          * if another thread somewhere is trying to detach the instance.
10132          */
10133         if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
10134             (un->un_detach_count != 0)) {
10135                 mutex_exit(&sd_detach_mutex);
10136                 /*
10137                  * The probe cache only needs to be cleared when open (9e) fails
10138                  * with ENXIO (4238046).
10139                  */
10140                 /*
10141                  * un-conditionally clearing probe cache is ok with
10142                  * separate sd/ssd binaries
10143                  * x86 platform can be an issue with both parallel
10144                  * and fibre in 1 binary
10145                  */
10146                 sd_scsi_clear_probe_cache();
10147                 return (ENXIO);
10148         }
10149 
10150         /*
10151          * The un_layer_count is to prevent another thread in specfs from
10152          * trying to detach the instance, which can happen when we are
10153          * called from a higher-layer driver instead of thru specfs.
10154          * This will not be needed when DDI provides a layered driver
10155          * interface that allows specfs to know that an instance is in
10156          * use by a layered driver & should not be detached.
10157          *
10158          * Note: the semantics for layered driver opens are exactly one
10159          * close for every open.
10160          */
10161         if (otyp == OTYP_LYR) {
10162                 un->un_layer_count++;
10163         }
10164 
10165         /*
10166          * Keep a count of the current # of opens in progress. This is because
10167          * some layered drivers try to call us as a regular open. This can
10168          * cause problems that we cannot prevent, however by keeping this count
10169          * we can at least keep our open and detach routines from racing against
10170          * each other under such conditions.
10171          */
10172         un->un_opens_in_progress++;
10173         mutex_exit(&sd_detach_mutex);
10174 
10175         nodelay  = (flag & (FNDELAY | FNONBLOCK));
10176         part     = SDPART(dev);
10177         partmask = 1 << part;
10178 
10179         /*
10180          * We use a semaphore here in order to serialize
10181          * open and close requests on the device.
10182          */
10183         sema_p(&un->un_semoclose);
10184 
10185         mutex_enter(SD_MUTEX(un));
10186 
10187         /*
10188          * All device accesses go thru sdstrategy() where we check
10189          * on suspend status but there could be a scsi_poll command,
10190          * which bypasses sdstrategy(), so we need to check pm
10191          * status.
10192          */
10193 
10194         if (!nodelay) {
10195                 while ((un->un_state == SD_STATE_SUSPENDED) ||
10196                     (un->un_state == SD_STATE_PM_CHANGING)) {
10197                         cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10198                 }
10199 
10200                 mutex_exit(SD_MUTEX(un));
10201                 if (sd_pm_entry(un) != DDI_SUCCESS) {
10202                         rval = EIO;
10203                         SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10204                             "sdopen: sd_pm_entry failed\n");
10205                         goto open_failed_with_pm;
10206                 }
10207                 mutex_enter(SD_MUTEX(un));
10208         }
10209 
10210         /* check for previous exclusive open */
10211         SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10212         SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10213             "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10214             un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10215 
10216         if (un->un_exclopen & (partmask)) {
10217                 goto excl_open_fail;
10218         }
10219 
10220         if (flag & FEXCL) {
10221                 int i;
10222                 if (un->un_ocmap.lyropen[part]) {
10223                         goto excl_open_fail;
10224                 }
10225                 for (i = 0; i < (OTYPCNT - 1); i++) {
10226                         if (un->un_ocmap.regopen[i] & (partmask)) {
10227                                 goto excl_open_fail;
10228                         }
10229                 }
10230         }
10231 
10232         /*
10233          * Check the write permission if this is a removable media device,
10234          * NDELAY has not been set, and writable permission is requested.
10235          *
10236          * Note: If NDELAY was set and this is write-protected media the WRITE
10237          * attempt will fail with EIO as part of the I/O processing. This is a
10238          * more permissive implementation that allows the open to succeed and
10239          * WRITE attempts to fail when appropriate.
10240          */
10241         if (un->un_f_chk_wp_open) {
10242                 if ((flag & FWRITE) && (!nodelay)) {
10243                         mutex_exit(SD_MUTEX(un));
10244                         /*
10245                          * Defer the check for write permission on writable
10246                          * DVD drive till sdstrategy and will not fail open even
10247                          * if FWRITE is set as the device can be writable
10248                          * depending upon the media and the media can change
10249                          * after the call to open().
10250                          */
10251                         if (un->un_f_dvdram_writable_device == FALSE) {
10252                                 if (ISCD(un) || sr_check_wp(dev)) {
10253                                 rval = EROFS;
10254                                 mutex_enter(SD_MUTEX(un));
10255                                 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10256                                     "write to cd or write protected media\n");
10257                                 goto open_fail;
10258                                 }
10259                         }
10260                         mutex_enter(SD_MUTEX(un));
10261                 }
10262         }
10263 
10264         /*
10265          * If opening in NDELAY/NONBLOCK mode, just return.
10266          * Check if disk is ready and has a valid geometry later.
10267          */
10268         if (!nodelay) {
10269                 sd_ssc_t        *ssc;
10270 
10271                 mutex_exit(SD_MUTEX(un));
10272                 ssc = sd_ssc_init(un);
10273                 rval = sd_ready_and_valid(ssc, part);
10274                 sd_ssc_fini(ssc);
10275                 mutex_enter(SD_MUTEX(un));
10276                 /*
10277                  * Fail if device is not ready or if the number of disk
10278                  * blocks is zero or negative for non CD devices.
10279                  */
10280 
10281                 nblks = 0;
10282 
10283                 if (rval == SD_READY_VALID && (!ISCD(un))) {
10284                         /* if cmlb_partinfo fails, nblks remains 0 */
10285                         mutex_exit(SD_MUTEX(un));
10286                         (void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
10287                             NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
10288                         mutex_enter(SD_MUTEX(un));
10289                 }
10290 
10291                 if ((rval != SD_READY_VALID) ||
10292                     (!ISCD(un) && nblks <= 0)) {
10293                         rval = un->un_f_has_removable_media ? ENXIO : EIO;
10294                         SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10295                             "device not ready or invalid disk block value\n");
10296                         goto open_fail;
10297                 }
10298 #if defined(__i386) || defined(__amd64)
10299         } else {
10300                 uchar_t *cp;
10301                 /*
10302                  * x86 requires special nodelay handling, so that p0 is
10303                  * always defined and accessible.
10304                  * Invalidate geometry only if device is not already open.
10305                  */
10306                 cp = &un->un_ocmap.chkd[0];
10307                 while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10308                         if (*cp != (uchar_t)0) {
10309                                 break;
10310                         }
10311                         cp++;
10312                 }
10313                 if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10314                         mutex_exit(SD_MUTEX(un));
10315                         cmlb_invalidate(un->un_cmlbhandle,
10316                             (void *)SD_PATH_DIRECT);
10317                         mutex_enter(SD_MUTEX(un));
10318                 }
10319 
10320 #endif
10321         }
10322 
10323         if (otyp == OTYP_LYR) {
10324                 un->un_ocmap.lyropen[part]++;
10325         } else {
10326                 un->un_ocmap.regopen[otyp] |= partmask;
10327         }
10328 
10329         /* Set up open and exclusive open flags */
10330         if (flag & FEXCL) {
10331                 un->un_exclopen |= (partmask);
10332         }
10333 
10334         /*
10335          * If the lun is EFI labeled and lun capacity is greater than the
10336          * capacity contained in the label, log a sys-event to notify the
10337          * interested module.
10338          * To avoid an infinite loop of logging sys-event, we only log the
10339          * event when the lun is not opened in NDELAY mode. The event handler
10340          * should open the lun in NDELAY mode.
10341          */
10342         if (!nodelay) {
10343                 mutex_exit(SD_MUTEX(un));
10344                 if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
10345                     (void*)SD_PATH_DIRECT) == 0) {
10346                         mutex_enter(SD_MUTEX(un));
10347                         if (un->un_f_blockcount_is_valid &&
10348                             un->un_blockcount > label_cap &&
10349                             un->un_f_expnevent == B_FALSE) {
10350                                 un->un_f_expnevent = B_TRUE;
10351                                 mutex_exit(SD_MUTEX(un));
10352                                 sd_log_lun_expansion_event(un,
10353                                     (nodelay ? KM_NOSLEEP : KM_SLEEP));
10354                                 mutex_enter(SD_MUTEX(un));
10355                         }
10356                 } else {
10357                         mutex_enter(SD_MUTEX(un));
10358                 }
10359         }
10360 
10361         SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10362             "open of part %d type %d\n", part, otyp);
10363 
10364         mutex_exit(SD_MUTEX(un));
10365         if (!nodelay) {
10366                 sd_pm_exit(un);
10367         }
10368 
10369         sema_v(&un->un_semoclose);
10370 
10371         mutex_enter(&sd_detach_mutex);
10372         un->un_opens_in_progress--;
10373         mutex_exit(&sd_detach_mutex);
10374 
10375         SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10376         return (DDI_SUCCESS);
10377 
10378 excl_open_fail:
10379         SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10380         rval = EBUSY;
10381 
10382 open_fail:
10383         mutex_exit(SD_MUTEX(un));
10384 
10385         /*
10386          * On a failed open we must exit the pm management.
10387          */
10388         if (!nodelay) {
10389                 sd_pm_exit(un);
10390         }
10391 open_failed_with_pm:
10392         sema_v(&un->un_semoclose);
10393 
10394         mutex_enter(&sd_detach_mutex);
10395         un->un_opens_in_progress--;
10396         if (otyp == OTYP_LYR) {
10397                 un->un_layer_count--;
10398         }
10399         mutex_exit(&sd_detach_mutex);
10400 
10401         return (rval);
10402 }
10403 
10404 
10405 /*
10406  *    Function: sdclose
10407  *
10408  * Description: Driver's close(9e) entry point function.
10409  *
10410  *   Arguments: dev    - device number
10411  *              flag   - file status flag, informational only
10412  *              otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10413  *              cred_p - user credential pointer
10414  *
10415  * Return Code: ENXIO
10416  *
10417  *     Context: Kernel thread context
10418  */
10419 /* ARGSUSED */
10420 static int
10421 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10422 {
10423         struct sd_lun   *un;
10424         uchar_t         *cp;
10425         int             part;
10426         int             nodelay;
10427         int             rval = 0;
10428 
10429         /* Validate the open type */
10430         if (otyp >= OTYPCNT) {
10431                 return (ENXIO);
10432         }
10433 
10434         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10435                 return (ENXIO);
10436         }
10437 
10438         part = SDPART(dev);
10439         nodelay = flag & (FNDELAY | FNONBLOCK);
10440 
10441         SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10442             "sdclose: close of part %d type %d\n", part, otyp);
10443 
10444         /*
10445          * We use a semaphore here in order to serialize
10446          * open and close requests on the device.
10447          */
10448         sema_p(&un->un_semoclose);
10449 
10450         mutex_enter(SD_MUTEX(un));
10451 
10452         /* Don't proceed if power is being changed. */
10453         while (un->un_state == SD_STATE_PM_CHANGING) {
10454                 cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10455         }
10456 
10457         if (un->un_exclopen & (1 << part)) {
10458                 un->un_exclopen &= ~(1 << part);
10459         }
10460 
10461         /* Update the open partition map */
10462         if (otyp == OTYP_LYR) {
10463                 un->un_ocmap.lyropen[part] -= 1;
10464         } else {
10465                 un->un_ocmap.regopen[otyp] &= ~(1 << part);
10466         }
10467 
10468         cp = &un->un_ocmap.chkd[0];
10469         while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10470                 if (*cp != NULL) {
10471                         break;
10472                 }
10473                 cp++;
10474         }
10475 
10476         if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10477                 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10478 
10479                 /*
10480                  * We avoid persistance upon the last close, and set
10481                  * the throttle back to the maximum.
10482                  */
10483                 un->un_throttle = un->un_saved_throttle;
10484 
10485                 if (un->un_state == SD_STATE_OFFLINE) {
10486                         if (un->un_f_is_fibre == FALSE) {
10487                                 scsi_log(SD_DEVINFO(un), sd_label,
10488                                     CE_WARN, "offline\n");
10489                         }
10490                         mutex_exit(SD_MUTEX(un));
10491                         cmlb_invalidate(un->un_cmlbhandle,
10492                             (void *)SD_PATH_DIRECT);
10493                         mutex_enter(SD_MUTEX(un));
10494 
10495                 } else {
10496                         /*
10497                          * Flush any outstanding writes in NVRAM cache.
10498                          * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10499                          * cmd, it may not work for non-Pluto devices.
10500                          * SYNCHRONIZE CACHE is not required for removables,
10501                          * except DVD-RAM drives.
10502                          *
10503                          * Also note: because SYNCHRONIZE CACHE is currently
10504                          * the only command issued here that requires the
10505                          * drive be powered up, only do the power up before
10506                          * sending the Sync Cache command. If additional
10507                          * commands are added which require a powered up
10508                          * drive, the following sequence may have to change.
10509                          *
10510                          * And finally, note that parallel SCSI on SPARC
10511                          * only issues a Sync Cache to DVD-RAM, a newly
10512                          * supported device.
10513                          */
10514 #if defined(__i386) || defined(__amd64)
10515                         if ((un->un_f_sync_cache_supported &&
10516                             un->un_f_sync_cache_required) ||
10517                             un->un_f_dvdram_writable_device == TRUE) {
10518 #else
10519                         if (un->un_f_dvdram_writable_device == TRUE) {
10520 #endif
10521                                 mutex_exit(SD_MUTEX(un));
10522                                 if (sd_pm_entry(un) == DDI_SUCCESS) {
10523                                         rval =
10524                                             sd_send_scsi_SYNCHRONIZE_CACHE(un,
10525                                             NULL);
10526                                         /* ignore error if not supported */
10527                                         if (rval == ENOTSUP) {
10528                                                 rval = 0;
10529                                         } else if (rval != 0) {
10530                                                 rval = EIO;
10531                                         }
10532                                         sd_pm_exit(un);
10533                                 } else {
10534                                         rval = EIO;
10535                                 }
10536                                 mutex_enter(SD_MUTEX(un));
10537                         }
10538 
10539                         /*
10540                          * For devices which supports DOOR_LOCK, send an ALLOW
10541                          * MEDIA REMOVAL command, but don't get upset if it
10542                          * fails. We need to raise the power of the drive before
10543                          * we can call sd_send_scsi_DOORLOCK()
10544                          */
10545                         if (un->un_f_doorlock_supported) {
10546                                 mutex_exit(SD_MUTEX(un));
10547                                 if (sd_pm_entry(un) == DDI_SUCCESS) {
10548                                         sd_ssc_t        *ssc;
10549 
10550                                         ssc = sd_ssc_init(un);
10551                                         rval = sd_send_scsi_DOORLOCK(ssc,
10552                                             SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10553                                         if (rval != 0)
10554                                                 sd_ssc_assessment(ssc,
10555                                                     SD_FMT_IGNORE);
10556                                         sd_ssc_fini(ssc);
10557 
10558                                         sd_pm_exit(un);
10559                                         if (ISCD(un) && (rval != 0) &&
10560                                             (nodelay != 0)) {
10561                                                 rval = ENXIO;
10562                                         }
10563                                 } else {
10564                                         rval = EIO;
10565                                 }
10566                                 mutex_enter(SD_MUTEX(un));
10567                         }
10568 
10569                         /*
10570                          * If a device has removable media, invalidate all
10571                          * parameters related to media, such as geometry,
10572                          * blocksize, and blockcount.
10573                          */
10574                         if (un->un_f_has_removable_media) {
10575                                 sr_ejected(un);
10576                         }
10577 
10578                         /*
10579                          * Destroy the cache (if it exists) which was
10580                          * allocated for the write maps since this is
10581                          * the last close for this media.
10582                          */
10583                         if (un->un_wm_cache) {
10584                                 /*
10585                                  * Check if there are pending commands.
10586                                  * and if there are give a warning and
10587                                  * do not destroy the cache.
10588                                  */
10589                                 if (un->un_ncmds_in_driver > 0) {
10590                                         scsi_log(SD_DEVINFO(un),
10591                                             sd_label, CE_WARN,
10592                                             "Unable to clean up memory "
10593                                             "because of pending I/O\n");
10594                                 } else {
10595                                         kmem_cache_destroy(
10596                                             un->un_wm_cache);
10597                                         un->un_wm_cache = NULL;
10598                                 }
10599                         }
10600                 }
10601         }
10602 
10603         mutex_exit(SD_MUTEX(un));
10604         sema_v(&un->un_semoclose);
10605 
10606         if (otyp == OTYP_LYR) {
10607                 mutex_enter(&sd_detach_mutex);
10608                 /*
10609                  * The detach routine may run when the layer count
10610                  * drops to zero.
10611                  */
10612                 un->un_layer_count--;
10613                 mutex_exit(&sd_detach_mutex);
10614         }
10615 
10616         return (rval);
10617 }
10618 
10619 
10620 /*
10621  *    Function: sd_ready_and_valid
10622  *
10623  * Description: Test if device is ready and has a valid geometry.
10624  *
10625  *   Arguments: ssc - sd_ssc_t will contain un
10626  *              un  - driver soft state (unit) structure
10627  *
10628  * Return Code: SD_READY_VALID          ready and valid label
10629  *              SD_NOT_READY_VALID      not ready, no label
10630  *              SD_RESERVED_BY_OTHERS   reservation conflict
10631  *
10632  *     Context: Never called at interrupt context.
10633  */
10634 
10635 static int
10636 sd_ready_and_valid(sd_ssc_t *ssc, int part)
10637 {
10638         struct sd_errstats      *stp;
10639         uint64_t                capacity;
10640         uint_t                  lbasize;
10641         int                     rval = SD_READY_VALID;
10642         char                    name_str[48];
10643         boolean_t               is_valid;
10644         struct sd_lun           *un;
10645         int                     status;
10646 
10647         ASSERT(ssc != NULL);
10648         un = ssc->ssc_un;
10649         ASSERT(un != NULL);
10650         ASSERT(!mutex_owned(SD_MUTEX(un)));
10651 
10652         mutex_enter(SD_MUTEX(un));
10653         /*
10654          * If a device has removable media, we must check if media is
10655          * ready when checking if this device is ready and valid.
10656          */
10657         if (un->un_f_has_removable_media) {
10658                 mutex_exit(SD_MUTEX(un));
10659                 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10660 
10661                 if (status != 0) {
10662                         rval = SD_NOT_READY_VALID;
10663                         mutex_enter(SD_MUTEX(un));
10664 
10665                         /* Ignore all failed status for removalbe media */
10666                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10667 
10668                         goto done;
10669                 }
10670 
10671                 is_valid = SD_IS_VALID_LABEL(un);
10672                 mutex_enter(SD_MUTEX(un));
10673                 if (!is_valid ||
10674                     (un->un_f_blockcount_is_valid == FALSE) ||
10675                     (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10676 
10677                         /* capacity has to be read every open. */
10678                         mutex_exit(SD_MUTEX(un));
10679                         status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
10680                             &lbasize, SD_PATH_DIRECT);
10681 
10682                         if (status != 0) {
10683                                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10684 
10685                                 cmlb_invalidate(un->un_cmlbhandle,
10686                                     (void *)SD_PATH_DIRECT);
10687                                 mutex_enter(SD_MUTEX(un));
10688                                 rval = SD_NOT_READY_VALID;
10689 
10690                                 goto done;
10691                         } else {
10692                                 mutex_enter(SD_MUTEX(un));
10693                                 sd_update_block_info(un, lbasize, capacity);
10694                         }
10695                 }
10696 
10697                 /*
10698                  * Check if the media in the device is writable or not.
10699                  */
10700                 if (!is_valid && ISCD(un)) {
10701                         sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
10702                 }
10703 
10704         } else {
10705                 /*
10706                  * Do a test unit ready to clear any unit attention from non-cd
10707                  * devices.
10708                  */
10709                 mutex_exit(SD_MUTEX(un));
10710 
10711                 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10712                 if (status != 0) {
10713                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10714                 }
10715 
10716                 mutex_enter(SD_MUTEX(un));
10717         }
10718 
10719 
10720         /*
10721          * If this is a non 512 block device, allocate space for
10722          * the wmap cache. This is being done here since every time
10723          * a media is changed this routine will be called and the
10724          * block size is a function of media rather than device.
10725          */
10726         if (((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR ||
10727             un->un_f_non_devbsize_supported) &&
10728             un->un_tgt_blocksize != DEV_BSIZE) ||
10729             un->un_f_enable_rmw) {
10730                 if (!(un->un_wm_cache)) {
10731                         (void) snprintf(name_str, sizeof (name_str),
10732                             "%s%d_cache",
10733                             ddi_driver_name(SD_DEVINFO(un)),
10734                             ddi_get_instance(SD_DEVINFO(un)));
10735                         un->un_wm_cache = kmem_cache_create(
10736                             name_str, sizeof (struct sd_w_map),
10737                             8, sd_wm_cache_constructor,
10738                             sd_wm_cache_destructor, NULL,
10739                             (void *)un, NULL, 0);
10740                         if (!(un->un_wm_cache)) {
10741                                 rval = ENOMEM;
10742                                 goto done;
10743                         }
10744                 }
10745         }
10746 
10747         if (un->un_state == SD_STATE_NORMAL) {
10748                 /*
10749                  * If the target is not yet ready here (defined by a TUR
10750                  * failure), invalidate the geometry and print an 'offline'
10751                  * message. This is a legacy message, as the state of the
10752                  * target is not actually changed to SD_STATE_OFFLINE.
10753                  *
10754                  * If the TUR fails for EACCES (Reservation Conflict),
10755                  * SD_RESERVED_BY_OTHERS will be returned to indicate
10756                  * reservation conflict. If the TUR fails for other
10757                  * reasons, SD_NOT_READY_VALID will be returned.
10758                  */
10759                 int err;
10760 
10761                 mutex_exit(SD_MUTEX(un));
10762                 err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10763                 mutex_enter(SD_MUTEX(un));
10764 
10765                 if (err != 0) {
10766                         mutex_exit(SD_MUTEX(un));
10767                         cmlb_invalidate(un->un_cmlbhandle,
10768                             (void *)SD_PATH_DIRECT);
10769                         mutex_enter(SD_MUTEX(un));
10770                         if (err == EACCES) {
10771                                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10772                                     "reservation conflict\n");
10773                                 rval = SD_RESERVED_BY_OTHERS;
10774                                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10775                         } else {
10776                                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10777                                     "drive offline\n");
10778                                 rval = SD_NOT_READY_VALID;
10779                                 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
10780                         }
10781                         goto done;
10782                 }
10783         }
10784 
10785         if (un->un_f_format_in_progress == FALSE) {
10786                 mutex_exit(SD_MUTEX(un));
10787 
10788                 (void) cmlb_validate(un->un_cmlbhandle, 0,
10789                     (void *)SD_PATH_DIRECT);
10790                 if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL,
10791                     NULL, (void *) SD_PATH_DIRECT) != 0) {
10792                         rval = SD_NOT_READY_VALID;
10793                         mutex_enter(SD_MUTEX(un));
10794 
10795                         goto done;
10796                 }
10797                 if (un->un_f_pkstats_enabled) {
10798                         sd_set_pstats(un);
10799                         SD_TRACE(SD_LOG_IO_PARTITION, un,
10800                             "sd_ready_and_valid: un:0x%p pstats created and "
10801                             "set\n", un);
10802                 }
10803                 mutex_enter(SD_MUTEX(un));
10804         }
10805 
10806         /*
10807          * If this device supports DOOR_LOCK command, try and send
10808          * this command to PREVENT MEDIA REMOVAL, but don't get upset
10809          * if it fails. For a CD, however, it is an error
10810          */
10811         if (un->un_f_doorlock_supported) {
10812                 mutex_exit(SD_MUTEX(un));
10813                 status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
10814                     SD_PATH_DIRECT);
10815 
10816                 if ((status != 0) && ISCD(un)) {
10817                         rval = SD_NOT_READY_VALID;
10818                         mutex_enter(SD_MUTEX(un));
10819 
10820                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10821 
10822                         goto done;
10823                 } else if (status != 0)
10824                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10825                 mutex_enter(SD_MUTEX(un));
10826         }
10827 
10828         /* The state has changed, inform the media watch routines */
10829         un->un_mediastate = DKIO_INSERTED;
10830         cv_broadcast(&un->un_state_cv);
10831         rval = SD_READY_VALID;
10832 
10833 done:
10834 
10835         /*
10836          * Initialize the capacity kstat value, if no media previously
10837          * (capacity kstat is 0) and a media has been inserted
10838          * (un_blockcount > 0).
10839          */
10840         if (un->un_errstats != NULL) {
10841                 stp = (struct sd_errstats *)un->un_errstats->ks_data;
10842                 if ((stp->sd_capacity.value.ui64 == 0) &&
10843                     (un->un_f_blockcount_is_valid == TRUE)) {
10844                         stp->sd_capacity.value.ui64 =
10845                             (uint64_t)((uint64_t)un->un_blockcount *
10846                             un->un_sys_blocksize);
10847                 }
10848         }
10849 
10850         mutex_exit(SD_MUTEX(un));
10851         return (rval);
10852 }
10853 
10854 
10855 /*
10856  *    Function: sdmin
10857  *
10858  * Description: Routine to limit the size of a data transfer. Used in
10859  *              conjunction with physio(9F).
10860  *
10861  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10862  *
10863  *     Context: Kernel thread context.
10864  */
10865 
10866 static void
10867 sdmin(struct buf *bp)
10868 {
10869         struct sd_lun   *un;
10870         int             instance;
10871 
10872         instance = SDUNIT(bp->b_edev);
10873 
10874         un = ddi_get_soft_state(sd_state, instance);
10875         ASSERT(un != NULL);
10876 
10877         /*
10878          * We depend on buf breakup to restrict
10879          * IO size if it is enabled.
10880          */
10881         if (un->un_buf_breakup_supported) {
10882                 return;
10883         }
10884 
10885         if (bp->b_bcount > un->un_max_xfer_size) {
10886                 bp->b_bcount = un->un_max_xfer_size;
10887         }
10888 }
10889 
10890 
10891 /*
10892  *    Function: sdread
10893  *
10894  * Description: Driver's read(9e) entry point function.
10895  *
10896  *   Arguments: dev   - device number
10897  *              uio   - structure pointer describing where data is to be stored
10898  *                      in user's space
10899  *              cred_p  - user credential pointer
10900  *
10901  * Return Code: ENXIO
10902  *              EIO
10903  *              EINVAL
10904  *              value returned by physio
10905  *
10906  *     Context: Kernel thread context.
10907  */
10908 /* ARGSUSED */
10909 static int
10910 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10911 {
10912         struct sd_lun   *un = NULL;
10913         int             secmask;
10914         int             err = 0;
10915         sd_ssc_t        *ssc;
10916 
10917         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10918                 return (ENXIO);
10919         }
10920 
10921         ASSERT(!mutex_owned(SD_MUTEX(un)));
10922 
10923 
10924         if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10925                 mutex_enter(SD_MUTEX(un));
10926                 /*
10927                  * Because the call to sd_ready_and_valid will issue I/O we
10928                  * must wait here if either the device is suspended or
10929                  * if it's power level is changing.
10930                  */
10931                 while ((un->un_state == SD_STATE_SUSPENDED) ||
10932                     (un->un_state == SD_STATE_PM_CHANGING)) {
10933                         cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10934                 }
10935                 un->un_ncmds_in_driver++;
10936                 mutex_exit(SD_MUTEX(un));
10937 
10938                 /* Initialize sd_ssc_t for internal uscsi commands */
10939                 ssc = sd_ssc_init(un);
10940                 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10941                         err = EIO;
10942                 } else {
10943                         err = 0;
10944                 }
10945                 sd_ssc_fini(ssc);
10946 
10947                 mutex_enter(SD_MUTEX(un));
10948                 un->un_ncmds_in_driver--;
10949                 ASSERT(un->un_ncmds_in_driver >= 0);
10950                 mutex_exit(SD_MUTEX(un));
10951                 if (err != 0)
10952                         return (err);
10953         }
10954 
10955         /*
10956          * Read requests are restricted to multiples of the system block size.
10957          */
10958         if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
10959             !un->un_f_enable_rmw)
10960                 secmask = un->un_tgt_blocksize - 1;
10961         else
10962                 secmask = DEV_BSIZE - 1;
10963 
10964         if (uio->uio_loffset & ((offset_t)(secmask))) {
10965                 SD_ERROR(SD_LOG_READ_WRITE, un,
10966                     "sdread: file offset not modulo %d\n",
10967                     secmask + 1);
10968                 err = EINVAL;
10969         } else if (uio->uio_iov->iov_len & (secmask)) {
10970                 SD_ERROR(SD_LOG_READ_WRITE, un,
10971                     "sdread: transfer length not modulo %d\n",
10972                     secmask + 1);
10973                 err = EINVAL;
10974         } else {
10975                 err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10976         }
10977 
10978         return (err);
10979 }
10980 
10981 
10982 /*
10983  *    Function: sdwrite
10984  *
10985  * Description: Driver's write(9e) entry point function.
10986  *
10987  *   Arguments: dev   - device number
10988  *              uio   - structure pointer describing where data is stored in
10989  *                      user's space
10990  *              cred_p  - user credential pointer
10991  *
10992  * Return Code: ENXIO
10993  *              EIO
10994  *              EINVAL
10995  *              value returned by physio
10996  *
10997  *     Context: Kernel thread context.
10998  */
10999 /* ARGSUSED */
11000 static int
11001 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
11002 {
11003         struct sd_lun   *un = NULL;
11004         int             secmask;
11005         int             err = 0;
11006         sd_ssc_t        *ssc;
11007 
11008         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11009                 return (ENXIO);
11010         }
11011 
11012         ASSERT(!mutex_owned(SD_MUTEX(un)));
11013 
11014         if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11015                 mutex_enter(SD_MUTEX(un));
11016                 /*
11017                  * Because the call to sd_ready_and_valid will issue I/O we
11018                  * must wait here if either the device is suspended or
11019                  * if it's power level is changing.
11020                  */
11021                 while ((un->un_state == SD_STATE_SUSPENDED) ||
11022                     (un->un_state == SD_STATE_PM_CHANGING)) {
11023                         cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11024                 }
11025                 un->un_ncmds_in_driver++;
11026                 mutex_exit(SD_MUTEX(un));
11027 
11028                 /* Initialize sd_ssc_t for internal uscsi commands */
11029                 ssc = sd_ssc_init(un);
11030                 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11031                         err = EIO;
11032                 } else {
11033                         err = 0;
11034                 }
11035                 sd_ssc_fini(ssc);
11036 
11037                 mutex_enter(SD_MUTEX(un));
11038                 un->un_ncmds_in_driver--;
11039                 ASSERT(un->un_ncmds_in_driver >= 0);
11040                 mutex_exit(SD_MUTEX(un));
11041                 if (err != 0)
11042                         return (err);
11043         }
11044 
11045         /*
11046          * Write requests are restricted to multiples of the system block size.
11047          */
11048         if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11049             !un->un_f_enable_rmw)
11050                 secmask = un->un_tgt_blocksize - 1;
11051         else
11052                 secmask = DEV_BSIZE - 1;
11053 
11054         if (uio->uio_loffset & ((offset_t)(secmask))) {
11055                 SD_ERROR(SD_LOG_READ_WRITE, un,
11056                     "sdwrite: file offset not modulo %d\n",
11057                     secmask + 1);
11058                 err = EINVAL;
11059         } else if (uio->uio_iov->iov_len & (secmask)) {
11060                 SD_ERROR(SD_LOG_READ_WRITE, un,
11061                     "sdwrite: transfer length not modulo %d\n",
11062                     secmask + 1);
11063                 err = EINVAL;
11064         } else {
11065                 err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
11066         }
11067 
11068         return (err);
11069 }
11070 
11071 
11072 /*
11073  *    Function: sdaread
11074  *
11075  * Description: Driver's aread(9e) entry point function.
11076  *
11077  *   Arguments: dev   - device number
11078  *              aio   - structure pointer describing where data is to be stored
11079  *              cred_p  - user credential pointer
11080  *
11081  * Return Code: ENXIO
11082  *              EIO
11083  *              EINVAL
11084  *              value returned by aphysio
11085  *
11086  *     Context: Kernel thread context.
11087  */
11088 /* ARGSUSED */
11089 static int
11090 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11091 {
11092         struct sd_lun   *un = NULL;
11093         struct uio      *uio = aio->aio_uio;
11094         int             secmask;
11095         int             err = 0;
11096         sd_ssc_t        *ssc;
11097 
11098         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11099                 return (ENXIO);
11100         }
11101 
11102         ASSERT(!mutex_owned(SD_MUTEX(un)));
11103 
11104         if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11105                 mutex_enter(SD_MUTEX(un));
11106                 /*
11107                  * Because the call to sd_ready_and_valid will issue I/O we
11108                  * must wait here if either the device is suspended or
11109                  * if it's power level is changing.
11110                  */
11111                 while ((un->un_state == SD_STATE_SUSPENDED) ||
11112                     (un->un_state == SD_STATE_PM_CHANGING)) {
11113                         cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11114                 }
11115                 un->un_ncmds_in_driver++;
11116                 mutex_exit(SD_MUTEX(un));
11117 
11118                 /* Initialize sd_ssc_t for internal uscsi commands */
11119                 ssc = sd_ssc_init(un);
11120                 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11121                         err = EIO;
11122                 } else {
11123                         err = 0;
11124                 }
11125                 sd_ssc_fini(ssc);
11126 
11127                 mutex_enter(SD_MUTEX(un));
11128                 un->un_ncmds_in_driver--;
11129                 ASSERT(un->un_ncmds_in_driver >= 0);
11130                 mutex_exit(SD_MUTEX(un));
11131                 if (err != 0)
11132                         return (err);
11133         }
11134 
11135         /*
11136          * Read requests are restricted to multiples of the system block size.
11137          */
11138         if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11139             !un->un_f_enable_rmw)
11140                 secmask = un->un_tgt_blocksize - 1;
11141         else
11142                 secmask = DEV_BSIZE - 1;
11143 
11144         if (uio->uio_loffset & ((offset_t)(secmask))) {
11145                 SD_ERROR(SD_LOG_READ_WRITE, un,
11146                     "sdaread: file offset not modulo %d\n",
11147                     secmask + 1);
11148                 err = EINVAL;
11149         } else if (uio->uio_iov->iov_len & (secmask)) {
11150                 SD_ERROR(SD_LOG_READ_WRITE, un,
11151                     "sdaread: transfer length not modulo %d\n",
11152                     secmask + 1);
11153                 err = EINVAL;
11154         } else {
11155                 err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
11156         }
11157 
11158         return (err);
11159 }
11160 
11161 
11162 /*
11163  *    Function: sdawrite
11164  *
11165  * Description: Driver's awrite(9e) entry point function.
11166  *
11167  *   Arguments: dev   - device number
11168  *              aio   - structure pointer describing where data is stored
11169  *              cred_p  - user credential pointer
11170  *
11171  * Return Code: ENXIO
11172  *              EIO
11173  *              EINVAL
11174  *              value returned by aphysio
11175  *
11176  *     Context: Kernel thread context.
11177  */
11178 /* ARGSUSED */
11179 static int
11180 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11181 {
11182         struct sd_lun   *un = NULL;
11183         struct uio      *uio = aio->aio_uio;
11184         int             secmask;
11185         int             err = 0;
11186         sd_ssc_t        *ssc;
11187 
11188         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11189                 return (ENXIO);
11190         }
11191 
11192         ASSERT(!mutex_owned(SD_MUTEX(un)));
11193 
11194         if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11195                 mutex_enter(SD_MUTEX(un));
11196                 /*
11197                  * Because the call to sd_ready_and_valid will issue I/O we
11198                  * must wait here if either the device is suspended or
11199                  * if it's power level is changing.
11200                  */
11201                 while ((un->un_state == SD_STATE_SUSPENDED) ||
11202                     (un->un_state == SD_STATE_PM_CHANGING)) {
11203                         cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11204                 }
11205                 un->un_ncmds_in_driver++;
11206                 mutex_exit(SD_MUTEX(un));
11207 
11208                 /* Initialize sd_ssc_t for internal uscsi commands */
11209                 ssc = sd_ssc_init(un);
11210                 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11211                         err = EIO;
11212                 } else {
11213                         err = 0;
11214                 }
11215                 sd_ssc_fini(ssc);
11216 
11217                 mutex_enter(SD_MUTEX(un));
11218                 un->un_ncmds_in_driver--;
11219                 ASSERT(un->un_ncmds_in_driver >= 0);
11220                 mutex_exit(SD_MUTEX(un));
11221                 if (err != 0)
11222                         return (err);
11223         }
11224 
11225         /*
11226          * Write requests are restricted to multiples of the system block size.
11227          */
11228         if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11229             !un->un_f_enable_rmw)
11230                 secmask = un->un_tgt_blocksize - 1;
11231         else
11232                 secmask = DEV_BSIZE - 1;
11233 
11234         if (uio->uio_loffset & ((offset_t)(secmask))) {
11235                 SD_ERROR(SD_LOG_READ_WRITE, un,
11236                     "sdawrite: file offset not modulo %d\n",
11237                     secmask + 1);
11238                 err = EINVAL;
11239         } else if (uio->uio_iov->iov_len & (secmask)) {
11240                 SD_ERROR(SD_LOG_READ_WRITE, un,
11241                     "sdawrite: transfer length not modulo %d\n",
11242                     secmask + 1);
11243                 err = EINVAL;
11244         } else {
11245                 err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
11246         }
11247 
11248         return (err);
11249 }
11250 
11251 
11252 
11253 
11254 
11255 /*
11256  * Driver IO processing follows the following sequence:
11257  *
11258  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
11259  *         |                |                     ^
11260  *         v                v                     |
11261  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
11262  *         |                |                     |                   |
11263  *         v                |                     |                   |
11264  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
11265  *         |                |                     ^                   ^
11266  *         v                v                     |                   |
11267  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
11268  *         |                |                     |                   |
11269  *     +---+                |                     +------------+      +-------+
11270  *     |                    |                                  |              |
11271  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11272  *     |                    v                                  |              |
11273  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
11274  *     |                    |                                  ^              |
11275  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11276  *     |                    v                                  |              |
11277  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
11278  *     |                    |                                  ^              |
11279  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11280  *     |                    v                                  |              |
11281  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
11282  *     |                    |                                  ^              |
11283  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
11284  *     |                    v                                  |              |
11285  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
11286  *     |                    |                                  ^              |
11287  *     |                    |                                  |              |
11288  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
11289  *                          |                           ^
11290  *                          v                           |
11291  *                   sd_core_iostart()                  |
11292  *                          |                           |
11293  *                          |                           +------>(*destroypkt)()
11294  *                          +-> sd_start_cmds() <-+     |           |
11295  *                          |                     |     |           v
11296  *                          |                     |     |  scsi_destroy_pkt(9F)
11297  *                          |                     |     |
11298  *                          +->(*initpkt)()       +- sdintr()
11299  *                          |  |                        |  |
11300  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
11301  *                          |  +-> scsi_setup_cdb(9F)   |
11302  *                          |                           |
11303  *                          +--> scsi_transport(9F)     |
11304  *                                     |                |
11305  *                                     +----> SCSA ---->+
11306  *
11307  *
11308  * This code is based upon the following presumptions:
11309  *
11310  *   - iostart and iodone functions operate on buf(9S) structures. These
11311  *     functions perform the necessary operations on the buf(9S) and pass
11312  *     them along to the next function in the chain by using the macros
11313  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11314  *     (for iodone side functions).
11315  *
11316  *   - The iostart side functions may sleep. The iodone side functions
11317  *     are called under interrupt context and may NOT sleep. Therefore
11318  *     iodone side functions also may not call iostart side functions.
11319  *     (NOTE: iostart side functions should NOT sleep for memory, as
11320  *     this could result in deadlock.)
11321  *
11322  *   - An iostart side function may call its corresponding iodone side
11323  *     function directly (if necessary).
11324  *
11325  *   - In the event of an error, an iostart side function can return a buf(9S)
11326  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11327  *     b_error in the usual way of course).
11328  *
11329  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11330  *     requests to the iostart side functions.  The iostart side functions in
11331  *     this case would be called under the context of a taskq thread, so it's
11332  *     OK for them to block/sleep/spin in this case.
11333  *
11334  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11335  *     pass them along to the next function in the chain.  The corresponding
11336  *     iodone side functions must coalesce the "shadow" bufs and return
11337  *     the "original" buf to the next higher layer.
11338  *
11339  *   - The b_private field of the buf(9S) struct holds a pointer to
11340  *     an sd_xbuf struct, which contains information needed to
11341  *     construct the scsi_pkt for the command.
11342  *
11343  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11344  *     layer must acquire & release the SD_MUTEX(un) as needed.
11345  */
11346 
11347 
11348 /*
11349  * Create taskq for all targets in the system. This is created at
11350  * _init(9E) and destroyed at _fini(9E).
11351  *
11352  * Note: here we set the minalloc to a reasonably high number to ensure that
11353  * we will have an adequate supply of task entries available at interrupt time.
11354  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11355  * sd_create_taskq().  Since we do not want to sleep for allocations at
11356  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11357  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11358  * requests any one instant in time.
11359  */
11360 #define SD_TASKQ_NUMTHREADS     8
11361 #define SD_TASKQ_MINALLOC       256
11362 #define SD_TASKQ_MAXALLOC       256
11363 
11364 static taskq_t  *sd_tq = NULL;
11365 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
11366 
11367 static int      sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11368 static int      sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11369 
11370 /*
11371  * The following task queue is being created for the write part of
11372  * read-modify-write of non-512 block size devices.
11373  * Limit the number of threads to 1 for now. This number has been chosen
11374  * considering the fact that it applies only to dvd ram drives/MO drives
11375  * currently. Performance for which is not main criteria at this stage.
11376  * Note: It needs to be explored if we can use a single taskq in future
11377  */
11378 #define SD_WMR_TASKQ_NUMTHREADS 1
11379 static taskq_t  *sd_wmr_tq = NULL;
11380 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
11381 
11382 /*
11383  *    Function: sd_taskq_create
11384  *
11385  * Description: Create taskq thread(s) and preallocate task entries
11386  *
11387  * Return Code: Returns a pointer to the allocated taskq_t.
11388  *
11389  *     Context: Can sleep. Requires blockable context.
11390  *
11391  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11392  *                (definitely NOT recommeded for 3rd-party drivers!) :-)
11393  *              - taskq_create() will block for memory, also it will panic
11394  *                if it cannot create the requested number of threads.
11395  *              - Currently taskq_create() creates threads that cannot be
11396  *                swapped.
11397  *              - We use TASKQ_PREPOPULATE to ensure we have an adequate
11398  *                supply of taskq entries at interrupt time (ie, so that we
11399  *                do not have to sleep for memory)
11400  */
11401 
11402 static void
11403 sd_taskq_create(void)
11404 {
11405         char    taskq_name[TASKQ_NAMELEN];
11406 
11407         ASSERT(sd_tq == NULL);
11408         ASSERT(sd_wmr_tq == NULL);
11409 
11410         (void) snprintf(taskq_name, sizeof (taskq_name),
11411             "%s_drv_taskq", sd_label);
11412         sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11413             (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11414             TASKQ_PREPOPULATE));
11415 
11416         (void) snprintf(taskq_name, sizeof (taskq_name),
11417             "%s_rmw_taskq", sd_label);
11418         sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11419             (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11420             TASKQ_PREPOPULATE));
11421 }
11422 
11423 
11424 /*
11425  *    Function: sd_taskq_delete
11426  *
11427  * Description: Complementary cleanup routine for sd_taskq_create().
11428  *
11429  *     Context: Kernel thread context.
11430  */
11431 
11432 static void
11433 sd_taskq_delete(void)
11434 {
11435         ASSERT(sd_tq != NULL);
11436         ASSERT(sd_wmr_tq != NULL);
11437         taskq_destroy(sd_tq);
11438         taskq_destroy(sd_wmr_tq);
11439         sd_tq = NULL;
11440         sd_wmr_tq = NULL;
11441 }
11442 
11443 
11444 /*
11445  *    Function: sdstrategy
11446  *
11447  * Description: Driver's strategy (9E) entry point function.
11448  *
11449  *   Arguments: bp - pointer to buf(9S)
11450  *
11451  * Return Code: Always returns zero
11452  *
11453  *     Context: Kernel thread context.
11454  */
11455 
11456 static int
11457 sdstrategy(struct buf *bp)
11458 {
11459         struct sd_lun *un;
11460 
11461         un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11462         if (un == NULL) {
11463                 bioerror(bp, EIO);
11464                 bp->b_resid = bp->b_bcount;
11465                 biodone(bp);
11466                 return (0);
11467         }
11468 
11469         /* As was done in the past, fail new cmds. if state is dumping. */
11470         if (un->un_state == SD_STATE_DUMPING) {
11471                 bioerror(bp, ENXIO);
11472                 bp->b_resid = bp->b_bcount;
11473                 biodone(bp);
11474                 return (0);
11475         }
11476 
11477         ASSERT(!mutex_owned(SD_MUTEX(un)));
11478 
11479         /*
11480          * Commands may sneak in while we released the mutex in
11481          * DDI_SUSPEND, we should block new commands. However, old
11482          * commands that are still in the driver at this point should
11483          * still be allowed to drain.
11484          */
11485         mutex_enter(SD_MUTEX(un));
11486         /*
11487          * Must wait here if either the device is suspended or
11488          * if it's power level is changing.
11489          */
11490         while ((un->un_state == SD_STATE_SUSPENDED) ||
11491             (un->un_state == SD_STATE_PM_CHANGING)) {
11492                 cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11493         }
11494 
11495         un->un_ncmds_in_driver++;
11496 
11497         /*
11498          * atapi: Since we are running the CD for now in PIO mode we need to
11499          * call bp_mapin here to avoid bp_mapin called interrupt context under
11500          * the HBA's init_pkt routine.
11501          */
11502         if (un->un_f_cfg_is_atapi == TRUE) {
11503                 mutex_exit(SD_MUTEX(un));
11504                 bp_mapin(bp);
11505                 mutex_enter(SD_MUTEX(un));
11506         }
11507         SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11508             un->un_ncmds_in_driver);
11509 
11510         if (bp->b_flags & B_WRITE)
11511                 un->un_f_sync_cache_required = TRUE;
11512 
11513         mutex_exit(SD_MUTEX(un));
11514 
11515         /*
11516          * This will (eventually) allocate the sd_xbuf area and
11517          * call sd_xbuf_strategy().  We just want to return the
11518          * result of ddi_xbuf_qstrategy so that we have an opt-
11519          * imized tail call which saves us a stack frame.
11520          */
11521         return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11522 }
11523 
11524 
11525 /*
11526  *    Function: sd_xbuf_strategy
11527  *
11528  * Description: Function for initiating IO operations via the
11529  *              ddi_xbuf_qstrategy() mechanism.
11530  *
11531  *     Context: Kernel thread context.
11532  */
11533 
11534 static void
11535 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11536 {
11537         struct sd_lun *un = arg;
11538 
11539         ASSERT(bp != NULL);
11540         ASSERT(xp != NULL);
11541         ASSERT(un != NULL);
11542         ASSERT(!mutex_owned(SD_MUTEX(un)));
11543 
11544         /*
11545          * Initialize the fields in the xbuf and save a pointer to the
11546          * xbuf in bp->b_private.
11547          */
11548         sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11549 
11550         /* Send the buf down the iostart chain */
11551         SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11552 }
11553 
11554 
11555 /*
11556  *    Function: sd_xbuf_init
11557  *
11558  * Description: Prepare the given sd_xbuf struct for use.
11559  *
11560  *   Arguments: un - ptr to softstate
11561  *              bp - ptr to associated buf(9S)
11562  *              xp - ptr to associated sd_xbuf
11563  *              chain_type - IO chain type to use:
11564  *                      SD_CHAIN_NULL
11565  *                      SD_CHAIN_BUFIO
11566  *                      SD_CHAIN_USCSI
11567  *                      SD_CHAIN_DIRECT
11568  *                      SD_CHAIN_DIRECT_PRIORITY
11569  *              pktinfop - ptr to private data struct for scsi_pkt(9S)
11570  *                      initialization; may be NULL if none.
11571  *
11572  *     Context: Kernel thread context
11573  */
11574 
11575 static void
11576 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11577         uchar_t chain_type, void *pktinfop)
11578 {
11579         int index;
11580 
11581         ASSERT(un != NULL);
11582         ASSERT(bp != NULL);
11583         ASSERT(xp != NULL);
11584 
11585         SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11586             bp, chain_type);
11587 
11588         xp->xb_un    = un;
11589         xp->xb_pktp  = NULL;
11590         xp->xb_pktinfo       = pktinfop;
11591         xp->xb_private       = bp->b_private;
11592         xp->xb_blkno = (daddr_t)bp->b_blkno;
11593 
11594         /*
11595          * Set up the iostart and iodone chain indexes in the xbuf, based
11596          * upon the specified chain type to use.
11597          */
11598         switch (chain_type) {
11599         case SD_CHAIN_NULL:
11600                 /*
11601                  * Fall thru to just use the values for the buf type, even
11602                  * tho for the NULL chain these values will never be used.
11603                  */
11604                 /* FALLTHRU */
11605         case SD_CHAIN_BUFIO:
11606                 index = un->un_buf_chain_type;
11607                 if ((!un->un_f_has_removable_media) &&
11608                     (un->un_tgt_blocksize != 0) &&
11609                     (un->un_tgt_blocksize != DEV_BSIZE ||
11610                     un->un_f_enable_rmw)) {
11611                         int secmask = 0, blknomask = 0;
11612                         if (un->un_f_enable_rmw) {
11613                                 blknomask =
11614                                     (un->un_phy_blocksize / DEV_BSIZE) - 1;
11615                                 secmask = un->un_phy_blocksize - 1;
11616                         } else {
11617                                 blknomask =
11618                                     (un->un_tgt_blocksize / DEV_BSIZE) - 1;
11619                                 secmask = un->un_tgt_blocksize - 1;
11620                         }
11621 
11622                         if ((bp->b_lblkno & (blknomask)) ||
11623                             (bp->b_bcount & (secmask))) {
11624                                 if ((un->un_f_rmw_type !=
11625                                     SD_RMW_TYPE_RETURN_ERROR) ||
11626                                     un->un_f_enable_rmw) {
11627                                         if (un->un_f_pm_is_enabled == FALSE)
11628                                                 index =
11629                                                     SD_CHAIN_INFO_MSS_DSK_NO_PM;
11630                                         else
11631                                                 index =
11632                                                     SD_CHAIN_INFO_MSS_DISK;
11633                                 }
11634                         }
11635                 }
11636                 break;
11637         case SD_CHAIN_USCSI:
11638                 index = un->un_uscsi_chain_type;
11639                 break;
11640         case SD_CHAIN_DIRECT:
11641                 index = un->un_direct_chain_type;
11642                 break;
11643         case SD_CHAIN_DIRECT_PRIORITY:
11644                 index = un->un_priority_chain_type;
11645                 break;
11646         default:
11647                 /* We're really broken if we ever get here... */
11648                 panic("sd_xbuf_init: illegal chain type!");
11649                 /*NOTREACHED*/
11650         }
11651 
11652         xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11653         xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11654 
11655         /*
11656          * It might be a bit easier to simply bzero the entire xbuf above,
11657          * but it turns out that since we init a fair number of members anyway,
11658          * we save a fair number cycles by doing explicit assignment of zero.
11659          */
11660         xp->xb_pkt_flags     = 0;
11661         xp->xb_dma_resid     = 0;
11662         xp->xb_retry_count   = 0;
11663         xp->xb_victim_retry_count = 0;
11664         xp->xb_ua_retry_count        = 0;
11665         xp->xb_nr_retry_count        = 0;
11666         xp->xb_sense_bp              = NULL;
11667         xp->xb_sense_status  = 0;
11668         xp->xb_sense_state   = 0;
11669         xp->xb_sense_resid   = 0;
11670         xp->xb_ena           = 0;
11671 
11672         bp->b_private        = xp;
11673         bp->b_flags  &= ~(B_DONE | B_ERROR);
11674         bp->b_resid  = 0;
11675         bp->av_forw  = NULL;
11676         bp->av_back  = NULL;
11677         bioerror(bp, 0);
11678 
11679         SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11680 }
11681 
11682 
11683 /*
11684  *    Function: sd_uscsi_strategy
11685  *
11686  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11687  *
11688  *   Arguments: bp - buf struct ptr
11689  *
11690  * Return Code: Always returns 0
11691  *
11692  *     Context: Kernel thread context
11693  */
11694 
11695 static int
11696 sd_uscsi_strategy(struct buf *bp)
11697 {
11698         struct sd_lun           *un;
11699         struct sd_uscsi_info    *uip;
11700         struct sd_xbuf          *xp;
11701         uchar_t                 chain_type;
11702         uchar_t                 cmd;
11703 
11704         ASSERT(bp != NULL);
11705 
11706         un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11707         if (un == NULL) {
11708                 bioerror(bp, EIO);
11709                 bp->b_resid = bp->b_bcount;
11710                 biodone(bp);
11711                 return (0);
11712         }
11713 
11714         ASSERT(!mutex_owned(SD_MUTEX(un)));
11715 
11716         SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11717 
11718         /*
11719          * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11720          */
11721         ASSERT(bp->b_private != NULL);
11722         uip = (struct sd_uscsi_info *)bp->b_private;
11723         cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0];
11724 
11725         mutex_enter(SD_MUTEX(un));
11726         /*
11727          * atapi: Since we are running the CD for now in PIO mode we need to
11728          * call bp_mapin here to avoid bp_mapin called interrupt context under
11729          * the HBA's init_pkt routine.
11730          */
11731         if (un->un_f_cfg_is_atapi == TRUE) {
11732                 mutex_exit(SD_MUTEX(un));
11733                 bp_mapin(bp);
11734                 mutex_enter(SD_MUTEX(un));
11735         }
11736         un->un_ncmds_in_driver++;
11737         SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11738             un->un_ncmds_in_driver);
11739 
11740         if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) &&
11741             (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1))
11742                 un->un_f_sync_cache_required = TRUE;
11743 
11744         mutex_exit(SD_MUTEX(un));
11745 
11746         switch (uip->ui_flags) {
11747         case SD_PATH_DIRECT:
11748                 chain_type = SD_CHAIN_DIRECT;
11749                 break;
11750         case SD_PATH_DIRECT_PRIORITY:
11751                 chain_type = SD_CHAIN_DIRECT_PRIORITY;
11752                 break;
11753         default:
11754                 chain_type = SD_CHAIN_USCSI;
11755                 break;
11756         }
11757 
11758         /*
11759          * We may allocate extra buf for external USCSI commands. If the
11760          * application asks for bigger than 20-byte sense data via USCSI,
11761          * SCSA layer will allocate 252 bytes sense buf for that command.
11762          */
11763         if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
11764             SENSE_LENGTH) {
11765                 xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
11766                     MAX_SENSE_LENGTH, KM_SLEEP);
11767         } else {
11768                 xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
11769         }
11770 
11771         sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11772 
11773         /* Use the index obtained within xbuf_init */
11774         SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11775 
11776         SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11777 
11778         return (0);
11779 }
11780 
11781 /*
11782  *    Function: sd_send_scsi_cmd
11783  *
11784  * Description: Runs a USCSI command for user (when called thru sdioctl),
11785  *              or for the driver
11786  *
11787  *   Arguments: dev - the dev_t for the device
11788  *              incmd - ptr to a valid uscsi_cmd struct
11789  *              flag - bit flag, indicating open settings, 32/64 bit type
11790  *              dataspace - UIO_USERSPACE or UIO_SYSSPACE
11791  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11792  *                      the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11793  *                      to use the USCSI "direct" chain and bypass the normal
11794  *                      command waitq.
11795  *
11796  * Return Code: 0 -  successful completion of the given command
11797  *              EIO - scsi_uscsi_handle_command() failed
11798  *              ENXIO  - soft state not found for specified dev
11799  *              EINVAL
11800  *              EFAULT - copyin/copyout error
11801  *              return code of scsi_uscsi_handle_command():
11802  *                      EIO
11803  *                      ENXIO
11804  *                      EACCES
11805  *
11806  *     Context: Waits for command to complete. Can sleep.
11807  */
11808 
11809 static int
11810 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
11811         enum uio_seg dataspace, int path_flag)
11812 {
11813         struct sd_lun   *un;
11814         sd_ssc_t        *ssc;
11815         int             rval;
11816 
11817         un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11818         if (un == NULL) {
11819                 return (ENXIO);
11820         }
11821 
11822         /*
11823          * Using sd_ssc_send to handle uscsi cmd
11824          */
11825         ssc = sd_ssc_init(un);
11826         rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag);
11827         sd_ssc_fini(ssc);
11828 
11829         return (rval);
11830 }
11831 
11832 /*
11833  *    Function: sd_ssc_init
11834  *
11835  * Description: Uscsi end-user call this function to initialize necessary
11836  *              fields, such as uscsi_cmd and sd_uscsi_info struct.
11837  *
11838  *              The return value of sd_send_scsi_cmd will be treated as a
11839  *              fault in various conditions. Even it is not Zero, some
11840  *              callers may ignore the return value. That is to say, we can
11841  *              not make an accurate assessment in sdintr, since if a
11842  *              command is failed in sdintr it does not mean the caller of
11843  *              sd_send_scsi_cmd will treat it as a real failure.
11844  *
11845  *              To avoid printing too many error logs for a failed uscsi
11846  *              packet that the caller may not treat it as a failure, the
11847  *              sd will keep silent for handling all uscsi commands.
11848  *
11849  *              During detach->attach and attach-open, for some types of
11850  *              problems, the driver should be providing information about
11851  *              the problem encountered. Device use USCSI_SILENT, which
11852  *              suppresses all driver information. The result is that no
11853  *              information about the problem is available. Being
11854  *              completely silent during this time is inappropriate. The
11855  *              driver needs a more selective filter than USCSI_SILENT, so
11856  *              that information related to faults is provided.
11857  *
11858  *              To make the accurate accessment, the caller  of
11859  *              sd_send_scsi_USCSI_CMD should take the ownership and
11860  *              get necessary information to print error messages.
11861  *
11862  *              If we want to print necessary info of uscsi command, we need to
11863  *              keep the uscsi_cmd and sd_uscsi_info till we can make the
11864  *              assessment. We use sd_ssc_init to alloc necessary
11865  *              structs for sending an uscsi command and we are also
11866  *              responsible for free the memory by calling
11867  *              sd_ssc_fini.
11868  *
11869  *              The calling secquences will look like:
11870  *              sd_ssc_init->
11871  *
11872  *                  ...
11873  *
11874  *                  sd_send_scsi_USCSI_CMD->
11875  *                      sd_ssc_send-> - - - sdintr
11876  *                  ...
11877  *
11878  *                  if we think the return value should be treated as a
11879  *                  failure, we make the accessment here and print out
11880  *                  necessary by retrieving uscsi_cmd and sd_uscsi_info'
11881  *
11882  *                  ...
11883  *
11884  *              sd_ssc_fini
11885  *
11886  *
11887  *   Arguments: un - pointer to driver soft state (unit) structure for this
11888  *                   target.
11889  *
11890  * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains
11891  *                         uscsi_cmd and sd_uscsi_info.
11892  *                  NULL - if can not alloc memory for sd_ssc_t struct
11893  *
11894  *     Context: Kernel Thread.
11895  */
11896 static sd_ssc_t *
11897 sd_ssc_init(struct sd_lun *un)
11898 {
11899         sd_ssc_t                *ssc;
11900         struct uscsi_cmd        *ucmdp;
11901         struct sd_uscsi_info    *uip;
11902 
11903         ASSERT(un != NULL);
11904         ASSERT(!mutex_owned(SD_MUTEX(un)));
11905 
11906         /*
11907          * Allocate sd_ssc_t structure
11908          */
11909         ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP);
11910 
11911         /*
11912          * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine
11913          */
11914         ucmdp = scsi_uscsi_alloc();
11915 
11916         /*
11917          * Allocate sd_uscsi_info structure
11918          */
11919         uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11920 
11921         ssc->ssc_uscsi_cmd = ucmdp;
11922         ssc->ssc_uscsi_info = uip;
11923         ssc->ssc_un = un;
11924 
11925         return (ssc);
11926 }
11927 
11928 /*
11929  * Function: sd_ssc_fini
11930  *
11931  * Description: To free sd_ssc_t and it's hanging off
11932  *
11933  * Arguments: ssc - struct pointer of sd_ssc_t.
11934  */
11935 static void
11936 sd_ssc_fini(sd_ssc_t *ssc)
11937 {
11938         scsi_uscsi_free(ssc->ssc_uscsi_cmd);
11939 
11940         if (ssc->ssc_uscsi_info != NULL) {
11941                 kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info));
11942                 ssc->ssc_uscsi_info = NULL;
11943         }
11944 
11945         kmem_free(ssc, sizeof (sd_ssc_t));
11946         ssc = NULL;
11947 }
11948 
11949 /*
11950  * Function: sd_ssc_send
11951  *
11952  * Description: Runs a USCSI command for user when called through sdioctl,
11953  *              or for the driver.
11954  *
11955  *   Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11956  *                    sd_uscsi_info in.
11957  *              incmd - ptr to a valid uscsi_cmd struct
11958  *              flag - bit flag, indicating open settings, 32/64 bit type
11959  *              dataspace - UIO_USERSPACE or UIO_SYSSPACE
11960  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11961  *                      the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11962  *                      to use the USCSI "direct" chain and bypass the normal
11963  *                      command waitq.
11964  *
11965  * Return Code: 0 -  successful completion of the given command
11966  *              EIO - scsi_uscsi_handle_command() failed
11967  *              ENXIO  - soft state not found for specified dev
11968  *              ECANCELED - command cancelled due to low power
11969  *              EINVAL
11970  *              EFAULT - copyin/copyout error
11971  *              return code of scsi_uscsi_handle_command():
11972  *                      EIO
11973  *                      ENXIO
11974  *                      EACCES
11975  *
11976  *     Context: Kernel Thread;
11977  *              Waits for command to complete. Can sleep.
11978  */
11979 static int
11980 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag,
11981         enum uio_seg dataspace, int path_flag)
11982 {
11983         struct sd_uscsi_info    *uip;
11984         struct uscsi_cmd        *uscmd;
11985         struct sd_lun           *un;
11986         dev_t                   dev;
11987 
11988         int     format = 0;
11989         int     rval;
11990 
11991         ASSERT(ssc != NULL);
11992         un = ssc->ssc_un;
11993         ASSERT(un != NULL);
11994         uscmd = ssc->ssc_uscsi_cmd;
11995         ASSERT(uscmd != NULL);
11996         ASSERT(!mutex_owned(SD_MUTEX(un)));
11997         if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
11998                 /*
11999                  * If enter here, it indicates that the previous uscsi
12000                  * command has not been processed by sd_ssc_assessment.
12001                  * This is violating our rules of FMA telemetry processing.
12002                  * We should print out this message and the last undisposed
12003                  * uscsi command.
12004                  */
12005                 if (uscmd->uscsi_cdb != NULL) {
12006                         SD_INFO(SD_LOG_SDTEST, un,
12007                             "sd_ssc_send is missing the alternative "
12008                             "sd_ssc_assessment when running command 0x%x.\n",
12009                             uscmd->uscsi_cdb[0]);
12010                 }
12011                 /*
12012                  * Set the ssc_flags to SSC_FLAGS_UNKNOWN, which should be
12013                  * the initial status.
12014                  */
12015                 ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12016         }
12017 
12018         /*
12019          * We need to make sure sd_ssc_send will have sd_ssc_assessment
12020          * followed to avoid missing FMA telemetries.
12021          */
12022         ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT;
12023 
12024         /*
12025          * if USCSI_PMFAILFAST is set and un is in low power, fail the
12026          * command immediately.
12027          */
12028         mutex_enter(SD_MUTEX(un));
12029         mutex_enter(&un->un_pm_mutex);
12030         if ((uscmd->uscsi_flags & USCSI_PMFAILFAST) &&
12031             SD_DEVICE_IS_IN_LOW_POWER(un)) {
12032                 SD_TRACE(SD_LOG_IO, un, "sd_ssc_send:"
12033                     "un:0x%p is in low power\n", un);
12034                 mutex_exit(&un->un_pm_mutex);
12035                 mutex_exit(SD_MUTEX(un));
12036                 return (ECANCELED);
12037         }
12038         mutex_exit(&un->un_pm_mutex);
12039         mutex_exit(SD_MUTEX(un));
12040 
12041 #ifdef SDDEBUG
12042         switch (dataspace) {
12043         case UIO_USERSPACE:
12044                 SD_TRACE(SD_LOG_IO, un,
12045                     "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un);
12046                 break;
12047         case UIO_SYSSPACE:
12048                 SD_TRACE(SD_LOG_IO, un,
12049                     "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un);
12050                 break;
12051         default:
12052                 SD_TRACE(SD_LOG_IO, un,
12053                     "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un);
12054                 break;
12055         }
12056 #endif
12057 
12058         rval = scsi_uscsi_copyin((intptr_t)incmd, flag,
12059             SD_ADDRESS(un), &uscmd);
12060         if (rval != 0) {
12061                 SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
12062                     "scsi_uscsi_alloc_and_copyin failed\n", un);
12063                 return (rval);
12064         }
12065 
12066         if ((uscmd->uscsi_cdb != NULL) &&
12067             (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
12068                 mutex_enter(SD_MUTEX(un));
12069                 un->un_f_format_in_progress = TRUE;
12070                 mutex_exit(SD_MUTEX(un));
12071                 format = 1;
12072         }
12073 
12074         /*
12075          * Allocate an sd_uscsi_info struct and fill it with the info
12076          * needed by sd_initpkt_for_uscsi().  Then put the pointer into
12077          * b_private in the buf for sd_initpkt_for_uscsi().  Note that
12078          * since we allocate the buf here in this function, we do not
12079          * need to preserve the prior contents of b_private.
12080          * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
12081          */
12082         uip = ssc->ssc_uscsi_info;
12083         uip->ui_flags = path_flag;
12084         uip->ui_cmdp = uscmd;
12085 
12086         /*
12087          * Commands sent with priority are intended for error recovery
12088          * situations, and do not have retries performed.
12089          */
12090         if (path_flag == SD_PATH_DIRECT_PRIORITY) {
12091                 uscmd->uscsi_flags |= USCSI_DIAGNOSE;
12092         }
12093         uscmd->uscsi_flags &= ~USCSI_NOINTR;
12094 
12095         dev = SD_GET_DEV(un);
12096         rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
12097             sd_uscsi_strategy, NULL, uip);
12098 
12099         /*
12100          * mark ssc_flags right after handle_cmd to make sure
12101          * the uscsi has been sent
12102          */
12103         ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED;
12104 
12105 #ifdef SDDEBUG
12106         SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
12107             "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
12108             uscmd->uscsi_status, uscmd->uscsi_resid);
12109         if (uscmd->uscsi_bufaddr != NULL) {
12110                 SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
12111                     "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
12112                     uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
12113                 if (dataspace == UIO_SYSSPACE) {
12114                         SD_DUMP_MEMORY(un, SD_LOG_IO,
12115                             "data", (uchar_t *)uscmd->uscsi_bufaddr,
12116                             uscmd->uscsi_buflen, SD_LOG_HEX);
12117                 }
12118         }
12119 #endif
12120 
12121         if (format == 1) {
12122                 mutex_enter(SD_MUTEX(un));
12123                 un->un_f_format_in_progress = FALSE;
12124                 mutex_exit(SD_MUTEX(un));
12125         }
12126 
12127         (void) scsi_uscsi_copyout((intptr_t)incmd, uscmd);
12128 
12129         return (rval);
12130 }
12131 
12132 /*
12133  *     Function: sd_ssc_print
12134  *
12135  * Description: Print information available to the console.
12136  *
12137  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12138  *                    sd_uscsi_info in.
12139  *            sd_severity - log level.
12140  *     Context: Kernel thread or interrupt context.
12141  */
12142 static void
12143 sd_ssc_print(sd_ssc_t *ssc, int sd_severity)
12144 {
12145         struct uscsi_cmd        *ucmdp;
12146         struct scsi_device      *devp;
12147         dev_info_t              *devinfo;
12148         uchar_t                 *sensep;
12149         int                     senlen;
12150         union scsi_cdb          *cdbp;
12151         uchar_t                 com;
12152         extern struct scsi_key_strings scsi_cmds[];
12153 
12154         ASSERT(ssc != NULL);
12155         ASSERT(ssc->ssc_un != NULL);
12156 
12157         if (SD_FM_LOG(ssc->ssc_un) != SD_FM_LOG_EREPORT)
12158                 return;
12159         ucmdp = ssc->ssc_uscsi_cmd;
12160         devp = SD_SCSI_DEVP(ssc->ssc_un);
12161         devinfo = SD_DEVINFO(ssc->ssc_un);
12162         ASSERT(ucmdp != NULL);
12163         ASSERT(devp != NULL);
12164         ASSERT(devinfo != NULL);
12165         sensep = (uint8_t *)ucmdp->uscsi_rqbuf;
12166         senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid;
12167         cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb;
12168 
12169         /* In certain case (like DOORLOCK), the cdb could be NULL. */
12170         if (cdbp == NULL)
12171                 return;
12172         /* We don't print log if no sense data available. */
12173         if (senlen == 0)
12174                 sensep = NULL;
12175         com = cdbp->scc_cmd;
12176         scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com,
12177             scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL);
12178 }
12179 
12180 /*
12181  *     Function: sd_ssc_assessment
12182  *
12183  * Description: We use this function to make an assessment at the point
12184  *              where SD driver may encounter a potential error.
12185  *
12186  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12187  *                  sd_uscsi_info in.
12188  *            tp_assess - a hint of strategy for ereport posting.
12189  *            Possible values of tp_assess include:
12190  *                SD_FMT_IGNORE - we don't post any ereport because we're
12191  *                sure that it is ok to ignore the underlying problems.
12192  *                SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now
12193  *                but it might be not correct to ignore the underlying hardware
12194  *                error.
12195  *                SD_FMT_STATUS_CHECK - we will post an ereport with the
12196  *                payload driver-assessment of value "fail" or
12197  *                "fatal"(depending on what information we have here). This
12198  *                assessment value is usually set when SD driver think there
12199  *                is a potential error occurred(Typically, when return value
12200  *                of the SCSI command is EIO).
12201  *                SD_FMT_STANDARD - we will post an ereport with the payload
12202  *                driver-assessment of value "info". This assessment value is
12203  *                set when the SCSI command returned successfully and with
12204  *                sense data sent back.
12205  *
12206  *     Context: Kernel thread.
12207  */
12208 static void
12209 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess)
12210 {
12211         int senlen = 0;
12212         struct uscsi_cmd *ucmdp = NULL;
12213         struct sd_lun *un;
12214 
12215         ASSERT(ssc != NULL);
12216         un = ssc->ssc_un;
12217         ASSERT(un != NULL);
12218         ucmdp = ssc->ssc_uscsi_cmd;
12219         ASSERT(ucmdp != NULL);
12220 
12221         if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
12222                 ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT;
12223         } else {
12224                 /*
12225                  * If enter here, it indicates that we have a wrong
12226                  * calling sequence of sd_ssc_send and sd_ssc_assessment,
12227                  * both of which should be called in a pair in case of
12228                  * loss of FMA telemetries.
12229                  */
12230                 if (ucmdp->uscsi_cdb != NULL) {
12231                         SD_INFO(SD_LOG_SDTEST, un,
12232                             "sd_ssc_assessment is missing the "
12233                             "alternative sd_ssc_send when running 0x%x, "
12234                             "or there are superfluous sd_ssc_assessment for "
12235                             "the same sd_ssc_send.\n",
12236                             ucmdp->uscsi_cdb[0]);
12237                 }
12238                 /*
12239                  * Set the ssc_flags to the initial value to avoid passing
12240                  * down dirty flags to the following sd_ssc_send function.
12241                  */
12242                 ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12243                 return;
12244         }
12245 
12246         /*
12247          * Only handle an issued command which is waiting for assessment.
12248          * A command which is not issued will not have
12249          * SSC_FLAGS_INVALID_DATA set, so it'ok we just return here.
12250          */
12251         if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) {
12252                 sd_ssc_print(ssc, SCSI_ERR_INFO);
12253                 return;
12254         } else {
12255                 /*
12256                  * For an issued command, we should clear this flag in
12257                  * order to make the sd_ssc_t structure be used off
12258                  * multiple uscsi commands.
12259                  */
12260                 ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED;
12261         }
12262 
12263         /*
12264          * We will not deal with non-retryable(flag USCSI_DIAGNOSE set)
12265          * commands here. And we should clear the ssc_flags before return.
12266          */
12267         if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) {
12268                 ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12269                 return;
12270         }
12271 
12272         switch (tp_assess) {
12273         case SD_FMT_IGNORE:
12274         case SD_FMT_IGNORE_COMPROMISE:
12275                 break;
12276         case SD_FMT_STATUS_CHECK:
12277                 /*
12278                  * For a failed command(including the succeeded command
12279                  * with invalid data sent back).
12280                  */
12281                 sd_ssc_post(ssc, SD_FM_DRV_FATAL);
12282                 break;
12283         case SD_FMT_STANDARD:
12284                 /*
12285                  * Always for the succeeded commands probably with sense
12286                  * data sent back.
12287                  * Limitation:
12288                  *      We can only handle a succeeded command with sense
12289                  *      data sent back when auto-request-sense is enabled.
12290                  */
12291                 senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen -
12292                     ssc->ssc_uscsi_cmd->uscsi_rqresid;
12293                 if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) &&
12294                     (un->un_f_arq_enabled == TRUE) &&
12295                     senlen > 0 &&
12296                     ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) {
12297                         sd_ssc_post(ssc, SD_FM_DRV_NOTICE);
12298                 }
12299                 break;
12300         default:
12301                 /*
12302                  * Should not have other type of assessment.
12303                  */
12304                 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
12305                     "sd_ssc_assessment got wrong "
12306                     "sd_type_assessment %d.\n", tp_assess);
12307                 break;
12308         }
12309         /*
12310          * Clear up the ssc_flags before return.
12311          */
12312         ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12313 }
12314 
12315 /*
12316  *    Function: sd_ssc_post
12317  *
12318  * Description: 1. read the driver property to get fm-scsi-log flag.
12319  *              2. print log if fm_log_capable is non-zero.
12320  *              3. call sd_ssc_ereport_post to post ereport if possible.
12321  *
12322  *    Context: May be called from kernel thread or interrupt context.
12323  */
12324 static void
12325 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess)
12326 {
12327         struct sd_lun   *un;
12328         int             sd_severity;
12329 
12330         ASSERT(ssc != NULL);
12331         un = ssc->ssc_un;
12332         ASSERT(un != NULL);
12333 
12334         /*
12335          * We may enter here from sd_ssc_assessment(for USCSI command) or
12336          * by directly called from sdintr context.
12337          * We don't handle a non-disk drive(CD-ROM, removable media).
12338          * Clear the ssc_flags before return in case we've set
12339          * SSC_FLAGS_INVALID_XXX which should be skipped for a non-disk
12340          * driver.
12341          */
12342         if (ISCD(un) || un->un_f_has_removable_media) {
12343                 ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12344                 return;
12345         }
12346 
12347         switch (sd_assess) {
12348                 case SD_FM_DRV_FATAL:
12349                         sd_severity = SCSI_ERR_FATAL;
12350                         break;
12351                 case SD_FM_DRV_RECOVERY:
12352                         sd_severity = SCSI_ERR_RECOVERED;
12353                         break;
12354                 case SD_FM_DRV_RETRY:
12355                         sd_severity = SCSI_ERR_RETRYABLE;
12356                         break;
12357                 case SD_FM_DRV_NOTICE:
12358                         sd_severity = SCSI_ERR_INFO;
12359                         break;
12360                 default:
12361                         sd_severity = SCSI_ERR_UNKNOWN;
12362         }
12363         /* print log */
12364         sd_ssc_print(ssc, sd_severity);
12365 
12366         /* always post ereport */
12367         sd_ssc_ereport_post(ssc, sd_assess);
12368 }
12369 
12370 /*
12371  *    Function: sd_ssc_set_info
12372  *
12373  * Description: Mark ssc_flags and set ssc_info which would be the
12374  *              payload of uderr ereport. This function will cause
12375  *              sd_ssc_ereport_post to post uderr ereport only.
12376  *              Besides, when ssc_flags == SSC_FLAGS_INVALID_DATA(USCSI),
12377  *              the function will also call SD_ERROR or scsi_log for a
12378  *              CDROM/removable-media/DDI_FM_NOT_CAPABLE device.
12379  *
12380  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12381  *                  sd_uscsi_info in.
12382  *            ssc_flags - indicate the sub-category of a uderr.
12383  *            comp - this argument is meaningful only when
12384  *                   ssc_flags == SSC_FLAGS_INVALID_DATA, and its possible
12385  *                   values include:
12386  *                   > 0, SD_ERROR is used with comp as the driver logging
12387  *                   component;
12388  *                   = 0, scsi-log is used to log error telemetries;
12389  *                   < 0, no log available for this telemetry.
12390  *
12391  *    Context: Kernel thread or interrupt context
12392  */
12393 static void
12394 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, const char *fmt, ...)
12395 {
12396         va_list ap;
12397 
12398         ASSERT(ssc != NULL);
12399         ASSERT(ssc->ssc_un != NULL);
12400 
12401         ssc->ssc_flags |= ssc_flags;
12402         va_start(ap, fmt);
12403         (void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap);
12404         va_end(ap);
12405 
12406         /*
12407          * If SSC_FLAGS_INVALID_DATA is set, it should be a uscsi command
12408          * with invalid data sent back. For non-uscsi command, the
12409          * following code will be bypassed.
12410          */
12411         if (ssc_flags & SSC_FLAGS_INVALID_DATA) {
12412                 if (SD_FM_LOG(ssc->ssc_un) == SD_FM_LOG_NSUP) {
12413                         /*
12414                          * If the error belong to certain component and we
12415                          * do not want it to show up on the console, we
12416                          * will use SD_ERROR, otherwise scsi_log is
12417                          * preferred.
12418                          */
12419                         if (comp > 0) {
12420                                 SD_ERROR(comp, ssc->ssc_un, ssc->ssc_info);
12421                         } else if (comp == 0) {
12422                                 scsi_log(SD_DEVINFO(ssc->ssc_un), sd_label,
12423                                     CE_WARN, ssc->ssc_info);
12424                         }
12425                 }
12426         }
12427 }
12428 
12429 /*
12430  *    Function: sd_buf_iodone
12431  *
12432  * Description: Frees the sd_xbuf & returns the buf to its originator.
12433  *
12434  *     Context: May be called from interrupt context.
12435  */
12436 /* ARGSUSED */
12437 static void
12438 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
12439 {
12440         struct sd_xbuf *xp;
12441 
12442         ASSERT(un != NULL);
12443         ASSERT(bp != NULL);
12444         ASSERT(!mutex_owned(SD_MUTEX(un)));
12445 
12446         SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
12447 
12448         xp = SD_GET_XBUF(bp);
12449         ASSERT(xp != NULL);
12450 
12451         /* xbuf is gone after this */
12452         if (ddi_xbuf_done(bp, un->un_xbuf_attr)) {
12453                 mutex_enter(SD_MUTEX(un));
12454 
12455                 /*
12456                  * Grab time when the cmd completed.
12457                  * This is used for determining if the system has been
12458                  * idle long enough to make it idle to the PM framework.
12459                  * This is for lowering the overhead, and therefore improving
12460                  * performance per I/O operation.
12461                  */
12462                 un->un_pm_idle_time = gethrtime();
12463 
12464                 un->un_ncmds_in_driver--;
12465                 ASSERT(un->un_ncmds_in_driver >= 0);
12466                 SD_INFO(SD_LOG_IO, un,
12467                     "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
12468                     un->un_ncmds_in_driver);
12469 
12470                 mutex_exit(SD_MUTEX(un));
12471         }
12472 
12473         biodone(bp);                            /* bp is gone after this */
12474 
12475         SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
12476 }
12477 
12478 
12479 /*
12480  *    Function: sd_uscsi_iodone
12481  *
12482  * Description: Frees the sd_xbuf & returns the buf to its originator.
12483  *
12484  *     Context: May be called from interrupt context.
12485  */
12486 /* ARGSUSED */
12487 static void
12488 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12489 {
12490         struct sd_xbuf *xp;
12491 
12492         ASSERT(un != NULL);
12493         ASSERT(bp != NULL);
12494 
12495         xp = SD_GET_XBUF(bp);
12496         ASSERT(xp != NULL);
12497         ASSERT(!mutex_owned(SD_MUTEX(un)));
12498 
12499         SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
12500 
12501         bp->b_private = xp->xb_private;
12502 
12503         mutex_enter(SD_MUTEX(un));
12504 
12505         /*
12506          * Grab time when the cmd completed.
12507          * This is used for determining if the system has been
12508          * idle long enough to make it idle to the PM framework.
12509          * This is for lowering the overhead, and therefore improving
12510          * performance per I/O operation.
12511          */
12512         un->un_pm_idle_time = gethrtime();
12513 
12514         un->un_ncmds_in_driver--;
12515         ASSERT(un->un_ncmds_in_driver >= 0);
12516         SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
12517             un->un_ncmds_in_driver);
12518 
12519         mutex_exit(SD_MUTEX(un));
12520 
12521         if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
12522             SENSE_LENGTH) {
12523                 kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
12524                     MAX_SENSE_LENGTH);
12525         } else {
12526                 kmem_free(xp, sizeof (struct sd_xbuf));
12527         }
12528 
12529         biodone(bp);
12530 
12531         SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
12532 }
12533 
12534 
12535 /*
12536  *    Function: sd_mapblockaddr_iostart
12537  *
12538  * Description: Verify request lies within the partition limits for
12539  *              the indicated minor device.  Issue "overrun" buf if
12540  *              request would exceed partition range.  Converts
12541  *              partition-relative block address to absolute.
12542  *
12543  *              Upon exit of this function:
12544  *              1.I/O is aligned
12545  *                 xp->xb_blkno represents the absolute sector address
12546  *              2.I/O is misaligned
12547  *                 xp->xb_blkno represents the absolute logical block address
12548  *                 based on DEV_BSIZE. The logical block address will be
12549  *                 converted to physical sector address in sd_mapblocksize_\
12550  *                 iostart.
12551  *              3.I/O is misaligned but is aligned in "overrun" buf
12552  *                 xp->xb_blkno represents the absolute logical block address
12553  *                 based on DEV_BSIZE. The logical block address will be
12554  *                 converted to physical sector address in sd_mapblocksize_\
12555  *                 iostart. But no RMW will be issued in this case.
12556  *
12557  *     Context: Can sleep
12558  *
12559  *      Issues: This follows what the old code did, in terms of accessing
12560  *              some of the partition info in the unit struct without holding
12561  *              the mutext.  This is a general issue, if the partition info
12562  *              can be altered while IO is in progress... as soon as we send
12563  *              a buf, its partitioning can be invalid before it gets to the
12564  *              device.  Probably the right fix is to move partitioning out
12565  *              of the driver entirely.
12566  */
12567 
12568 static void
12569 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
12570 {
12571         diskaddr_t      nblocks;        /* #blocks in the given partition */
12572         daddr_t blocknum;       /* Block number specified by the buf */
12573         size_t  requested_nblocks;
12574         size_t  available_nblocks;
12575         int     partition;
12576         diskaddr_t      partition_offset;
12577         struct sd_xbuf *xp;
12578         int secmask = 0, blknomask = 0;
12579         ushort_t is_aligned = TRUE;
12580 
12581         ASSERT(un != NULL);
12582         ASSERT(bp != NULL);
12583         ASSERT(!mutex_owned(SD_MUTEX(un)));
12584 
12585         SD_TRACE(SD_LOG_IO_PARTITION, un,
12586             "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
12587 
12588         xp = SD_GET_XBUF(bp);
12589         ASSERT(xp != NULL);
12590 
12591         /*
12592          * If the geometry is not indicated as valid, attempt to access
12593          * the unit & verify the geometry/label. This can be the case for
12594          * removable-media devices, of if the device was opened in
12595          * NDELAY/NONBLOCK mode.
12596          */
12597         partition = SDPART(bp->b_edev);
12598 
12599         if (!SD_IS_VALID_LABEL(un)) {
12600                 sd_ssc_t *ssc;
12601                 /*
12602                  * Initialize sd_ssc_t for internal uscsi commands
12603                  * In case of potential porformance issue, we need
12604                  * to alloc memory only if there is invalid label
12605                  */
12606                 ssc = sd_ssc_init(un);
12607 
12608                 if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) {
12609                         /*
12610                          * For removable devices it is possible to start an
12611                          * I/O without a media by opening the device in nodelay
12612                          * mode. Also for writable CDs there can be many
12613                          * scenarios where there is no geometry yet but volume
12614                          * manager is trying to issue a read() just because
12615                          * it can see TOC on the CD. So do not print a message
12616                          * for removables.
12617                          */
12618                         if (!un->un_f_has_removable_media) {
12619                                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12620                                     "i/o to invalid geometry\n");
12621                         }
12622                         bioerror(bp, EIO);
12623                         bp->b_resid = bp->b_bcount;
12624                         SD_BEGIN_IODONE(index, un, bp);
12625 
12626                         sd_ssc_fini(ssc);
12627                         return;
12628                 }
12629                 sd_ssc_fini(ssc);
12630         }
12631 
12632         nblocks = 0;
12633         (void) cmlb_partinfo(un->un_cmlbhandle, partition,
12634             &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
12635 
12636         if (un->un_f_enable_rmw) {
12637                 blknomask = (un->un_phy_blocksize / DEV_BSIZE) - 1;
12638                 secmask = un->un_phy_blocksize - 1;
12639         } else {
12640                 blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1;
12641                 secmask = un->un_tgt_blocksize - 1;
12642         }
12643 
12644         if ((bp->b_lblkno & (blknomask)) || (bp->b_bcount & (secmask))) {
12645                 is_aligned = FALSE;
12646         }
12647 
12648         if (!(NOT_DEVBSIZE(un)) || un->un_f_enable_rmw) {
12649                 /*
12650                  * If I/O is aligned, no need to involve RMW(Read Modify Write)
12651                  * Convert the logical block number to target's physical sector
12652                  * number.
12653                  */
12654                 if (is_aligned) {
12655                         xp->xb_blkno = SD_SYS2TGTBLOCK(un, xp->xb_blkno);
12656                 } else {
12657                         /*
12658                          * There is no RMW if we're just reading, so don't
12659                          * warn or error out because of it.
12660                          */
12661                         if (bp->b_flags & B_READ) {
12662                                 /*EMPTY*/
12663                         } else if (!un->un_f_enable_rmw &&
12664                             un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR) {
12665                                 bp->b_flags |= B_ERROR;
12666                                 goto error_exit;
12667                         } else if (un->un_f_rmw_type == SD_RMW_TYPE_DEFAULT) {
12668                                 mutex_enter(SD_MUTEX(un));
12669                                 if (!un->un_f_enable_rmw &&
12670                                     un->un_rmw_msg_timeid == NULL) {
12671                                         scsi_log(SD_DEVINFO(un), sd_label,
12672                                             CE_WARN, "I/O request is not "
12673                                             "aligned with %d disk sector size. "
12674                                             "It is handled through Read Modify "
12675                                             "Write but the performance is "
12676                                             "very low.\n",
12677                                             un->un_tgt_blocksize);
12678                                         un->un_rmw_msg_timeid =
12679                                             timeout(sd_rmw_msg_print_handler,
12680                                             un, SD_RMW_MSG_PRINT_TIMEOUT);
12681                                 } else {
12682                                         un->un_rmw_incre_count ++;
12683                                 }
12684                                 mutex_exit(SD_MUTEX(un));
12685                         }
12686 
12687                         nblocks = SD_TGT2SYSBLOCK(un, nblocks);
12688                         partition_offset = SD_TGT2SYSBLOCK(un,
12689                             partition_offset);
12690                 }
12691         }
12692 
12693         /*
12694          * blocknum is the starting block number of the request. At this
12695          * point it is still relative to the start of the minor device.
12696          */
12697         blocknum = xp->xb_blkno;
12698 
12699         /*
12700          * Legacy: If the starting block number is one past the last block
12701          * in the partition, do not set B_ERROR in the buf.
12702          */
12703         if (blocknum == nblocks)  {
12704                 goto error_exit;
12705         }
12706 
12707         /*
12708          * Confirm that the first block of the request lies within the
12709          * partition limits. Also the requested number of bytes must be
12710          * a multiple of the system block size.
12711          */
12712         if ((blocknum < 0) || (blocknum >= nblocks) ||
12713             ((bp->b_bcount & (DEV_BSIZE - 1)) != 0)) {
12714                 bp->b_flags |= B_ERROR;
12715                 goto error_exit;
12716         }
12717 
12718         /*
12719          * If the requsted # blocks exceeds the available # blocks, that
12720          * is an overrun of the partition.
12721          */
12722         if ((!NOT_DEVBSIZE(un)) && is_aligned) {
12723                 requested_nblocks = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
12724         } else {
12725                 requested_nblocks = SD_BYTES2SYSBLOCKS(bp->b_bcount);
12726         }
12727 
12728         available_nblocks = (size_t)(nblocks - blocknum);
12729         ASSERT(nblocks >= blocknum);
12730 
12731         if (requested_nblocks > available_nblocks) {
12732                 size_t resid;
12733 
12734                 /*
12735                  * Allocate an "overrun" buf to allow the request to proceed
12736                  * for the amount of space available in the partition. The
12737                  * amount not transferred will be added into the b_resid
12738                  * when the operation is complete. The overrun buf
12739                  * replaces the original buf here, and the original buf
12740                  * is saved inside the overrun buf, for later use.
12741                  */
12742                 if ((!NOT_DEVBSIZE(un)) && is_aligned) {
12743                         resid = SD_TGTBLOCKS2BYTES(un,
12744                             (offset_t)(requested_nblocks - available_nblocks));
12745                 } else {
12746                         resid = SD_SYSBLOCKS2BYTES(
12747                             (offset_t)(requested_nblocks - available_nblocks));
12748                 }
12749 
12750                 size_t count = bp->b_bcount - resid;
12751                 /*
12752                  * Note: count is an unsigned entity thus it'll NEVER
12753                  * be less than 0 so ASSERT the original values are
12754                  * correct.
12755                  */
12756                 ASSERT(bp->b_bcount >= resid);
12757 
12758                 bp = sd_bioclone_alloc(bp, count, blocknum,
12759                     (int (*)(struct buf *)) sd_mapblockaddr_iodone);
12760                 xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12761                 ASSERT(xp != NULL);
12762         }
12763 
12764         /* At this point there should be no residual for this buf. */
12765         ASSERT(bp->b_resid == 0);
12766 
12767         /* Convert the block number to an absolute address. */
12768         xp->xb_blkno += partition_offset;
12769 
12770         SD_NEXT_IOSTART(index, un, bp);
12771 
12772         SD_TRACE(SD_LOG_IO_PARTITION, un,
12773             "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12774 
12775         return;
12776 
12777 error_exit:
12778         bp->b_resid = bp->b_bcount;
12779         SD_BEGIN_IODONE(index, un, bp);
12780         SD_TRACE(SD_LOG_IO_PARTITION, un,
12781             "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12782 }
12783 
12784 
12785 /*
12786  *    Function: sd_mapblockaddr_iodone
12787  *
12788  * Description: Completion-side processing for partition management.
12789  *
12790  *     Context: May be called under interrupt context
12791  */
12792 
12793 static void
12794 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12795 {
12796         /* int  partition; */   /* Not used, see below. */
12797         ASSERT(un != NULL);
12798         ASSERT(bp != NULL);
12799         ASSERT(!mutex_owned(SD_MUTEX(un)));
12800 
12801         SD_TRACE(SD_LOG_IO_PARTITION, un,
12802             "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12803 
12804         if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12805                 /*
12806                  * We have an "overrun" buf to deal with...
12807                  */
12808                 struct sd_xbuf  *xp;
12809                 struct buf      *obp;   /* ptr to the original buf */
12810 
12811                 xp = SD_GET_XBUF(bp);
12812                 ASSERT(xp != NULL);
12813 
12814                 /* Retrieve the pointer to the original buf */
12815                 obp = (struct buf *)xp->xb_private;
12816                 ASSERT(obp != NULL);
12817 
12818                 obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12819                 bioerror(obp, bp->b_error);
12820 
12821                 sd_bioclone_free(bp);
12822 
12823                 /*
12824                  * Get back the original buf.
12825                  * Note that since the restoration of xb_blkno below
12826                  * was removed, the sd_xbuf is not needed.
12827                  */
12828                 bp = obp;
12829                 /*
12830                  * xp = SD_GET_XBUF(bp);
12831                  * ASSERT(xp != NULL);
12832                  */
12833         }
12834 
12835         /*
12836          * Convert sd->xb_blkno back to a minor-device relative value.
12837          * Note: this has been commented out, as it is not needed in the
12838          * current implementation of the driver (ie, since this function
12839          * is at the top of the layering chains, so the info will be
12840          * discarded) and it is in the "hot" IO path.
12841          *
12842          * partition = getminor(bp->b_edev) & SDPART_MASK;
12843          * xp->xb_blkno -= un->un_offset[partition];
12844          */
12845 
12846         SD_NEXT_IODONE(index, un, bp);
12847 
12848         SD_TRACE(SD_LOG_IO_PARTITION, un,
12849             "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12850 }
12851 
12852 
12853 /*
12854  *    Function: sd_mapblocksize_iostart
12855  *
12856  * Description: Convert between system block size (un->un_sys_blocksize)
12857  *              and target block size (un->un_tgt_blocksize).
12858  *
12859  *     Context: Can sleep to allocate resources.
12860  *
12861  * Assumptions: A higher layer has already performed any partition validation,
12862  *              and converted the xp->xb_blkno to an absolute value relative
12863  *              to the start of the device.
12864  *
12865  *              It is also assumed that the higher layer has implemented
12866  *              an "overrun" mechanism for the case where the request would
12867  *              read/write beyond the end of a partition.  In this case we
12868  *              assume (and ASSERT) that bp->b_resid == 0.
12869  *
12870  *              Note: The implementation for this routine assumes the target
12871  *              block size remains constant between allocation and transport.
12872  */
12873 
12874 static void
12875 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12876 {
12877         struct sd_mapblocksize_info     *bsp;
12878         struct sd_xbuf                  *xp;
12879         offset_t first_byte;
12880         daddr_t start_block, end_block;
12881         daddr_t request_bytes;
12882         ushort_t is_aligned = FALSE;
12883 
12884         ASSERT(un != NULL);
12885         ASSERT(bp != NULL);
12886         ASSERT(!mutex_owned(SD_MUTEX(un)));
12887         ASSERT(bp->b_resid == 0);
12888 
12889         SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12890             "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12891 
12892         /*
12893          * For a non-writable CD, a write request is an error
12894          */
12895         if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12896             (un->un_f_mmc_writable_media == FALSE)) {
12897                 bioerror(bp, EIO);
12898                 bp->b_resid = bp->b_bcount;
12899                 SD_BEGIN_IODONE(index, un, bp);
12900                 return;
12901         }
12902 
12903         /*
12904          * We do not need a shadow buf if the device is using
12905          * un->un_sys_blocksize as its block size or if bcount == 0.
12906          * In this case there is no layer-private data block allocated.
12907          */
12908         if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) ||
12909             (bp->b_bcount == 0)) {
12910                 goto done;
12911         }
12912 
12913 #if defined(__i386) || defined(__amd64)
12914         /* We do not support non-block-aligned transfers for ROD devices */
12915         ASSERT(!ISROD(un));
12916 #endif
12917 
12918         xp = SD_GET_XBUF(bp);
12919         ASSERT(xp != NULL);
12920 
12921         SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12922             "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12923             un->un_tgt_blocksize, DEV_BSIZE);
12924         SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12925             "request start block:0x%x\n", xp->xb_blkno);
12926         SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12927             "request len:0x%x\n", bp->b_bcount);
12928 
12929         /*
12930          * Allocate the layer-private data area for the mapblocksize layer.
12931          * Layers are allowed to use the xp_private member of the sd_xbuf
12932          * struct to store the pointer to their layer-private data block, but
12933          * each layer also has the responsibility of restoring the prior
12934          * contents of xb_private before returning the buf/xbuf to the
12935          * higher layer that sent it.
12936          *
12937          * Here we save the prior contents of xp->xb_private into the
12938          * bsp->mbs_oprivate field of our layer-private data area. This value
12939          * is restored by sd_mapblocksize_iodone() just prior to freeing up
12940          * the layer-private area and returning the buf/xbuf to the layer
12941          * that sent it.
12942          *
12943          * Note that here we use kmem_zalloc for the allocation as there are
12944          * parts of the mapblocksize code that expect certain fields to be
12945          * zero unless explicitly set to a required value.
12946          */
12947         bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12948         bsp->mbs_oprivate = xp->xb_private;
12949         xp->xb_private = bsp;
12950 
12951         /*
12952          * This treats the data on the disk (target) as an array of bytes.
12953          * first_byte is the byte offset, from the beginning of the device,
12954          * to the location of the request. This is converted from a
12955          * un->un_sys_blocksize block address to a byte offset, and then back
12956          * to a block address based upon a un->un_tgt_blocksize block size.
12957          *
12958          * xp->xb_blkno should be absolute upon entry into this function,
12959          * but, but it is based upon partitions that use the "system"
12960          * block size. It must be adjusted to reflect the block size of
12961          * the target.
12962          *
12963          * Note that end_block is actually the block that follows the last
12964          * block of the request, but that's what is needed for the computation.
12965          */
12966         first_byte  = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno);
12967         if (un->un_f_enable_rmw) {
12968                 start_block = xp->xb_blkno =
12969                     (first_byte / un->un_phy_blocksize) *
12970                     (un->un_phy_blocksize / DEV_BSIZE);
12971                 end_block   = ((first_byte + bp->b_bcount +
12972                     un->un_phy_blocksize - 1) / un->un_phy_blocksize) *
12973                     (un->un_phy_blocksize / DEV_BSIZE);
12974         } else {
12975                 start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12976                 end_block   = (first_byte + bp->b_bcount +
12977                     un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
12978         }
12979 
12980         /* request_bytes is rounded up to a multiple of the target block size */
12981         request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12982 
12983         /*
12984          * See if the starting address of the request and the request
12985          * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12986          * then we do not need to allocate a shadow buf to handle the request.
12987          */
12988         if (un->un_f_enable_rmw) {
12989                 if (((first_byte % un->un_phy_blocksize) == 0) &&
12990                     ((bp->b_bcount % un->un_phy_blocksize) == 0)) {
12991                         is_aligned = TRUE;
12992                 }
12993         } else {
12994                 if (((first_byte % un->un_tgt_blocksize) == 0) &&
12995                     ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12996                         is_aligned = TRUE;
12997                 }
12998         }
12999 
13000         if ((bp->b_flags & B_READ) == 0) {
13001                 /*
13002                  * Lock the range for a write operation. An aligned request is
13003                  * considered a simple write; otherwise the request must be a
13004                  * read-modify-write.
13005                  */
13006                 bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
13007                     (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
13008         }
13009 
13010         /*
13011          * Alloc a shadow buf if the request is not aligned. Also, this is
13012          * where the READ command is generated for a read-modify-write. (The
13013          * write phase is deferred until after the read completes.)
13014          */
13015         if (is_aligned == FALSE) {
13016 
13017                 struct sd_mapblocksize_info     *shadow_bsp;
13018                 struct sd_xbuf  *shadow_xp;
13019                 struct buf      *shadow_bp;
13020 
13021                 /*
13022                  * Allocate the shadow buf and it associated xbuf. Note that
13023                  * after this call the xb_blkno value in both the original
13024                  * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
13025                  * same: absolute relative to the start of the device, and
13026                  * adjusted for the target block size. The b_blkno in the
13027                  * shadow buf will also be set to this value. We should never
13028                  * change b_blkno in the original bp however.
13029                  *
13030                  * Note also that the shadow buf will always need to be a
13031                  * READ command, regardless of whether the incoming command
13032                  * is a READ or a WRITE.
13033                  */
13034                 shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
13035                     xp->xb_blkno,
13036                     (int (*)(struct buf *)) sd_mapblocksize_iodone);
13037 
13038                 shadow_xp = SD_GET_XBUF(shadow_bp);
13039 
13040                 /*
13041                  * Allocate the layer-private data for the shadow buf.
13042                  * (No need to preserve xb_private in the shadow xbuf.)
13043                  */
13044                 shadow_xp->xb_private = shadow_bsp =
13045                     kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
13046 
13047                 /*
13048                  * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
13049                  * to figure out where the start of the user data is (based upon
13050                  * the system block size) in the data returned by the READ
13051                  * command (which will be based upon the target blocksize). Note
13052                  * that this is only really used if the request is unaligned.
13053                  */
13054                 if (un->un_f_enable_rmw) {
13055                         bsp->mbs_copy_offset = (ssize_t)(first_byte -
13056                             ((offset_t)xp->xb_blkno * un->un_sys_blocksize));
13057                         ASSERT((bsp->mbs_copy_offset >= 0) &&
13058                             (bsp->mbs_copy_offset < un->un_phy_blocksize));
13059                 } else {
13060                         bsp->mbs_copy_offset = (ssize_t)(first_byte -
13061                             ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
13062                         ASSERT((bsp->mbs_copy_offset >= 0) &&
13063                             (bsp->mbs_copy_offset < un->un_tgt_blocksize));
13064                 }
13065 
13066                 shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
13067 
13068                 shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
13069 
13070                 /* Transfer the wmap (if any) to the shadow buf */
13071                 shadow_bsp->mbs_wmp = bsp->mbs_wmp;
13072                 bsp->mbs_wmp = NULL;
13073 
13074                 /*
13075                  * The shadow buf goes on from here in place of the
13076                  * original buf.
13077                  */
13078                 shadow_bsp->mbs_orig_bp = bp;
13079                 bp = shadow_bp;
13080         }
13081 
13082         SD_INFO(SD_LOG_IO_RMMEDIA, un,
13083             "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
13084         SD_INFO(SD_LOG_IO_RMMEDIA, un,
13085             "sd_mapblocksize_iostart: tgt request len:0x%x\n",
13086             request_bytes);
13087         SD_INFO(SD_LOG_IO_RMMEDIA, un,
13088             "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
13089 
13090 done:
13091         SD_NEXT_IOSTART(index, un, bp);
13092 
13093         SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13094             "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
13095 }
13096 
13097 
13098 /*
13099  *    Function: sd_mapblocksize_iodone
13100  *
13101  * Description: Completion side processing for block-size mapping.
13102  *
13103  *     Context: May be called under interrupt context
13104  */
13105 
13106 static void
13107 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
13108 {
13109         struct sd_mapblocksize_info     *bsp;
13110         struct sd_xbuf  *xp;
13111         struct sd_xbuf  *orig_xp;       /* sd_xbuf for the original buf */
13112         struct buf      *orig_bp;       /* ptr to the original buf */
13113         offset_t        shadow_end;
13114         offset_t        request_end;
13115         offset_t        shadow_start;
13116         ssize_t         copy_offset;
13117         size_t          copy_length;
13118         size_t          shortfall;
13119         uint_t          is_write;       /* TRUE if this bp is a WRITE */
13120         uint_t          has_wmap;       /* TRUE is this bp has a wmap */
13121 
13122         ASSERT(un != NULL);
13123         ASSERT(bp != NULL);
13124 
13125         SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13126             "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
13127 
13128         /*
13129          * There is no shadow buf or layer-private data if the target is
13130          * using un->un_sys_blocksize as its block size or if bcount == 0.
13131          */
13132         if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) ||
13133             (bp->b_bcount == 0)) {
13134                 goto exit;
13135         }
13136 
13137         xp = SD_GET_XBUF(bp);
13138         ASSERT(xp != NULL);
13139 
13140         /* Retrieve the pointer to the layer-private data area from the xbuf. */
13141         bsp = xp->xb_private;
13142 
13143         is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
13144         has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
13145 
13146         if (is_write) {
13147                 /*
13148                  * For a WRITE request we must free up the block range that
13149                  * we have locked up.  This holds regardless of whether this is
13150                  * an aligned write request or a read-modify-write request.
13151                  */
13152                 sd_range_unlock(un, bsp->mbs_wmp);
13153                 bsp->mbs_wmp = NULL;
13154         }
13155 
13156         if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
13157                 /*
13158                  * An aligned read or write command will have no shadow buf;
13159                  * there is not much else to do with it.
13160                  */
13161                 goto done;
13162         }
13163 
13164         orig_bp = bsp->mbs_orig_bp;
13165         ASSERT(orig_bp != NULL);
13166         orig_xp = SD_GET_XBUF(orig_bp);
13167         ASSERT(orig_xp != NULL);
13168         ASSERT(!mutex_owned(SD_MUTEX(un)));
13169 
13170         if (!is_write && has_wmap) {
13171                 /*
13172                  * A READ with a wmap means this is the READ phase of a
13173                  * read-modify-write. If an error occurred on the READ then
13174                  * we do not proceed with the WRITE phase or copy any data.
13175                  * Just release the write maps and return with an error.
13176                  */
13177                 if ((bp->b_resid != 0) || (bp->b_error != 0)) {
13178                         orig_bp->b_resid = orig_bp->b_bcount;
13179                         bioerror(orig_bp, bp->b_error);
13180                         sd_range_unlock(un, bsp->mbs_wmp);
13181                         goto freebuf_done;
13182                 }
13183         }
13184 
13185         /*
13186          * Here is where we set up to copy the data from the shadow buf
13187          * into the space associated with the original buf.
13188          *
13189          * To deal with the conversion between block sizes, these
13190          * computations treat the data as an array of bytes, with the
13191          * first byte (byte 0) corresponding to the first byte in the
13192          * first block on the disk.
13193          */
13194 
13195         /*
13196          * shadow_start and shadow_len indicate the location and size of
13197          * the data returned with the shadow IO request.
13198          */
13199         if (un->un_f_enable_rmw) {
13200                 shadow_start  = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno);
13201         } else {
13202                 shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
13203         }
13204         shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
13205 
13206         /*
13207          * copy_offset gives the offset (in bytes) from the start of the first
13208          * block of the READ request to the beginning of the data.  We retrieve
13209          * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
13210          * there by sd_mapblockize_iostart(). copy_length gives the amount of
13211          * data to be copied (in bytes).
13212          */
13213         copy_offset  = bsp->mbs_copy_offset;
13214         if (un->un_f_enable_rmw) {
13215                 ASSERT((copy_offset >= 0) &&
13216                     (copy_offset < un->un_phy_blocksize));
13217         } else {
13218                 ASSERT((copy_offset >= 0) &&
13219                     (copy_offset < un->un_tgt_blocksize));
13220         }
13221 
13222         copy_length  = orig_bp->b_bcount;
13223         request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
13224 
13225         /*
13226          * Set up the resid and error fields of orig_bp as appropriate.
13227          */
13228         if (shadow_end >= request_end) {
13229                 /* We got all the requested data; set resid to zero */
13230                 orig_bp->b_resid = 0;
13231         } else {
13232                 /*
13233                  * We failed to get enough data to fully satisfy the original
13234                  * request. Just copy back whatever data we got and set
13235                  * up the residual and error code as required.
13236                  *
13237                  * 'shortfall' is the amount by which the data received with the
13238                  * shadow buf has "fallen short" of the requested amount.
13239                  */
13240                 shortfall = (size_t)(request_end - shadow_end);
13241 
13242                 if (shortfall > orig_bp->b_bcount) {
13243                         /*
13244                          * We did not get enough data to even partially
13245                          * fulfill the original request.  The residual is
13246                          * equal to the amount requested.
13247                          */
13248                         orig_bp->b_resid = orig_bp->b_bcount;
13249                 } else {
13250                         /*
13251                          * We did not get all the data that we requested
13252                          * from the device, but we will try to return what
13253                          * portion we did get.
13254                          */
13255                         orig_bp->b_resid = shortfall;
13256                 }
13257                 ASSERT(copy_length >= orig_bp->b_resid);
13258                 copy_length  -= orig_bp->b_resid;
13259         }
13260 
13261         /* Propagate the error code from the shadow buf to the original buf */
13262         bioerror(orig_bp, bp->b_error);
13263 
13264         if (is_write) {
13265                 goto freebuf_done;      /* No data copying for a WRITE */
13266         }
13267 
13268         if (has_wmap) {
13269                 /*
13270                  * This is a READ command from the READ phase of a
13271                  * read-modify-write request. We have to copy the data given
13272                  * by the user OVER the data returned by the READ command,
13273                  * then convert the command from a READ to a WRITE and send
13274                  * it back to the target.
13275                  */
13276                 bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
13277                     copy_length);
13278 
13279                 bp->b_flags &= ~((int)B_READ);   /* Convert to a WRITE */
13280 
13281                 /*
13282                  * Dispatch the WRITE command to the taskq thread, which
13283                  * will in turn send the command to the target. When the
13284                  * WRITE command completes, we (sd_mapblocksize_iodone())
13285                  * will get called again as part of the iodone chain
13286                  * processing for it. Note that we will still be dealing
13287                  * with the shadow buf at that point.
13288                  */
13289                 if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
13290                     KM_NOSLEEP) != 0) {
13291                         /*
13292                          * Dispatch was successful so we are done. Return
13293                          * without going any higher up the iodone chain. Do
13294                          * not free up any layer-private data until after the
13295                          * WRITE completes.
13296                          */
13297                         return;
13298                 }
13299 
13300                 /*
13301                  * Dispatch of the WRITE command failed; set up the error
13302                  * condition and send this IO back up the iodone chain.
13303                  */
13304                 bioerror(orig_bp, EIO);
13305                 orig_bp->b_resid = orig_bp->b_bcount;
13306 
13307         } else {
13308                 /*
13309                  * This is a regular READ request (ie, not a RMW). Copy the
13310                  * data from the shadow buf into the original buf. The
13311                  * copy_offset compensates for any "misalignment" between the
13312                  * shadow buf (with its un->un_tgt_blocksize blocks) and the
13313                  * original buf (with its un->un_sys_blocksize blocks).
13314                  */
13315                 bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
13316                     copy_length);
13317         }
13318 
13319 freebuf_done:
13320 
13321         /*
13322          * At this point we still have both the shadow buf AND the original
13323          * buf to deal with, as well as the layer-private data area in each.
13324          * Local variables are as follows:
13325          *
13326          * bp -- points to shadow buf
13327          * xp -- points to xbuf of shadow buf
13328          * bsp -- points to layer-private data area of shadow buf
13329          * orig_bp -- points to original buf
13330          *
13331          * First free the shadow buf and its associated xbuf, then free the
13332          * layer-private data area from the shadow buf. There is no need to
13333          * restore xb_private in the shadow xbuf.
13334          */
13335         sd_shadow_buf_free(bp);
13336         kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13337 
13338         /*
13339          * Now update the local variables to point to the original buf, xbuf,
13340          * and layer-private area.
13341          */
13342         bp = orig_bp;
13343         xp = SD_GET_XBUF(bp);
13344         ASSERT(xp != NULL);
13345         ASSERT(xp == orig_xp);
13346         bsp = xp->xb_private;
13347         ASSERT(bsp != NULL);
13348 
13349 done:
13350         /*
13351          * Restore xb_private to whatever it was set to by the next higher
13352          * layer in the chain, then free the layer-private data area.
13353          */
13354         xp->xb_private = bsp->mbs_oprivate;
13355         kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13356 
13357 exit:
13358         SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
13359             "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
13360 
13361         SD_NEXT_IODONE(index, un, bp);
13362 }
13363 
13364 
13365 /*
13366  *    Function: sd_checksum_iostart
13367  *
13368  * Description: A stub function for a layer that's currently not used.
13369  *              For now just a placeholder.
13370  *
13371  *     Context: Kernel thread context
13372  */
13373 
13374 static void
13375 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
13376 {
13377         ASSERT(un != NULL);
13378         ASSERT(bp != NULL);
13379         ASSERT(!mutex_owned(SD_MUTEX(un)));
13380         SD_NEXT_IOSTART(index, un, bp);
13381 }
13382 
13383 
13384 /*
13385  *    Function: sd_checksum_iodone
13386  *
13387  * Description: A stub function for a layer that's currently not used.
13388  *              For now just a placeholder.
13389  *
13390  *     Context: May be called under interrupt context
13391  */
13392 
13393 static void
13394 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
13395 {
13396         ASSERT(un != NULL);
13397         ASSERT(bp != NULL);
13398         ASSERT(!mutex_owned(SD_MUTEX(un)));
13399         SD_NEXT_IODONE(index, un, bp);
13400 }
13401 
13402 
13403 /*
13404  *    Function: sd_checksum_uscsi_iostart
13405  *
13406  * Description: A stub function for a layer that's currently not used.
13407  *              For now just a placeholder.
13408  *
13409  *     Context: Kernel thread context
13410  */
13411 
13412 static void
13413 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
13414 {
13415         ASSERT(un != NULL);
13416         ASSERT(bp != NULL);
13417         ASSERT(!mutex_owned(SD_MUTEX(un)));
13418         SD_NEXT_IOSTART(index, un, bp);
13419 }
13420 
13421 
13422 /*
13423  *    Function: sd_checksum_uscsi_iodone
13424  *
13425  * Description: A stub function for a layer that's currently not used.
13426  *              For now just a placeholder.
13427  *
13428  *     Context: May be called under interrupt context
13429  */
13430 
13431 static void
13432 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
13433 {
13434         ASSERT(un != NULL);
13435         ASSERT(bp != NULL);
13436         ASSERT(!mutex_owned(SD_MUTEX(un)));
13437         SD_NEXT_IODONE(index, un, bp);
13438 }
13439 
13440 
13441 /*
13442  *    Function: sd_pm_iostart
13443  *
13444  * Description: iostart-side routine for Power mangement.
13445  *
13446  *     Context: Kernel thread context
13447  */
13448 
13449 static void
13450 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
13451 {
13452         ASSERT(un != NULL);
13453         ASSERT(bp != NULL);
13454         ASSERT(!mutex_owned(SD_MUTEX(un)));
13455         ASSERT(!mutex_owned(&un->un_pm_mutex));
13456 
13457         SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
13458 
13459         if (sd_pm_entry(un) != DDI_SUCCESS) {
13460                 /*
13461                  * Set up to return the failed buf back up the 'iodone'
13462                  * side of the calling chain.
13463                  */
13464                 bioerror(bp, EIO);
13465                 bp->b_resid = bp->b_bcount;
13466 
13467                 SD_BEGIN_IODONE(index, un, bp);
13468 
13469                 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13470                 return;
13471         }
13472 
13473         SD_NEXT_IOSTART(index, un, bp);
13474 
13475         SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13476 }
13477 
13478 
13479 /*
13480  *    Function: sd_pm_iodone
13481  *
13482  * Description: iodone-side routine for power mangement.
13483  *
13484  *     Context: may be called from interrupt context
13485  */
13486 
13487 static void
13488 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
13489 {
13490         ASSERT(un != NULL);
13491         ASSERT(bp != NULL);
13492         ASSERT(!mutex_owned(&un->un_pm_mutex));
13493 
13494         SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
13495 
13496         /*
13497          * After attach the following flag is only read, so don't
13498          * take the penalty of acquiring a mutex for it.
13499          */
13500         if (un->un_f_pm_is_enabled == TRUE) {
13501                 sd_pm_exit(un);
13502         }
13503 
13504         SD_NEXT_IODONE(index, un, bp);
13505 
13506         SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
13507 }
13508 
13509 
13510 /*
13511  *    Function: sd_core_iostart
13512  *
13513  * Description: Primary driver function for enqueuing buf(9S) structs from
13514  *              the system and initiating IO to the target device
13515  *
13516  *     Context: Kernel thread context. Can sleep.
13517  *
13518  * Assumptions:  - The given xp->xb_blkno is absolute
13519  *                 (ie, relative to the start of the device).
13520  *               - The IO is to be done using the native blocksize of
13521  *                 the device, as specified in un->un_tgt_blocksize.
13522  */
13523 /* ARGSUSED */
13524 static void
13525 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
13526 {
13527         struct sd_xbuf *xp;
13528 
13529         ASSERT(un != NULL);
13530         ASSERT(bp != NULL);
13531         ASSERT(!mutex_owned(SD_MUTEX(un)));
13532         ASSERT(bp->b_resid == 0);
13533 
13534         SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
13535 
13536         xp = SD_GET_XBUF(bp);
13537         ASSERT(xp != NULL);
13538 
13539         mutex_enter(SD_MUTEX(un));
13540 
13541         /*
13542          * If we are currently in the failfast state, fail any new IO
13543          * that has B_FAILFAST set, then return.
13544          */
13545         if ((bp->b_flags & B_FAILFAST) &&
13546             (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
13547                 mutex_exit(SD_MUTEX(un));
13548                 bioerror(bp, EIO);
13549                 bp->b_resid = bp->b_bcount;
13550                 SD_BEGIN_IODONE(index, un, bp);
13551                 return;
13552         }
13553 
13554         if (SD_IS_DIRECT_PRIORITY(xp)) {
13555                 /*
13556                  * Priority command -- transport it immediately.
13557                  *
13558                  * Note: We may want to assert that USCSI_DIAGNOSE is set,
13559                  * because all direct priority commands should be associated
13560                  * with error recovery actions which we don't want to retry.
13561                  */
13562                 sd_start_cmds(un, bp);
13563         } else {
13564                 /*
13565                  * Normal command -- add it to the wait queue, then start
13566                  * transporting commands from the wait queue.
13567                  */
13568                 sd_add_buf_to_waitq(un, bp);
13569                 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13570                 sd_start_cmds(un, NULL);
13571         }
13572 
13573         mutex_exit(SD_MUTEX(un));
13574 
13575         SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
13576 }
13577 
13578 
13579 /*
13580  *    Function: sd_init_cdb_limits
13581  *
13582  * Description: This is to handle scsi_pkt initialization differences
13583  *              between the driver platforms.
13584  *
13585  *              Legacy behaviors:
13586  *
13587  *              If the block number or the sector count exceeds the
13588  *              capabilities of a Group 0 command, shift over to a
13589  *              Group 1 command. We don't blindly use Group 1
13590  *              commands because a) some drives (CDC Wren IVs) get a
13591  *              bit confused, and b) there is probably a fair amount
13592  *              of speed difference for a target to receive and decode
13593  *              a 10 byte command instead of a 6 byte command.
13594  *
13595  *              The xfer time difference of 6 vs 10 byte CDBs is
13596  *              still significant so this code is still worthwhile.
13597  *              10 byte CDBs are very inefficient with the fas HBA driver
13598  *              and older disks. Each CDB byte took 1 usec with some
13599  *              popular disks.
13600  *
13601  *     Context: Must be called at attach time
13602  */
13603 
13604 static void
13605 sd_init_cdb_limits(struct sd_lun *un)
13606 {
13607         int hba_cdb_limit;
13608 
13609         /*
13610          * Use CDB_GROUP1 commands for most devices except for
13611          * parallel SCSI fixed drives in which case we get better
13612          * performance using CDB_GROUP0 commands (where applicable).
13613          */
13614         un->un_mincdb = SD_CDB_GROUP1;
13615 #if !defined(__fibre)
13616         if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
13617             !un->un_f_has_removable_media) {
13618                 un->un_mincdb = SD_CDB_GROUP0;
13619         }
13620 #endif
13621 
13622         /*
13623          * Try to read the max-cdb-length supported by HBA.
13624          */
13625         un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
13626         if (0 >= un->un_max_hba_cdb) {
13627                 un->un_max_hba_cdb = CDB_GROUP4;
13628                 hba_cdb_limit = SD_CDB_GROUP4;
13629         } else if (0 < un->un_max_hba_cdb &&
13630             un->un_max_hba_cdb < CDB_GROUP1) {
13631                 hba_cdb_limit = SD_CDB_GROUP0;
13632         } else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
13633             un->un_max_hba_cdb < CDB_GROUP5) {
13634                 hba_cdb_limit = SD_CDB_GROUP1;
13635         } else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
13636             un->un_max_hba_cdb < CDB_GROUP4) {
13637                 hba_cdb_limit = SD_CDB_GROUP5;
13638         } else {
13639                 hba_cdb_limit = SD_CDB_GROUP4;
13640         }
13641 
13642         /*
13643          * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
13644          * commands for fixed disks unless we are building for a 32 bit
13645          * kernel.
13646          */
13647 #ifdef _LP64
13648         un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13649             min(hba_cdb_limit, SD_CDB_GROUP4);
13650 #else
13651         un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13652             min(hba_cdb_limit, SD_CDB_GROUP1);
13653 #endif
13654 
13655         un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
13656             ? sizeof (struct scsi_arq_status) : 1);
13657         if (!ISCD(un))
13658                 un->un_cmd_timeout = (ushort_t)sd_io_time;
13659         un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
13660 }
13661 
13662 
13663 /*
13664  *    Function: sd_initpkt_for_buf
13665  *
13666  * Description: Allocate and initialize for transport a scsi_pkt struct,
13667  *              based upon the info specified in the given buf struct.
13668  *
13669  *              Assumes the xb_blkno in the request is absolute (ie,
13670  *              relative to the start of the device (NOT partition!).
13671  *              Also assumes that the request is using the native block
13672  *              size of the device (as returned by the READ CAPACITY
13673  *              command).
13674  *
13675  * Return Code: SD_PKT_ALLOC_SUCCESS
13676  *              SD_PKT_ALLOC_FAILURE
13677  *              SD_PKT_ALLOC_FAILURE_NO_DMA
13678  *              SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13679  *
13680  *     Context: Kernel thread and may be called from software interrupt context
13681  *              as part of a sdrunout callback. This function may not block or
13682  *              call routines that block
13683  */
13684 
13685 static int
13686 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
13687 {
13688         struct sd_xbuf  *xp;
13689         struct scsi_pkt *pktp = NULL;
13690         struct sd_lun   *un;
13691         size_t          blockcount;
13692         daddr_t         startblock;
13693         int             rval;
13694         int             cmd_flags;
13695 
13696         ASSERT(bp != NULL);
13697         ASSERT(pktpp != NULL);
13698         xp = SD_GET_XBUF(bp);
13699         ASSERT(xp != NULL);
13700         un = SD_GET_UN(bp);
13701         ASSERT(un != NULL);
13702         ASSERT(mutex_owned(SD_MUTEX(un)));
13703         ASSERT(bp->b_resid == 0);
13704 
13705         SD_TRACE(SD_LOG_IO_CORE, un,
13706             "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13707 
13708         mutex_exit(SD_MUTEX(un));
13709 
13710 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */
13711         if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13712                 /*
13713                  * Already have a scsi_pkt -- just need DMA resources.
13714                  * We must recompute the CDB in case the mapping returns
13715                  * a nonzero pkt_resid.
13716                  * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13717                  * that is being retried, the unmap/remap of the DMA resouces
13718                  * will result in the entire transfer starting over again
13719                  * from the very first block.
13720                  */
13721                 ASSERT(xp->xb_pktp != NULL);
13722                 pktp = xp->xb_pktp;
13723         } else {
13724                 pktp = NULL;
13725         }
13726 #endif /* __i386 || __amd64 */
13727 
13728         startblock = xp->xb_blkno;   /* Absolute block num. */
13729         blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13730 
13731         cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13732 
13733         /*
13734          * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13735          * call scsi_init_pkt, and build the CDB.
13736          */
13737         rval = sd_setup_rw_pkt(un, &pktp, bp,
13738             cmd_flags, sdrunout, (caddr_t)un,
13739             startblock, blockcount);
13740 
13741         if (rval == 0) {
13742                 /*
13743                  * Success.
13744                  *
13745                  * If partial DMA is being used and required for this transfer.
13746                  * set it up here.
13747                  */
13748                 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13749                     (pktp->pkt_resid != 0)) {
13750 
13751                         /*
13752                          * Save the CDB length and pkt_resid for the
13753                          * next xfer
13754                          */
13755                         xp->xb_dma_resid = pktp->pkt_resid;
13756 
13757                         /* rezero resid */
13758                         pktp->pkt_resid = 0;
13759 
13760                 } else {
13761                         xp->xb_dma_resid = 0;
13762                 }
13763 
13764                 pktp->pkt_flags = un->un_tagflags;
13765                 pktp->pkt_time  = un->un_cmd_timeout;
13766                 pktp->pkt_comp  = sdintr;
13767 
13768                 pktp->pkt_private = bp;
13769                 *pktpp = pktp;
13770 
13771                 SD_TRACE(SD_LOG_IO_CORE, un,
13772                     "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13773 
13774 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */
13775                 xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13776 #endif
13777 
13778                 mutex_enter(SD_MUTEX(un));
13779                 return (SD_PKT_ALLOC_SUCCESS);
13780 
13781         }
13782 
13783         /*
13784          * SD_PKT_ALLOC_FAILURE is the only expected failure code
13785          * from sd_setup_rw_pkt.
13786          */
13787         ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13788 
13789         if (rval == SD_PKT_ALLOC_FAILURE) {
13790                 *pktpp = NULL;
13791                 /*
13792                  * Set the driver state to RWAIT to indicate the driver
13793                  * is waiting on resource allocations. The driver will not
13794                  * suspend, pm_suspend, or detatch while the state is RWAIT.
13795                  */
13796                 mutex_enter(SD_MUTEX(un));
13797                 New_state(un, SD_STATE_RWAIT);
13798 
13799                 SD_ERROR(SD_LOG_IO_CORE, un,
13800                     "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13801 
13802                 if ((bp->b_flags & B_ERROR) != 0) {
13803                         return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13804                 }
13805                 return (SD_PKT_ALLOC_FAILURE);
13806         } else {
13807                 /*
13808                  * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13809                  *
13810                  * This should never happen.  Maybe someone messed with the
13811                  * kernel's minphys?
13812                  */
13813                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13814                     "Request rejected: too large for CDB: "
13815                     "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13816                 SD_ERROR(SD_LOG_IO_CORE, un,
13817                     "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13818                 mutex_enter(SD_MUTEX(un));
13819                 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13820 
13821         }
13822 }
13823 
13824 
13825 /*
13826  *    Function: sd_destroypkt_for_buf
13827  *
13828  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13829  *
13830  *     Context: Kernel thread or interrupt context
13831  */
13832 
13833 static void
13834 sd_destroypkt_for_buf(struct buf *bp)
13835 {
13836         ASSERT(bp != NULL);
13837         ASSERT(SD_GET_UN(bp) != NULL);
13838 
13839         SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13840             "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13841 
13842         ASSERT(SD_GET_PKTP(bp) != NULL);
13843         scsi_destroy_pkt(SD_GET_PKTP(bp));
13844 
13845         SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13846             "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13847 }
13848 
13849 /*
13850  *    Function: sd_setup_rw_pkt
13851  *
13852  * Description: Determines appropriate CDB group for the requested LBA
13853  *              and transfer length, calls scsi_init_pkt, and builds
13854  *              the CDB.  Do not use for partial DMA transfers except
13855  *              for the initial transfer since the CDB size must
13856  *              remain constant.
13857  *
13858  *     Context: Kernel thread and may be called from software interrupt
13859  *              context as part of a sdrunout callback. This function may not
13860  *              block or call routines that block
13861  */
13862 
13863 
13864 int
13865 sd_setup_rw_pkt(struct sd_lun *un,
13866     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13867     int (*callback)(caddr_t), caddr_t callback_arg,
13868     diskaddr_t lba, uint32_t blockcount)
13869 {
13870         struct scsi_pkt *return_pktp;
13871         union scsi_cdb *cdbp;
13872         struct sd_cdbinfo *cp = NULL;
13873         int i;
13874 
13875         /*
13876          * See which size CDB to use, based upon the request.
13877          */
13878         for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13879 
13880                 /*
13881                  * Check lba and block count against sd_cdbtab limits.
13882                  * In the partial DMA case, we have to use the same size
13883                  * CDB for all the transfers.  Check lba + blockcount
13884                  * against the max LBA so we know that segment of the
13885                  * transfer can use the CDB we select.
13886                  */
13887                 if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13888                     (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13889 
13890                         /*
13891                          * The command will fit into the CDB type
13892                          * specified by sd_cdbtab[i].
13893                          */
13894                         cp = sd_cdbtab + i;
13895 
13896                         /*
13897                          * Call scsi_init_pkt so we can fill in the
13898                          * CDB.
13899                          */
13900                         return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13901                             bp, cp->sc_grpcode, un->un_status_len, 0,
13902                             flags, callback, callback_arg);
13903 
13904                         if (return_pktp != NULL) {
13905 
13906                                 /*
13907                                  * Return new value of pkt
13908                                  */
13909                                 *pktpp = return_pktp;
13910 
13911                                 /*
13912                                  * To be safe, zero the CDB insuring there is
13913                                  * no leftover data from a previous command.
13914                                  */
13915                                 bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13916 
13917                                 /*
13918                                  * Handle partial DMA mapping
13919                                  */
13920                                 if (return_pktp->pkt_resid != 0) {
13921 
13922                                         /*
13923                                          * Not going to xfer as many blocks as
13924                                          * originally expected
13925                                          */
13926                                         blockcount -=
13927                                             SD_BYTES2TGTBLOCKS(un,
13928                                             return_pktp->pkt_resid);
13929                                 }
13930 
13931                                 cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13932 
13933                                 /*
13934                                  * Set command byte based on the CDB
13935                                  * type we matched.
13936                                  */
13937                                 cdbp->scc_cmd = cp->sc_grpmask |
13938                                     ((bp->b_flags & B_READ) ?
13939                                     SCMD_READ : SCMD_WRITE);
13940 
13941                                 SD_FILL_SCSI1_LUN(un, return_pktp);
13942 
13943                                 /*
13944                                  * Fill in LBA and length
13945                                  */
13946                                 ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13947                                     (cp->sc_grpcode == CDB_GROUP4) ||
13948                                     (cp->sc_grpcode == CDB_GROUP0) ||
13949                                     (cp->sc_grpcode == CDB_GROUP5));
13950 
13951                                 if (cp->sc_grpcode == CDB_GROUP1) {
13952                                         FORMG1ADDR(cdbp, lba);
13953                                         FORMG1COUNT(cdbp, blockcount);
13954                                         return (0);
13955                                 } else if (cp->sc_grpcode == CDB_GROUP4) {
13956                                         FORMG4LONGADDR(cdbp, lba);
13957                                         FORMG4COUNT(cdbp, blockcount);
13958                                         return (0);
13959                                 } else if (cp->sc_grpcode == CDB_GROUP0) {
13960                                         FORMG0ADDR(cdbp, lba);
13961                                         FORMG0COUNT(cdbp, blockcount);
13962                                         return (0);
13963                                 } else if (cp->sc_grpcode == CDB_GROUP5) {
13964                                         FORMG5ADDR(cdbp, lba);
13965                                         FORMG5COUNT(cdbp, blockcount);
13966                                         return (0);
13967                                 }
13968 
13969                                 /*
13970                                  * It should be impossible to not match one
13971                                  * of the CDB types above, so we should never
13972                                  * reach this point.  Set the CDB command byte
13973                                  * to test-unit-ready to avoid writing
13974                                  * to somewhere we don't intend.
13975                                  */
13976                                 cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13977                                 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13978                         } else {
13979                                 /*
13980                                  * Couldn't get scsi_pkt
13981                                  */
13982                                 return (SD_PKT_ALLOC_FAILURE);
13983                         }
13984                 }
13985         }
13986 
13987         /*
13988          * None of the available CDB types were suitable.  This really
13989          * should never happen:  on a 64 bit system we support
13990          * READ16/WRITE16 which will hold an entire 64 bit disk address
13991          * and on a 32 bit system we will refuse to bind to a device
13992          * larger than 2TB so addresses will never be larger than 32 bits.
13993          */
13994         return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13995 }
13996 
13997 /*
13998  *    Function: sd_setup_next_rw_pkt
13999  *
14000  * Description: Setup packet for partial DMA transfers, except for the
14001  *              initial transfer.  sd_setup_rw_pkt should be used for
14002  *              the initial transfer.
14003  *
14004  *     Context: Kernel thread and may be called from interrupt context.
14005  */
14006 
14007 int
14008 sd_setup_next_rw_pkt(struct sd_lun *un,
14009     struct scsi_pkt *pktp, struct buf *bp,
14010     diskaddr_t lba, uint32_t blockcount)
14011 {
14012         uchar_t com;
14013         union scsi_cdb *cdbp;
14014         uchar_t cdb_group_id;
14015 
14016         ASSERT(pktp != NULL);
14017         ASSERT(pktp->pkt_cdbp != NULL);
14018 
14019         cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
14020         com = cdbp->scc_cmd;
14021         cdb_group_id = CDB_GROUPID(com);
14022 
14023         ASSERT((cdb_group_id == CDB_GROUPID_0) ||
14024             (cdb_group_id == CDB_GROUPID_1) ||
14025             (cdb_group_id == CDB_GROUPID_4) ||
14026             (cdb_group_id == CDB_GROUPID_5));
14027 
14028         /*
14029          * Move pkt to the next portion of the xfer.
14030          * func is NULL_FUNC so we do not have to release
14031          * the disk mutex here.
14032          */
14033         if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
14034             NULL_FUNC, NULL) == pktp) {
14035                 /* Success.  Handle partial DMA */
14036                 if (pktp->pkt_resid != 0) {
14037                         blockcount -=
14038                             SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
14039                 }
14040 
14041                 cdbp->scc_cmd = com;
14042                 SD_FILL_SCSI1_LUN(un, pktp);
14043                 if (cdb_group_id == CDB_GROUPID_1) {
14044                         FORMG1ADDR(cdbp, lba);
14045                         FORMG1COUNT(cdbp, blockcount);
14046                         return (0);
14047                 } else if (cdb_group_id == CDB_GROUPID_4) {
14048                         FORMG4LONGADDR(cdbp, lba);
14049                         FORMG4COUNT(cdbp, blockcount);
14050                         return (0);
14051                 } else if (cdb_group_id == CDB_GROUPID_0) {
14052                         FORMG0ADDR(cdbp, lba);
14053                         FORMG0COUNT(cdbp, blockcount);
14054                         return (0);
14055                 } else if (cdb_group_id == CDB_GROUPID_5) {
14056                         FORMG5ADDR(cdbp, lba);
14057                         FORMG5COUNT(cdbp, blockcount);
14058                         return (0);
14059                 }
14060 
14061                 /* Unreachable */
14062                 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
14063         }
14064 
14065         /*
14066          * Error setting up next portion of cmd transfer.
14067          * Something is definitely very wrong and this
14068          * should not happen.
14069          */
14070         return (SD_PKT_ALLOC_FAILURE);
14071 }
14072 
14073 /*
14074  *    Function: sd_initpkt_for_uscsi
14075  *
14076  * Description: Allocate and initialize for transport a scsi_pkt struct,
14077  *              based upon the info specified in the given uscsi_cmd struct.
14078  *
14079  * Return Code: SD_PKT_ALLOC_SUCCESS
14080  *              SD_PKT_ALLOC_FAILURE
14081  *              SD_PKT_ALLOC_FAILURE_NO_DMA
14082  *              SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
14083  *
14084  *     Context: Kernel thread and may be called from software interrupt context
14085  *              as part of a sdrunout callback. This function may not block or
14086  *              call routines that block
14087  */
14088 
14089 static int
14090 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
14091 {
14092         struct uscsi_cmd *uscmd;
14093         struct sd_xbuf  *xp;
14094         struct scsi_pkt *pktp;
14095         struct sd_lun   *un;
14096         uint32_t        flags = 0;
14097 
14098         ASSERT(bp != NULL);
14099         ASSERT(pktpp != NULL);
14100         xp = SD_GET_XBUF(bp);
14101         ASSERT(xp != NULL);
14102         un = SD_GET_UN(bp);
14103         ASSERT(un != NULL);
14104         ASSERT(mutex_owned(SD_MUTEX(un)));
14105 
14106         /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14107         uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14108         ASSERT(uscmd != NULL);
14109 
14110         SD_TRACE(SD_LOG_IO_CORE, un,
14111             "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
14112 
14113         /*
14114          * Allocate the scsi_pkt for the command.
14115          * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
14116          *       during scsi_init_pkt time and will continue to use the
14117          *       same path as long as the same scsi_pkt is used without
14118          *       intervening scsi_dma_free(). Since uscsi command does
14119          *       not call scsi_dmafree() before retry failed command, it
14120          *       is necessary to make sure PKT_DMA_PARTIAL flag is NOT
14121          *       set such that scsi_vhci can use other available path for
14122          *       retry. Besides, ucsci command does not allow DMA breakup,
14123          *       so there is no need to set PKT_DMA_PARTIAL flag.
14124          */
14125         if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
14126                 pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
14127                     ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
14128                     ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
14129                     - sizeof (struct scsi_extended_sense)), 0,
14130                     (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
14131                     sdrunout, (caddr_t)un);
14132         } else {
14133                 pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
14134                     ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
14135                     sizeof (struct scsi_arq_status), 0,
14136                     (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
14137                     sdrunout, (caddr_t)un);
14138         }
14139 
14140         if (pktp == NULL) {
14141                 *pktpp = NULL;
14142                 /*
14143                  * Set the driver state to RWAIT to indicate the driver
14144                  * is waiting on resource allocations. The driver will not
14145                  * suspend, pm_suspend, or detatch while the state is RWAIT.
14146                  */
14147                 New_state(un, SD_STATE_RWAIT);
14148 
14149                 SD_ERROR(SD_LOG_IO_CORE, un,
14150                     "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
14151 
14152                 if ((bp->b_flags & B_ERROR) != 0) {
14153                         return (SD_PKT_ALLOC_FAILURE_NO_DMA);
14154                 }
14155                 return (SD_PKT_ALLOC_FAILURE);
14156         }
14157 
14158         /*
14159          * We do not do DMA breakup for USCSI commands, so return failure
14160          * here if all the needed DMA resources were not allocated.
14161          */
14162         if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
14163             (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
14164                 scsi_destroy_pkt(pktp);
14165                 SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
14166                     "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
14167                 return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
14168         }
14169 
14170         /* Init the cdb from the given uscsi struct */
14171         (void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
14172             uscmd->uscsi_cdb[0], 0, 0, 0);
14173 
14174         SD_FILL_SCSI1_LUN(un, pktp);
14175 
14176         /*
14177          * Set up the optional USCSI flags. See the uscsi (7I) man page
14178          * for listing of the supported flags.
14179          */
14180 
14181         if (uscmd->uscsi_flags & USCSI_SILENT) {
14182                 flags |= FLAG_SILENT;
14183         }
14184 
14185         if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
14186                 flags |= FLAG_DIAGNOSE;
14187         }
14188 
14189         if (uscmd->uscsi_flags & USCSI_ISOLATE) {
14190                 flags |= FLAG_ISOLATE;
14191         }
14192 
14193         if (un->un_f_is_fibre == FALSE) {
14194                 if (uscmd->uscsi_flags & USCSI_RENEGOT) {
14195                         flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
14196                 }
14197         }
14198 
14199         /*
14200          * Set the pkt flags here so we save time later.
14201          * Note: These flags are NOT in the uscsi man page!!!
14202          */
14203         if (uscmd->uscsi_flags & USCSI_HEAD) {
14204                 flags |= FLAG_HEAD;
14205         }
14206 
14207         if (uscmd->uscsi_flags & USCSI_NOINTR) {
14208                 flags |= FLAG_NOINTR;
14209         }
14210 
14211         /*
14212          * For tagged queueing, things get a bit complicated.
14213          * Check first for head of queue and last for ordered queue.
14214          * If neither head nor order, use the default driver tag flags.
14215          */
14216         if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
14217                 if (uscmd->uscsi_flags & USCSI_HTAG) {
14218                         flags |= FLAG_HTAG;
14219                 } else if (uscmd->uscsi_flags & USCSI_OTAG) {
14220                         flags |= FLAG_OTAG;
14221                 } else {
14222                         flags |= un->un_tagflags & FLAG_TAGMASK;
14223                 }
14224         }
14225 
14226         if (uscmd->uscsi_flags & USCSI_NODISCON) {
14227                 flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
14228         }
14229 
14230         pktp->pkt_flags = flags;
14231 
14232         /* Transfer uscsi information to scsi_pkt */
14233         (void) scsi_uscsi_pktinit(uscmd, pktp);
14234 
14235         /* Copy the caller's CDB into the pkt... */
14236         bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
14237 
14238         if (uscmd->uscsi_timeout == 0) {
14239                 pktp->pkt_time = un->un_uscsi_timeout;
14240         } else {
14241                 pktp->pkt_time = uscmd->uscsi_timeout;
14242         }
14243 
14244         /* need it later to identify USCSI request in sdintr */
14245         xp->xb_pkt_flags |= SD_XB_USCSICMD;
14246 
14247         xp->xb_sense_resid = uscmd->uscsi_rqresid;
14248 
14249         pktp->pkt_private = bp;
14250         pktp->pkt_comp = sdintr;
14251         *pktpp = pktp;
14252 
14253         SD_TRACE(SD_LOG_IO_CORE, un,
14254             "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
14255 
14256         return (SD_PKT_ALLOC_SUCCESS);
14257 }
14258 
14259 
14260 /*
14261  *    Function: sd_destroypkt_for_uscsi
14262  *
14263  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
14264  *              IOs.. Also saves relevant info into the associated uscsi_cmd
14265  *              struct.
14266  *
14267  *     Context: May be called under interrupt context
14268  */
14269 
14270 static void
14271 sd_destroypkt_for_uscsi(struct buf *bp)
14272 {
14273         struct uscsi_cmd *uscmd;
14274         struct sd_xbuf  *xp;
14275         struct scsi_pkt *pktp;
14276         struct sd_lun   *un;
14277         struct sd_uscsi_info *suip;
14278 
14279         ASSERT(bp != NULL);
14280         xp = SD_GET_XBUF(bp);
14281         ASSERT(xp != NULL);
14282         un = SD_GET_UN(bp);
14283         ASSERT(un != NULL);
14284         ASSERT(!mutex_owned(SD_MUTEX(un)));
14285         pktp = SD_GET_PKTP(bp);
14286         ASSERT(pktp != NULL);
14287 
14288         SD_TRACE(SD_LOG_IO_CORE, un,
14289             "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
14290 
14291         /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14292         uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14293         ASSERT(uscmd != NULL);
14294 
14295         /* Save the status and the residual into the uscsi_cmd struct */
14296         uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
14297         uscmd->uscsi_resid  = bp->b_resid;
14298 
14299         /* Transfer scsi_pkt information to uscsi */
14300         (void) scsi_uscsi_pktfini(pktp, uscmd);
14301 
14302         /*
14303          * If enabled, copy any saved sense data into the area specified
14304          * by the uscsi command.
14305          */
14306         if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
14307             (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
14308                 /*
14309                  * Note: uscmd->uscsi_rqbuf should always point to a buffer
14310                  * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
14311                  */
14312                 uscmd->uscsi_rqstatus = xp->xb_sense_status;
14313                 uscmd->uscsi_rqresid  = xp->xb_sense_resid;
14314                 if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
14315                         bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
14316                             MAX_SENSE_LENGTH);
14317                 } else {
14318                         bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
14319                             SENSE_LENGTH);
14320                 }
14321         }
14322         /*
14323          * The following assignments are for SCSI FMA.
14324          */
14325         ASSERT(xp->xb_private != NULL);
14326         suip = (struct sd_uscsi_info *)xp->xb_private;
14327         suip->ui_pkt_reason = pktp->pkt_reason;
14328         suip->ui_pkt_state = pktp->pkt_state;
14329         suip->ui_pkt_statistics = pktp->pkt_statistics;
14330         suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
14331 
14332         /* We are done with the scsi_pkt; free it now */
14333         ASSERT(SD_GET_PKTP(bp) != NULL);
14334         scsi_destroy_pkt(SD_GET_PKTP(bp));
14335 
14336         SD_TRACE(SD_LOG_IO_CORE, un,
14337             "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
14338 }
14339 
14340 
14341 /*
14342  *    Function: sd_bioclone_alloc
14343  *
14344  * Description: Allocate a buf(9S) and init it as per the given buf
14345  *              and the various arguments.  The associated sd_xbuf
14346  *              struct is (nearly) duplicated.  The struct buf *bp
14347  *              argument is saved in new_xp->xb_private.
14348  *
14349  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14350  *              datalen - size of data area for the shadow bp
14351  *              blkno - starting LBA
14352  *              func - function pointer for b_iodone in the shadow buf. (May
14353  *                      be NULL if none.)
14354  *
14355  * Return Code: Pointer to allocates buf(9S) struct
14356  *
14357  *     Context: Can sleep.
14358  */
14359 
14360 static struct buf *
14361 sd_bioclone_alloc(struct buf *bp, size_t datalen,
14362         daddr_t blkno, int (*func)(struct buf *))
14363 {
14364         struct  sd_lun  *un;
14365         struct  sd_xbuf *xp;
14366         struct  sd_xbuf *new_xp;
14367         struct  buf     *new_bp;
14368 
14369         ASSERT(bp != NULL);
14370         xp = SD_GET_XBUF(bp);
14371         ASSERT(xp != NULL);
14372         un = SD_GET_UN(bp);
14373         ASSERT(un != NULL);
14374         ASSERT(!mutex_owned(SD_MUTEX(un)));
14375 
14376         new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
14377             NULL, KM_SLEEP);
14378 
14379         new_bp->b_lblkno     = blkno;
14380 
14381         /*
14382          * Allocate an xbuf for the shadow bp and copy the contents of the
14383          * original xbuf into it.
14384          */
14385         new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14386         bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14387 
14388         /*
14389          * The given bp is automatically saved in the xb_private member
14390          * of the new xbuf.  Callers are allowed to depend on this.
14391          */
14392         new_xp->xb_private = bp;
14393 
14394         new_bp->b_private  = new_xp;
14395 
14396         return (new_bp);
14397 }
14398 
14399 /*
14400  *    Function: sd_shadow_buf_alloc
14401  *
14402  * Description: Allocate a buf(9S) and init it as per the given buf
14403  *              and the various arguments.  The associated sd_xbuf
14404  *              struct is (nearly) duplicated.  The struct buf *bp
14405  *              argument is saved in new_xp->xb_private.
14406  *
14407  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14408  *              datalen - size of data area for the shadow bp
14409  *              bflags - B_READ or B_WRITE (pseudo flag)
14410  *              blkno - starting LBA
14411  *              func - function pointer for b_iodone in the shadow buf. (May
14412  *                      be NULL if none.)
14413  *
14414  * Return Code: Pointer to allocates buf(9S) struct
14415  *
14416  *     Context: Can sleep.
14417  */
14418 
14419 static struct buf *
14420 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
14421         daddr_t blkno, int (*func)(struct buf *))
14422 {
14423         struct  sd_lun  *un;
14424         struct  sd_xbuf *xp;
14425         struct  sd_xbuf *new_xp;
14426         struct  buf     *new_bp;
14427 
14428         ASSERT(bp != NULL);
14429         xp = SD_GET_XBUF(bp);
14430         ASSERT(xp != NULL);
14431         un = SD_GET_UN(bp);
14432         ASSERT(un != NULL);
14433         ASSERT(!mutex_owned(SD_MUTEX(un)));
14434 
14435         if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
14436                 bp_mapin(bp);
14437         }
14438 
14439         bflags &= (B_READ | B_WRITE);
14440 #if defined(__i386) || defined(__amd64)
14441         new_bp = getrbuf(KM_SLEEP);
14442         new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
14443         new_bp->b_bcount = datalen;
14444         new_bp->b_flags = bflags |
14445             (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
14446 #else
14447         new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
14448             datalen, bflags, SLEEP_FUNC, NULL);
14449 #endif
14450         new_bp->av_forw      = NULL;
14451         new_bp->av_back      = NULL;
14452         new_bp->b_dev        = bp->b_dev;
14453         new_bp->b_blkno      = blkno;
14454         new_bp->b_iodone = func;
14455         new_bp->b_edev       = bp->b_edev;
14456         new_bp->b_resid      = 0;
14457 
14458         /* We need to preserve the B_FAILFAST flag */
14459         if (bp->b_flags & B_FAILFAST) {
14460                 new_bp->b_flags |= B_FAILFAST;
14461         }
14462 
14463         /*
14464          * Allocate an xbuf for the shadow bp and copy the contents of the
14465          * original xbuf into it.
14466          */
14467         new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14468         bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14469 
14470         /* Need later to copy data between the shadow buf & original buf! */
14471         new_xp->xb_pkt_flags |= PKT_CONSISTENT;
14472 
14473         /*
14474          * The given bp is automatically saved in the xb_private member
14475          * of the new xbuf.  Callers are allowed to depend on this.
14476          */
14477         new_xp->xb_private = bp;
14478 
14479         new_bp->b_private  = new_xp;
14480 
14481         return (new_bp);
14482 }
14483 
14484 /*
14485  *    Function: sd_bioclone_free
14486  *
14487  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
14488  *              in the larger than partition operation.
14489  *
14490  *     Context: May be called under interrupt context
14491  */
14492 
14493 static void
14494 sd_bioclone_free(struct buf *bp)
14495 {
14496         struct sd_xbuf  *xp;
14497 
14498         ASSERT(bp != NULL);
14499         xp = SD_GET_XBUF(bp);
14500         ASSERT(xp != NULL);
14501 
14502         /*
14503          * Call bp_mapout() before freeing the buf,  in case a lower
14504          * layer or HBA  had done a bp_mapin().  we must do this here
14505          * as we are the "originator" of the shadow buf.
14506          */
14507         bp_mapout(bp);
14508 
14509         /*
14510          * Null out b_iodone before freeing the bp, to ensure that the driver
14511          * never gets confused by a stale value in this field. (Just a little
14512          * extra defensiveness here.)
14513          */
14514         bp->b_iodone = NULL;
14515 
14516         freerbuf(bp);
14517 
14518         kmem_free(xp, sizeof (struct sd_xbuf));
14519 }
14520 
14521 /*
14522  *    Function: sd_shadow_buf_free
14523  *
14524  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
14525  *
14526  *     Context: May be called under interrupt context
14527  */
14528 
14529 static void
14530 sd_shadow_buf_free(struct buf *bp)
14531 {
14532         struct sd_xbuf  *xp;
14533 
14534         ASSERT(bp != NULL);
14535         xp = SD_GET_XBUF(bp);
14536         ASSERT(xp != NULL);
14537 
14538 #if defined(__sparc)
14539         /*
14540          * Call bp_mapout() before freeing the buf,  in case a lower
14541          * layer or HBA  had done a bp_mapin().  we must do this here
14542          * as we are the "originator" of the shadow buf.
14543          */
14544         bp_mapout(bp);
14545 #endif
14546 
14547         /*
14548          * Null out b_iodone before freeing the bp, to ensure that the driver
14549          * never gets confused by a stale value in this field. (Just a little
14550          * extra defensiveness here.)
14551          */
14552         bp->b_iodone = NULL;
14553 
14554 #if defined(__i386) || defined(__amd64)
14555         kmem_free(bp->b_un.b_addr, bp->b_bcount);
14556         freerbuf(bp);
14557 #else
14558         scsi_free_consistent_buf(bp);
14559 #endif
14560 
14561         kmem_free(xp, sizeof (struct sd_xbuf));
14562 }
14563 
14564 
14565 /*
14566  *    Function: sd_print_transport_rejected_message
14567  *
14568  * Description: This implements the ludicrously complex rules for printing
14569  *              a "transport rejected" message.  This is to address the
14570  *              specific problem of having a flood of this error message
14571  *              produced when a failover occurs.
14572  *
14573  *     Context: Any.
14574  */
14575 
14576 static void
14577 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
14578         int code)
14579 {
14580         ASSERT(un != NULL);
14581         ASSERT(mutex_owned(SD_MUTEX(un)));
14582         ASSERT(xp != NULL);
14583 
14584         /*
14585          * Print the "transport rejected" message under the following
14586          * conditions:
14587          *
14588          * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
14589          * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
14590          * - If the error code IS a TRAN_FATAL_ERROR, then the message is
14591          *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
14592          *   scsi_transport(9F) (which indicates that the target might have
14593          *   gone off-line).  This uses the un->un_tran_fatal_count
14594          *   count, which is incremented whenever a TRAN_FATAL_ERROR is
14595          *   received, and reset to zero whenver a TRAN_ACCEPT is returned
14596          *   from scsi_transport().
14597          *
14598          * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
14599          * the preceeding cases in order for the message to be printed.
14600          */
14601         if (((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) &&
14602             (SD_FM_LOG(un) == SD_FM_LOG_NSUP)) {
14603                 if ((sd_level_mask & SD_LOGMASK_DIAG) ||
14604                     (code != TRAN_FATAL_ERROR) ||
14605                     (un->un_tran_fatal_count == 1)) {
14606                         switch (code) {
14607                         case TRAN_BADPKT:
14608                                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14609                                     "transport rejected bad packet\n");
14610                                 break;
14611                         case TRAN_FATAL_ERROR:
14612                                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14613                                     "transport rejected fatal error\n");
14614                                 break;
14615                         default:
14616                                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14617                                     "transport rejected (%d)\n", code);
14618                                 break;
14619                         }
14620                 }
14621         }
14622 }
14623 
14624 
14625 /*
14626  *    Function: sd_add_buf_to_waitq
14627  *
14628  * Description: Add the given buf(9S) struct to the wait queue for the
14629  *              instance.  If sorting is enabled, then the buf is added
14630  *              to the queue via an elevator sort algorithm (a la
14631  *              disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
14632  *              If sorting is not enabled, then the buf is just added
14633  *              to the end of the wait queue.
14634  *
14635  * Return Code: void
14636  *
14637  *     Context: Does not sleep/block, therefore technically can be called
14638  *              from any context.  However if sorting is enabled then the
14639  *              execution time is indeterminate, and may take long if
14640  *              the wait queue grows large.
14641  */
14642 
14643 static void
14644 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
14645 {
14646         struct buf *ap;
14647 
14648         ASSERT(bp != NULL);
14649         ASSERT(un != NULL);
14650         ASSERT(mutex_owned(SD_MUTEX(un)));
14651 
14652         /* If the queue is empty, add the buf as the only entry & return. */
14653         if (un->un_waitq_headp == NULL) {
14654                 ASSERT(un->un_waitq_tailp == NULL);
14655                 un->un_waitq_headp = un->un_waitq_tailp = bp;
14656                 bp->av_forw = NULL;
14657                 return;
14658         }
14659 
14660         ASSERT(un->un_waitq_tailp != NULL);
14661 
14662         /*
14663          * If sorting is disabled, just add the buf to the tail end of
14664          * the wait queue and return.
14665          */
14666         if (un->un_f_disksort_disabled || un->un_f_enable_rmw) {
14667                 un->un_waitq_tailp->av_forw = bp;
14668                 un->un_waitq_tailp = bp;
14669                 bp->av_forw = NULL;
14670                 return;
14671         }
14672 
14673         /*
14674          * Sort thru the list of requests currently on the wait queue
14675          * and add the new buf request at the appropriate position.
14676          *
14677          * The un->un_waitq_headp is an activity chain pointer on which
14678          * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
14679          * first queue holds those requests which are positioned after
14680          * the current SD_GET_BLKNO() (in the first request); the second holds
14681          * requests which came in after their SD_GET_BLKNO() number was passed.
14682          * Thus we implement a one way scan, retracting after reaching
14683          * the end of the drive to the first request on the second
14684          * queue, at which time it becomes the first queue.
14685          * A one-way scan is natural because of the way UNIX read-ahead
14686          * blocks are allocated.
14687          *
14688          * If we lie after the first request, then we must locate the
14689          * second request list and add ourselves to it.
14690          */
14691         ap = un->un_waitq_headp;
14692         if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
14693                 while (ap->av_forw != NULL) {
14694                         /*
14695                          * Look for an "inversion" in the (normally
14696                          * ascending) block numbers. This indicates
14697                          * the start of the second request list.
14698                          */
14699                         if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14700                                 /*
14701                                  * Search the second request list for the
14702                                  * first request at a larger block number.
14703                                  * We go before that; however if there is
14704                                  * no such request, we go at the end.
14705                                  */
14706                                 do {
14707                                         if (SD_GET_BLKNO(bp) <
14708                                             SD_GET_BLKNO(ap->av_forw)) {
14709                                                 goto insert;
14710                                         }
14711                                         ap = ap->av_forw;
14712                                 } while (ap->av_forw != NULL);
14713                                 goto insert;            /* after last */
14714                         }
14715                         ap = ap->av_forw;
14716                 }
14717 
14718                 /*
14719                  * No inversions... we will go after the last, and
14720                  * be the first request in the second request list.
14721                  */
14722                 goto insert;
14723         }
14724 
14725         /*
14726          * Request is at/after the current request...
14727          * sort in the first request list.
14728          */
14729         while (ap->av_forw != NULL) {
14730                 /*
14731                  * We want to go after the current request (1) if
14732                  * there is an inversion after it (i.e. it is the end
14733                  * of the first request list), or (2) if the next
14734                  * request is a larger block no. than our request.
14735                  */
14736                 if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14737                     (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14738                         goto insert;
14739                 }
14740                 ap = ap->av_forw;
14741         }
14742 
14743         /*
14744          * Neither a second list nor a larger request, therefore
14745          * we go at the end of the first list (which is the same
14746          * as the end of the whole schebang).
14747          */
14748 insert:
14749         bp->av_forw = ap->av_forw;
14750         ap->av_forw = bp;
14751 
14752         /*
14753          * If we inserted onto the tail end of the waitq, make sure the
14754          * tail pointer is updated.
14755          */
14756         if (ap == un->un_waitq_tailp) {
14757                 un->un_waitq_tailp = bp;
14758         }
14759 }
14760 
14761 
14762 /*
14763  *    Function: sd_start_cmds
14764  *
14765  * Description: Remove and transport cmds from the driver queues.
14766  *
14767  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14768  *
14769  *              immed_bp - ptr to a buf to be transported immediately. Only
14770  *              the immed_bp is transported; bufs on the waitq are not
14771  *              processed and the un_retry_bp is not checked.  If immed_bp is
14772  *              NULL, then normal queue processing is performed.
14773  *
14774  *     Context: May be called from kernel thread context, interrupt context,
14775  *              or runout callback context. This function may not block or
14776  *              call routines that block.
14777  */
14778 
14779 static void
14780 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14781 {
14782         struct  sd_xbuf *xp;
14783         struct  buf     *bp;
14784         void    (*statp)(kstat_io_t *);
14785 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */
14786         void    (*saved_statp)(kstat_io_t *);
14787 #endif
14788         int     rval;
14789         struct sd_fm_internal *sfip = NULL;
14790 
14791         ASSERT(un != NULL);
14792         ASSERT(mutex_owned(SD_MUTEX(un)));
14793         ASSERT(un->un_ncmds_in_transport >= 0);
14794         ASSERT(un->un_throttle >= 0);
14795 
14796         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14797 
14798         do {
14799 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */
14800                 saved_statp = NULL;
14801 #endif
14802 
14803                 /*
14804                  * If we are syncing or dumping, fail the command to
14805                  * avoid recursively calling back into scsi_transport().
14806                  * The dump I/O itself uses a separate code path so this
14807                  * only prevents non-dump I/O from being sent while dumping.
14808                  * File system sync takes place before dumping begins.
14809                  * During panic, filesystem I/O is allowed provided
14810                  * un_in_callback is <= 1.  This is to prevent recursion
14811                  * such as sd_start_cmds -> scsi_transport -> sdintr ->
14812                  * sd_start_cmds and so on.  See panic.c for more information
14813                  * about the states the system can be in during panic.
14814                  */
14815                 if ((un->un_state == SD_STATE_DUMPING) ||
14816                     (ddi_in_panic() && (un->un_in_callback > 1))) {
14817                         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14818                             "sd_start_cmds: panicking\n");
14819                         goto exit;
14820                 }
14821 
14822                 if ((bp = immed_bp) != NULL) {
14823                         /*
14824                          * We have a bp that must be transported immediately.
14825                          * It's OK to transport the immed_bp here without doing
14826                          * the throttle limit check because the immed_bp is
14827                          * always used in a retry/recovery case. This means
14828                          * that we know we are not at the throttle limit by
14829                          * virtue of the fact that to get here we must have
14830                          * already gotten a command back via sdintr(). This also
14831                          * relies on (1) the command on un_retry_bp preventing
14832                          * further commands from the waitq from being issued;
14833                          * and (2) the code in sd_retry_command checking the
14834                          * throttle limit before issuing a delayed or immediate
14835                          * retry. This holds even if the throttle limit is
14836                          * currently ratcheted down from its maximum value.
14837                          */
14838                         statp = kstat_runq_enter;
14839                         if (bp == un->un_retry_bp) {
14840                                 ASSERT((un->un_retry_statp == NULL) ||
14841                                     (un->un_retry_statp == kstat_waitq_enter) ||
14842                                     (un->un_retry_statp ==
14843                                     kstat_runq_back_to_waitq));
14844                                 /*
14845                                  * If the waitq kstat was incremented when
14846                                  * sd_set_retry_bp() queued this bp for a retry,
14847                                  * then we must set up statp so that the waitq
14848                                  * count will get decremented correctly below.
14849                                  * Also we must clear un->un_retry_statp to
14850                                  * ensure that we do not act on a stale value
14851                                  * in this field.
14852                                  */
14853                                 if ((un->un_retry_statp == kstat_waitq_enter) ||
14854                                     (un->un_retry_statp ==
14855                                     kstat_runq_back_to_waitq)) {
14856                                         statp = kstat_waitq_to_runq;
14857                                 }
14858 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */
14859                                 saved_statp = un->un_retry_statp;
14860 #endif
14861                                 un->un_retry_statp = NULL;
14862 
14863                                 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14864                                     "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14865                                     "un_throttle:%d un_ncmds_in_transport:%d\n",
14866                                     un, un->un_retry_bp, un->un_throttle,
14867                                     un->un_ncmds_in_transport);
14868                         } else {
14869                                 SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14870                                     "processing priority bp:0x%p\n", bp);
14871                         }
14872 
14873                 } else if ((bp = un->un_waitq_headp) != NULL) {
14874                         /*
14875                          * A command on the waitq is ready to go, but do not
14876                          * send it if:
14877                          *
14878                          * (1) the throttle limit has been reached, or
14879                          * (2) a retry is pending, or
14880                          * (3) a START_STOP_UNIT callback pending, or
14881                          * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14882                          *      command is pending.
14883                          *
14884                          * For all of these conditions, IO processing will
14885                          * restart after the condition is cleared.
14886                          */
14887                         if (un->un_ncmds_in_transport >= un->un_throttle) {
14888                                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14889                                     "sd_start_cmds: exiting, "
14890                                     "throttle limit reached!\n");
14891                                 goto exit;
14892                         }
14893                         if (un->un_retry_bp != NULL) {
14894                                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14895                                     "sd_start_cmds: exiting, retry pending!\n");
14896                                 goto exit;
14897                         }
14898                         if (un->un_startstop_timeid != NULL) {
14899                                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14900                                     "sd_start_cmds: exiting, "
14901                                     "START_STOP pending!\n");
14902                                 goto exit;
14903                         }
14904                         if (un->un_direct_priority_timeid != NULL) {
14905                                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14906                                     "sd_start_cmds: exiting, "
14907                                     "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14908                                 goto exit;
14909                         }
14910 
14911                         /* Dequeue the command */
14912                         un->un_waitq_headp = bp->av_forw;
14913                         if (un->un_waitq_headp == NULL) {
14914                                 un->un_waitq_tailp = NULL;
14915                         }
14916                         bp->av_forw = NULL;
14917                         statp = kstat_waitq_to_runq;
14918                         SD_TRACE(SD_LOG_IO_CORE, un,
14919                             "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14920 
14921                 } else {
14922                         /* No work to do so bail out now */
14923                         SD_TRACE(SD_LOG_IO_CORE, un,
14924                             "sd_start_cmds: no more work, exiting!\n");
14925                         goto exit;
14926                 }
14927 
14928                 /*
14929                  * Reset the state to normal. This is the mechanism by which
14930                  * the state transitions from either SD_STATE_RWAIT or
14931                  * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14932                  * If state is SD_STATE_PM_CHANGING then this command is
14933                  * part of the device power control and the state must
14934                  * not be put back to normal. Doing so would would
14935                  * allow new commands to proceed when they shouldn't,
14936                  * the device may be going off.
14937                  */
14938                 if ((un->un_state != SD_STATE_SUSPENDED) &&
14939                     (un->un_state != SD_STATE_PM_CHANGING)) {
14940                         New_state(un, SD_STATE_NORMAL);
14941                 }
14942 
14943                 xp = SD_GET_XBUF(bp);
14944                 ASSERT(xp != NULL);
14945 
14946 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */
14947                 /*
14948                  * Allocate the scsi_pkt if we need one, or attach DMA
14949                  * resources if we have a scsi_pkt that needs them. The
14950                  * latter should only occur for commands that are being
14951                  * retried.
14952                  */
14953                 if ((xp->xb_pktp == NULL) ||
14954                     ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14955 #else
14956                 if (xp->xb_pktp == NULL) {
14957 #endif
14958                         /*
14959                          * There is no scsi_pkt allocated for this buf. Call
14960                          * the initpkt function to allocate & init one.
14961                          *
14962                          * The scsi_init_pkt runout callback functionality is
14963                          * implemented as follows:
14964                          *
14965                          * 1) The initpkt function always calls
14966                          *    scsi_init_pkt(9F) with sdrunout specified as the
14967                          *    callback routine.
14968                          * 2) A successful packet allocation is initialized and
14969                          *    the I/O is transported.
14970                          * 3) The I/O associated with an allocation resource
14971                          *    failure is left on its queue to be retried via
14972                          *    runout or the next I/O.
14973                          * 4) The I/O associated with a DMA error is removed
14974                          *    from the queue and failed with EIO. Processing of
14975                          *    the transport queues is also halted to be
14976                          *    restarted via runout or the next I/O.
14977                          * 5) The I/O associated with a CDB size or packet
14978                          *    size error is removed from the queue and failed
14979                          *    with EIO. Processing of the transport queues is
14980                          *    continued.
14981                          *
14982                          * Note: there is no interface for canceling a runout
14983                          * callback. To prevent the driver from detaching or
14984                          * suspending while a runout is pending the driver
14985                          * state is set to SD_STATE_RWAIT
14986                          *
14987                          * Note: using the scsi_init_pkt callback facility can
14988                          * result in an I/O request persisting at the head of
14989                          * the list which cannot be satisfied even after
14990                          * multiple retries. In the future the driver may
14991                          * implement some kind of maximum runout count before
14992                          * failing an I/O.
14993                          *
14994                          * Note: the use of funcp below may seem superfluous,
14995                          * but it helps warlock figure out the correct
14996                          * initpkt function calls (see [s]sd.wlcmd).
14997                          */
14998                         struct scsi_pkt *pktp;
14999                         int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
15000 
15001                         ASSERT(bp != un->un_rqs_bp);
15002 
15003                         funcp = sd_initpkt_map[xp->xb_chain_iostart];
15004                         switch ((*funcp)(bp, &pktp)) {
15005                         case  SD_PKT_ALLOC_SUCCESS:
15006                                 xp->xb_pktp = pktp;
15007                                 SD_TRACE(SD_LOG_IO_CORE, un,
15008                                     "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
15009                                     pktp);
15010                                 goto got_pkt;
15011 
15012                         case SD_PKT_ALLOC_FAILURE:
15013                                 /*
15014                                  * Temporary (hopefully) resource depletion.
15015                                  * Since retries and RQS commands always have a
15016                                  * scsi_pkt allocated, these cases should never
15017                                  * get here. So the only cases this needs to
15018                                  * handle is a bp from the waitq (which we put
15019                                  * back onto the waitq for sdrunout), or a bp
15020                                  * sent as an immed_bp (which we just fail).
15021                                  */
15022                                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15023                                     "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
15024 
15025 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */
15026 
15027                                 if (bp == immed_bp) {
15028                                         /*
15029                                          * If SD_XB_DMA_FREED is clear, then
15030                                          * this is a failure to allocate a
15031                                          * scsi_pkt, and we must fail the
15032                                          * command.
15033                                          */
15034                                         if ((xp->xb_pkt_flags &
15035                                             SD_XB_DMA_FREED) == 0) {
15036                                                 break;
15037                                         }
15038 
15039                                         /*
15040                                          * If this immediate command is NOT our
15041                                          * un_retry_bp, then we must fail it.
15042                                          */
15043                                         if (bp != un->un_retry_bp) {
15044                                                 break;
15045                                         }
15046 
15047                                         /*
15048                                          * We get here if this cmd is our
15049                                          * un_retry_bp that was DMAFREED, but
15050                                          * scsi_init_pkt() failed to reallocate
15051                                          * DMA resources when we attempted to
15052                                          * retry it. This can happen when an
15053                                          * mpxio failover is in progress, but
15054                                          * we don't want to just fail the
15055                                          * command in this case.
15056                                          *
15057                                          * Use timeout(9F) to restart it after
15058                                          * a 100ms delay.  We don't want to
15059                                          * let sdrunout() restart it, because
15060                                          * sdrunout() is just supposed to start
15061                                          * commands that are sitting on the
15062                                          * wait queue.  The un_retry_bp stays
15063                                          * set until the command completes, but
15064                                          * sdrunout can be called many times
15065                                          * before that happens.  Since sdrunout
15066                                          * cannot tell if the un_retry_bp is
15067                                          * already in the transport, it could
15068                                          * end up calling scsi_transport() for
15069                                          * the un_retry_bp multiple times.
15070                                          *
15071                                          * Also: don't schedule the callback
15072                                          * if some other callback is already
15073                                          * pending.
15074                                          */
15075                                         if (un->un_retry_statp == NULL) {
15076                                                 /*
15077                                                  * restore the kstat pointer to
15078                                                  * keep kstat counts coherent
15079                                                  * when we do retry the command.
15080                                                  */
15081                                                 un->un_retry_statp =
15082                                                     saved_statp;
15083                                         }
15084 
15085                                         if ((un->un_startstop_timeid == NULL) &&
15086                                             (un->un_retry_timeid == NULL) &&
15087                                             (un->un_direct_priority_timeid ==
15088                                             NULL)) {
15089 
15090                                                 un->un_retry_timeid =
15091                                                     timeout(
15092                                                     sd_start_retry_command,
15093                                                     un, SD_RESTART_TIMEOUT);
15094                                         }
15095                                         goto exit;
15096                                 }
15097 
15098 #else
15099                                 if (bp == immed_bp) {
15100                                         break;  /* Just fail the command */
15101                                 }
15102 #endif
15103 
15104                                 /* Add the buf back to the head of the waitq */
15105                                 bp->av_forw = un->un_waitq_headp;
15106                                 un->un_waitq_headp = bp;
15107                                 if (un->un_waitq_tailp == NULL) {
15108                                         un->un_waitq_tailp = bp;
15109                                 }
15110                                 goto exit;
15111 
15112                         case SD_PKT_ALLOC_FAILURE_NO_DMA:
15113                                 /*
15114                                  * HBA DMA resource failure. Fail the command
15115                                  * and continue processing of the queues.
15116                                  */
15117                                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15118                                     "sd_start_cmds: "
15119                                     "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
15120                                 break;
15121 
15122                         case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
15123                                 /*
15124                                  * Note:x86: Partial DMA mapping not supported
15125                                  * for USCSI commands, and all the needed DMA
15126                                  * resources were not allocated.
15127                                  */
15128                                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15129                                     "sd_start_cmds: "
15130                                     "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
15131                                 break;
15132 
15133                         case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
15134                                 /*
15135                                  * Note:x86: Request cannot fit into CDB based
15136                                  * on lba and len.
15137                                  */
15138                                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15139                                     "sd_start_cmds: "
15140                                     "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
15141                                 break;
15142 
15143                         default:
15144                                 /* Should NEVER get here! */
15145                                 panic("scsi_initpkt error");
15146                                 /*NOTREACHED*/
15147                         }
15148 
15149                         /*
15150                          * Fatal error in allocating a scsi_pkt for this buf.
15151                          * Update kstats & return the buf with an error code.
15152                          * We must use sd_return_failed_command_no_restart() to
15153                          * avoid a recursive call back into sd_start_cmds().
15154                          * However this also means that we must keep processing
15155                          * the waitq here in order to avoid stalling.
15156                          */
15157                         if (statp == kstat_waitq_to_runq) {
15158                                 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
15159                         }
15160                         sd_return_failed_command_no_restart(un, bp, EIO);
15161                         if (bp == immed_bp) {
15162                                 /* immed_bp is gone by now, so clear this */
15163                                 immed_bp = NULL;
15164                         }
15165                         continue;
15166                 }
15167 got_pkt:
15168                 if (bp == immed_bp) {
15169                         /* goto the head of the class.... */
15170                         xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15171                 }
15172 
15173                 un->un_ncmds_in_transport++;
15174                 SD_UPDATE_KSTATS(un, statp, bp);
15175 
15176                 /*
15177                  * Call scsi_transport() to send the command to the target.
15178                  * According to SCSA architecture, we must drop the mutex here
15179                  * before calling scsi_transport() in order to avoid deadlock.
15180                  * Note that the scsi_pkt's completion routine can be executed
15181                  * (from interrupt context) even before the call to
15182                  * scsi_transport() returns.
15183                  */
15184                 SD_TRACE(SD_LOG_IO_CORE, un,
15185                     "sd_start_cmds: calling scsi_transport()\n");
15186                 DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
15187 
15188                 mutex_exit(SD_MUTEX(un));
15189                 rval = scsi_transport(xp->xb_pktp);
15190                 mutex_enter(SD_MUTEX(un));
15191 
15192                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15193                     "sd_start_cmds: scsi_transport() returned %d\n", rval);
15194 
15195                 switch (rval) {
15196                 case TRAN_ACCEPT:
15197                         /* Clear this with every pkt accepted by the HBA */
15198                         un->un_tran_fatal_count = 0;
15199                         break;  /* Success; try the next cmd (if any) */
15200 
15201                 case TRAN_BUSY:
15202                         un->un_ncmds_in_transport--;
15203                         ASSERT(un->un_ncmds_in_transport >= 0);
15204 
15205                         /*
15206                          * Don't retry request sense, the sense data
15207                          * is lost when another request is sent.
15208                          * Free up the rqs buf and retry
15209                          * the original failed cmd.  Update kstat.
15210                          */
15211                         if (bp == un->un_rqs_bp) {
15212                                 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15213                                 bp = sd_mark_rqs_idle(un, xp);
15214                                 sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15215                                     NULL, NULL, EIO, un->un_busy_timeout / 500,
15216                                     kstat_waitq_enter);
15217                                 goto exit;
15218                         }
15219 
15220 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */
15221                         /*
15222                          * Free the DMA resources for the  scsi_pkt. This will
15223                          * allow mpxio to select another path the next time
15224                          * we call scsi_transport() with this scsi_pkt.
15225                          * See sdintr() for the rationalization behind this.
15226                          */
15227                         if ((un->un_f_is_fibre == TRUE) &&
15228                             ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15229                             ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
15230                                 scsi_dmafree(xp->xb_pktp);
15231                                 xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15232                         }
15233 #endif
15234 
15235                         if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
15236                                 /*
15237                                  * Commands that are SD_PATH_DIRECT_PRIORITY
15238                                  * are for error recovery situations. These do
15239                                  * not use the normal command waitq, so if they
15240                                  * get a TRAN_BUSY we cannot put them back onto
15241                                  * the waitq for later retry. One possible
15242                                  * problem is that there could already be some
15243                                  * other command on un_retry_bp that is waiting
15244                                  * for this one to complete, so we would be
15245                                  * deadlocked if we put this command back onto
15246                                  * the waitq for later retry (since un_retry_bp
15247                                  * must complete before the driver gets back to
15248                                  * commands on the waitq).
15249                                  *
15250                                  * To avoid deadlock we must schedule a callback
15251                                  * that will restart this command after a set
15252                                  * interval.  This should keep retrying for as
15253                                  * long as the underlying transport keeps
15254                                  * returning TRAN_BUSY (just like for other
15255                                  * commands).  Use the same timeout interval as
15256                                  * for the ordinary TRAN_BUSY retry.
15257                                  */
15258                                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15259                                     "sd_start_cmds: scsi_transport() returned "
15260                                     "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
15261 
15262                                 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15263                                 un->un_direct_priority_timeid =
15264                                     timeout(sd_start_direct_priority_command,
15265                                     bp, un->un_busy_timeout / 500);
15266 
15267                                 goto exit;
15268                         }
15269 
15270                         /*
15271                          * For TRAN_BUSY, we want to reduce the throttle value,
15272                          * unless we are retrying a command.
15273                          */
15274                         if (bp != un->un_retry_bp) {
15275                                 sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
15276                         }
15277 
15278                         /*
15279                          * Set up the bp to be tried again 10 ms later.
15280                          * Note:x86: Is there a timeout value in the sd_lun
15281                          * for this condition?
15282                          */
15283                         sd_set_retry_bp(un, bp, un->un_busy_timeout / 500,
15284                             kstat_runq_back_to_waitq);
15285                         goto exit;
15286 
15287                 case TRAN_FATAL_ERROR:
15288                         un->un_tran_fatal_count++;
15289                         /* FALLTHRU */
15290 
15291                 case TRAN_BADPKT:
15292                 default:
15293                         un->un_ncmds_in_transport--;
15294                         ASSERT(un->un_ncmds_in_transport >= 0);
15295 
15296                         /*
15297                          * If this is our REQUEST SENSE command with a
15298                          * transport error, we must get back the pointers
15299                          * to the original buf, and mark the REQUEST
15300                          * SENSE command as "available".
15301                          */
15302                         if (bp == un->un_rqs_bp) {
15303                                 bp = sd_mark_rqs_idle(un, xp);
15304                                 xp = SD_GET_XBUF(bp);
15305                         } else {
15306                                 /*
15307                                  * Legacy behavior: do not update transport
15308                                  * error count for request sense commands.
15309                                  */
15310                                 SD_UPDATE_ERRSTATS(un, sd_transerrs);
15311                         }
15312 
15313                         SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15314                         sd_print_transport_rejected_message(un, xp, rval);
15315 
15316                         /*
15317                          * This command will be terminated by SD driver due
15318                          * to a fatal transport error. We should post
15319                          * ereport.io.scsi.cmd.disk.tran with driver-assessment
15320                          * of "fail" for any command to indicate this
15321                          * situation.
15322                          */
15323                         if (xp->xb_ena > 0) {
15324                                 ASSERT(un->un_fm_private != NULL);
15325                                 sfip = un->un_fm_private;
15326                                 sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT;
15327                                 sd_ssc_extract_info(&sfip->fm_ssc, un,
15328                                     xp->xb_pktp, bp, xp);
15329                                 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
15330                         }
15331 
15332                         /*
15333                          * We must use sd_return_failed_command_no_restart() to
15334                          * avoid a recursive call back into sd_start_cmds().
15335                          * However this also means that we must keep processing
15336                          * the waitq here in order to avoid stalling.
15337                          */
15338                         sd_return_failed_command_no_restart(un, bp, EIO);
15339 
15340                         /*
15341                          * Notify any threads waiting in sd_ddi_suspend() that
15342                          * a command completion has occurred.
15343                          */
15344                         if (un->un_state == SD_STATE_SUSPENDED) {
15345                                 cv_broadcast(&un->un_disk_busy_cv);
15346                         }
15347 
15348                         if (bp == immed_bp) {
15349                                 /* immed_bp is gone by now, so clear this */
15350                                 immed_bp = NULL;
15351                         }
15352                         break;
15353                 }
15354 
15355         } while (immed_bp == NULL);
15356 
15357 exit:
15358         ASSERT(mutex_owned(SD_MUTEX(un)));
15359         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
15360 }
15361 
15362 
15363 /*
15364  *    Function: sd_return_command
15365  *
15366  * Description: Returns a command to its originator (with or without an
15367  *              error).  Also starts commands waiting to be transported
15368  *              to the target.
15369  *
15370  *     Context: May be called from interrupt, kernel, or timeout context
15371  */
15372 
15373 static void
15374 sd_return_command(struct sd_lun *un, struct buf *bp)
15375 {
15376         struct sd_xbuf *xp;
15377         struct scsi_pkt *pktp;
15378         struct sd_fm_internal *sfip;
15379 
15380         ASSERT(bp != NULL);
15381         ASSERT(un != NULL);
15382         ASSERT(mutex_owned(SD_MUTEX(un)));
15383         ASSERT(bp != un->un_rqs_bp);
15384         xp = SD_GET_XBUF(bp);
15385         ASSERT(xp != NULL);
15386 
15387         pktp = SD_GET_PKTP(bp);
15388         sfip = (struct sd_fm_internal *)un->un_fm_private;
15389         ASSERT(sfip != NULL);
15390 
15391         SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
15392 
15393         /*
15394          * Note: check for the "sdrestart failed" case.
15395          */
15396         if ((un->un_partial_dma_supported == 1) &&
15397             ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
15398             (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
15399             (xp->xb_pktp->pkt_resid == 0)) {
15400 
15401                 if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
15402                         /*
15403                          * Successfully set up next portion of cmd
15404                          * transfer, try sending it
15405                          */
15406                         sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15407                             NULL, NULL, 0, (clock_t)0, NULL);
15408                         sd_start_cmds(un, NULL);
15409                         return; /* Note:x86: need a return here? */
15410                 }
15411         }
15412 
15413         /*
15414          * If this is the failfast bp, clear it from un_failfast_bp. This
15415          * can happen if upon being re-tried the failfast bp either
15416          * succeeded or encountered another error (possibly even a different
15417          * error than the one that precipitated the failfast state, but in
15418          * that case it would have had to exhaust retries as well). Regardless,
15419          * this should not occur whenever the instance is in the active
15420          * failfast state.
15421          */
15422         if (bp == un->un_failfast_bp) {
15423                 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15424                 un->un_failfast_bp = NULL;
15425         }
15426 
15427         /*
15428          * Clear the failfast state upon successful completion of ANY cmd.
15429          */
15430         if (bp->b_error == 0) {
15431                 un->un_failfast_state = SD_FAILFAST_INACTIVE;
15432                 /*
15433                  * If this is a successful command, but used to be retried,
15434                  * we will take it as a recovered command and post an
15435                  * ereport with driver-assessment of "recovered".
15436                  */
15437                 if (xp->xb_ena > 0) {
15438                         sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15439                         sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY);
15440                 }
15441         } else {
15442                 /*
15443                  * If this is a failed non-USCSI command we will post an
15444                  * ereport with driver-assessment set accordingly("fail" or
15445                  * "fatal").
15446                  */
15447                 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15448                         sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15449                         sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
15450                 }
15451         }
15452 
15453         /*
15454          * This is used if the command was retried one or more times. Show that
15455          * we are done with it, and allow processing of the waitq to resume.
15456          */
15457         if (bp == un->un_retry_bp) {
15458                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15459                     "sd_return_command: un:0x%p: "
15460                     "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15461                 un->un_retry_bp = NULL;
15462                 un->un_retry_statp = NULL;
15463         }
15464 
15465         SD_UPDATE_RDWR_STATS(un, bp);
15466         SD_UPDATE_PARTITION_STATS(un, bp);
15467 
15468         switch (un->un_state) {
15469         case SD_STATE_SUSPENDED:
15470                 /*
15471                  * Notify any threads waiting in sd_ddi_suspend() that
15472                  * a command completion has occurred.
15473                  */
15474                 cv_broadcast(&un->un_disk_busy_cv);
15475                 break;
15476         default:
15477                 sd_start_cmds(un, NULL);
15478                 break;
15479         }
15480 
15481         /* Return this command up the iodone chain to its originator. */
15482         mutex_exit(SD_MUTEX(un));
15483 
15484         (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15485         xp->xb_pktp = NULL;
15486 
15487         SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15488 
15489         ASSERT(!mutex_owned(SD_MUTEX(un)));
15490         mutex_enter(SD_MUTEX(un));
15491 
15492         SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
15493 }
15494 
15495 
15496 /*
15497  *    Function: sd_return_failed_command
15498  *
15499  * Description: Command completion when an error occurred.
15500  *
15501  *     Context: May be called from interrupt context
15502  */
15503 
15504 static void
15505 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
15506 {
15507         ASSERT(bp != NULL);
15508         ASSERT(un != NULL);
15509         ASSERT(mutex_owned(SD_MUTEX(un)));
15510 
15511         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15512             "sd_return_failed_command: entry\n");
15513 
15514         /*
15515          * b_resid could already be nonzero due to a partial data
15516          * transfer, so do not change it here.
15517          */
15518         SD_BIOERROR(bp, errcode);
15519 
15520         sd_return_command(un, bp);
15521         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15522             "sd_return_failed_command: exit\n");
15523 }
15524 
15525 
15526 /*
15527  *    Function: sd_return_failed_command_no_restart
15528  *
15529  * Description: Same as sd_return_failed_command, but ensures that no
15530  *              call back into sd_start_cmds will be issued.
15531  *
15532  *     Context: May be called from interrupt context
15533  */
15534 
15535 static void
15536 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
15537         int errcode)
15538 {
15539         struct sd_xbuf *xp;
15540 
15541         ASSERT(bp != NULL);
15542         ASSERT(un != NULL);
15543         ASSERT(mutex_owned(SD_MUTEX(un)));
15544         xp = SD_GET_XBUF(bp);
15545         ASSERT(xp != NULL);
15546         ASSERT(errcode != 0);
15547 
15548         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15549             "sd_return_failed_command_no_restart: entry\n");
15550 
15551         /*
15552          * b_resid could already be nonzero due to a partial data
15553          * transfer, so do not change it here.
15554          */
15555         SD_BIOERROR(bp, errcode);
15556 
15557         /*
15558          * If this is the failfast bp, clear it. This can happen if the
15559          * failfast bp encounterd a fatal error when we attempted to
15560          * re-try it (such as a scsi_transport(9F) failure).  However
15561          * we should NOT be in an active failfast state if the failfast
15562          * bp is not NULL.
15563          */
15564         if (bp == un->un_failfast_bp) {
15565                 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15566                 un->un_failfast_bp = NULL;
15567         }
15568 
15569         if (bp == un->un_retry_bp) {
15570                 /*
15571                  * This command was retried one or more times. Show that we are
15572                  * done with it, and allow processing of the waitq to resume.
15573                  */
15574                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15575                     "sd_return_failed_command_no_restart: "
15576                     " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15577                 un->un_retry_bp = NULL;
15578                 un->un_retry_statp = NULL;
15579         }
15580 
15581         SD_UPDATE_RDWR_STATS(un, bp);
15582         SD_UPDATE_PARTITION_STATS(un, bp);
15583 
15584         mutex_exit(SD_MUTEX(un));
15585 
15586         if (xp->xb_pktp != NULL) {
15587                 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15588                 xp->xb_pktp = NULL;
15589         }
15590 
15591         SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15592 
15593         mutex_enter(SD_MUTEX(un));
15594 
15595         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15596             "sd_return_failed_command_no_restart: exit\n");
15597 }
15598 
15599 
15600 /*
15601  *    Function: sd_retry_command
15602  *
15603  * Description: queue up a command for retry, or (optionally) fail it
15604  *              if retry counts are exhausted.
15605  *
15606  *   Arguments: un - Pointer to the sd_lun struct for the target.
15607  *
15608  *              bp - Pointer to the buf for the command to be retried.
15609  *
15610  *              retry_check_flag - Flag to see which (if any) of the retry
15611  *                 counts should be decremented/checked. If the indicated
15612  *                 retry count is exhausted, then the command will not be
15613  *                 retried; it will be failed instead. This should use a
15614  *                 value equal to one of the following:
15615  *
15616  *                      SD_RETRIES_NOCHECK
15617  *                      SD_RESD_RETRIES_STANDARD
15618  *                      SD_RETRIES_VICTIM
15619  *
15620  *                 Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
15621  *                 if the check should be made to see of FLAG_ISOLATE is set
15622  *                 in the pkt. If FLAG_ISOLATE is set, then the command is
15623  *                 not retried, it is simply failed.
15624  *
15625  *              user_funcp - Ptr to function to call before dispatching the
15626  *                 command. May be NULL if no action needs to be performed.
15627  *                 (Primarily intended for printing messages.)
15628  *
15629  *              user_arg - Optional argument to be passed along to
15630  *                 the user_funcp call.
15631  *
15632  *              failure_code - errno return code to set in the bp if the
15633  *                 command is going to be failed.
15634  *
15635  *              retry_delay - Retry delay interval in (clock_t) units. May
15636  *                 be zero which indicates that the retry should be retried
15637  *                 immediately (ie, without an intervening delay).
15638  *
15639  *              statp - Ptr to kstat function to be updated if the command
15640  *                 is queued for a delayed retry. May be NULL if no kstat
15641  *                 update is desired.
15642  *
15643  *     Context: May be called from interrupt context.
15644  */
15645 
15646 static void
15647 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
15648         void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
15649         code), void *user_arg, int failure_code,  clock_t retry_delay,
15650         void (*statp)(kstat_io_t *))
15651 {
15652         struct sd_xbuf  *xp;
15653         struct scsi_pkt *pktp;
15654         struct sd_fm_internal *sfip;
15655 
15656         ASSERT(un != NULL);
15657         ASSERT(mutex_owned(SD_MUTEX(un)));
15658         ASSERT(bp != NULL);
15659         xp = SD_GET_XBUF(bp);
15660         ASSERT(xp != NULL);
15661         pktp = SD_GET_PKTP(bp);
15662         ASSERT(pktp != NULL);
15663 
15664         sfip = (struct sd_fm_internal *)un->un_fm_private;
15665         ASSERT(sfip != NULL);
15666 
15667         SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15668             "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
15669 
15670         /*
15671          * If we are syncing or dumping, fail the command to avoid
15672          * recursively calling back into scsi_transport().
15673          */
15674         if (ddi_in_panic()) {
15675                 goto fail_command_no_log;
15676         }
15677 
15678         /*
15679          * We should never be be retrying a command with FLAG_DIAGNOSE set, so
15680          * log an error and fail the command.
15681          */
15682         if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15683                 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
15684                     "ERROR, retrying FLAG_DIAGNOSE command.\n");
15685                 sd_dump_memory(un, SD_LOG_IO, "CDB",
15686                     (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15687                 sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15688                     (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15689                 goto fail_command;
15690         }
15691 
15692         /*
15693          * If we are suspended, then put the command onto head of the
15694          * wait queue since we don't want to start more commands, and
15695          * clear the un_retry_bp. Next time when we are resumed, will
15696          * handle the command in the wait queue.
15697          */
15698         switch (un->un_state) {
15699         case SD_STATE_SUSPENDED:
15700         case SD_STATE_DUMPING:
15701                 bp->av_forw = un->un_waitq_headp;
15702                 un->un_waitq_headp = bp;
15703                 if (un->un_waitq_tailp == NULL) {
15704                         un->un_waitq_tailp = bp;
15705                 }
15706                 if (bp == un->un_retry_bp) {
15707                         un->un_retry_bp = NULL;
15708                         un->un_retry_statp = NULL;
15709                 }
15710                 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
15711                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
15712                     "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
15713                 return;
15714         default:
15715                 break;
15716         }
15717 
15718         /*
15719          * If the caller wants us to check FLAG_ISOLATE, then see if that
15720          * is set; if it is then we do not want to retry the command.
15721          * Normally, FLAG_ISOLATE is only used with USCSI cmds.
15722          */
15723         if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
15724                 if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
15725                         goto fail_command;
15726                 }
15727         }
15728 
15729 
15730         /*
15731          * If SD_RETRIES_FAILFAST is set, it indicates that either a
15732          * command timeout or a selection timeout has occurred. This means
15733          * that we were unable to establish an kind of communication with
15734          * the target, and subsequent retries and/or commands are likely
15735          * to encounter similar results and take a long time to complete.
15736          *
15737          * If this is a failfast error condition, we need to update the
15738          * failfast state, even if this bp does not have B_FAILFAST set.
15739          */
15740         if (retry_check_flag & SD_RETRIES_FAILFAST) {
15741                 if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15742                         ASSERT(un->un_failfast_bp == NULL);
15743                         /*
15744                          * If we are already in the active failfast state, and
15745                          * another failfast error condition has been detected,
15746                          * then fail this command if it has B_FAILFAST set.
15747                          * If B_FAILFAST is clear, then maintain the legacy
15748                          * behavior of retrying heroically, even tho this will
15749                          * take a lot more time to fail the command.
15750                          */
15751                         if (bp->b_flags & B_FAILFAST) {
15752                                 goto fail_command;
15753                         }
15754                 } else {
15755                         /*
15756                          * We're not in the active failfast state, but we
15757                          * have a failfast error condition, so we must begin
15758                          * transition to the next state. We do this regardless
15759                          * of whether or not this bp has B_FAILFAST set.
15760                          */
15761                         if (un->un_failfast_bp == NULL) {
15762                                 /*
15763                                  * This is the first bp to meet a failfast
15764                                  * condition so save it on un_failfast_bp &
15765                                  * do normal retry processing. Do not enter
15766                                  * active failfast state yet. This marks
15767                                  * entry into the "failfast pending" state.
15768                                  */
15769                                 un->un_failfast_bp = bp;
15770 
15771                         } else if (un->un_failfast_bp == bp) {
15772                                 /*
15773                                  * This is the second time *this* bp has
15774                                  * encountered a failfast error condition,
15775                                  * so enter active failfast state & flush
15776                                  * queues as appropriate.
15777                                  */
15778                                 un->un_failfast_state = SD_FAILFAST_ACTIVE;
15779                                 un->un_failfast_bp = NULL;
15780                                 sd_failfast_flushq(un);
15781 
15782                                 /*
15783                                  * Fail this bp now if B_FAILFAST set;
15784                                  * otherwise continue with retries. (It would
15785                                  * be pretty ironic if this bp succeeded on a
15786                                  * subsequent retry after we just flushed all
15787                                  * the queues).
15788                                  */
15789                                 if (bp->b_flags & B_FAILFAST) {
15790                                         goto fail_command;
15791                                 }
15792 
15793 #if !defined(lint) && !defined(__lint)
15794                         } else {
15795                                 /*
15796                                  * If neither of the preceeding conditionals
15797                                  * was true, it means that there is some
15798                                  * *other* bp that has met an inital failfast
15799                                  * condition and is currently either being
15800                                  * retried or is waiting to be retried. In
15801                                  * that case we should perform normal retry
15802                                  * processing on *this* bp, since there is a
15803                                  * chance that the current failfast condition
15804                                  * is transient and recoverable. If that does
15805                                  * not turn out to be the case, then retries
15806                                  * will be cleared when the wait queue is
15807                                  * flushed anyway.
15808                                  */
15809 #endif
15810                         }
15811                 }
15812         } else {
15813                 /*
15814                  * SD_RETRIES_FAILFAST is clear, which indicates that we
15815                  * likely were able to at least establish some level of
15816                  * communication with the target and subsequent commands
15817                  * and/or retries are likely to get through to the target,
15818                  * In this case we want to be aggressive about clearing
15819                  * the failfast state. Note that this does not affect
15820                  * the "failfast pending" condition.
15821                  */
15822                 un->un_failfast_state = SD_FAILFAST_INACTIVE;
15823         }
15824 
15825 
15826         /*
15827          * Check the specified retry count to see if we can still do
15828          * any retries with this pkt before we should fail it.
15829          */
15830         switch (retry_check_flag & SD_RETRIES_MASK) {
15831         case SD_RETRIES_VICTIM:
15832                 /*
15833                  * Check the victim retry count. If exhausted, then fall
15834                  * thru & check against the standard retry count.
15835                  */
15836                 if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15837                         /* Increment count & proceed with the retry */
15838                         xp->xb_victim_retry_count++;
15839                         break;
15840                 }
15841                 /* Victim retries exhausted, fall back to std. retries... */
15842                 /* FALLTHRU */
15843 
15844         case SD_RETRIES_STANDARD:
15845                 if (xp->xb_retry_count >= un->un_retry_count) {
15846                         /* Retries exhausted, fail the command */
15847                         SD_TRACE(SD_LOG_IO_CORE, un,
15848                             "sd_retry_command: retries exhausted!\n");
15849                         /*
15850                          * update b_resid for failed SCMD_READ & SCMD_WRITE
15851                          * commands with nonzero pkt_resid.
15852                          */
15853                         if ((pktp->pkt_reason == CMD_CMPLT) &&
15854                             (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15855                             (pktp->pkt_resid != 0)) {
15856                                 uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15857                                 if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15858                                         SD_UPDATE_B_RESID(bp, pktp);
15859                                 }
15860                         }
15861                         goto fail_command;
15862                 }
15863                 xp->xb_retry_count++;
15864                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15865                     "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15866                 break;
15867 
15868         case SD_RETRIES_UA:
15869                 if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15870                         /* Retries exhausted, fail the command */
15871                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15872                             "Unit Attention retries exhausted. "
15873                             "Check the target.\n");
15874                         goto fail_command;
15875                 }
15876                 xp->xb_ua_retry_count++;
15877                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15878                     "sd_retry_command: retry count:%d\n",
15879                     xp->xb_ua_retry_count);
15880                 break;
15881 
15882         case SD_RETRIES_BUSY:
15883                 if (xp->xb_retry_count >= un->un_busy_retry_count) {
15884                         /* Retries exhausted, fail the command */
15885                         SD_TRACE(SD_LOG_IO_CORE, un,
15886                             "sd_retry_command: retries exhausted!\n");
15887                         goto fail_command;
15888                 }
15889                 xp->xb_retry_count++;
15890                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15891                     "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15892                 break;
15893 
15894         case SD_RETRIES_NOCHECK:
15895         default:
15896                 /* No retry count to check. Just proceed with the retry */
15897                 break;
15898         }
15899 
15900         xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15901 
15902         /*
15903          * If this is a non-USCSI command being retried
15904          * during execution last time, we should post an ereport with
15905          * driver-assessment of the value "retry".
15906          * For partial DMA, request sense and STATUS_QFULL, there are no
15907          * hardware errors, we bypass ereport posting.
15908          */
15909         if (failure_code != 0) {
15910                 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15911                         sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15912                         sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY);
15913                 }
15914         }
15915 
15916         /*
15917          * If we were given a zero timeout, we must attempt to retry the
15918          * command immediately (ie, without a delay).
15919          */
15920         if (retry_delay == 0) {
15921                 /*
15922                  * Check some limiting conditions to see if we can actually
15923                  * do the immediate retry.  If we cannot, then we must
15924                  * fall back to queueing up a delayed retry.
15925                  */
15926                 if (un->un_ncmds_in_transport >= un->un_throttle) {
15927                         /*
15928                          * We are at the throttle limit for the target,
15929                          * fall back to delayed retry.
15930                          */
15931                         retry_delay = un->un_busy_timeout;
15932                         statp = kstat_waitq_enter;
15933                         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15934                             "sd_retry_command: immed. retry hit "
15935                             "throttle!\n");
15936                 } else {
15937                         /*
15938                          * We're clear to proceed with the immediate retry.
15939                          * First call the user-provided function (if any)
15940                          */
15941                         if (user_funcp != NULL) {
15942                                 (*user_funcp)(un, bp, user_arg,
15943                                     SD_IMMEDIATE_RETRY_ISSUED);
15944 #ifdef __lock_lint
15945                                 sd_print_incomplete_msg(un, bp, user_arg,
15946                                     SD_IMMEDIATE_RETRY_ISSUED);
15947                                 sd_print_cmd_incomplete_msg(un, bp, user_arg,
15948                                     SD_IMMEDIATE_RETRY_ISSUED);
15949                                 sd_print_sense_failed_msg(un, bp, user_arg,
15950                                     SD_IMMEDIATE_RETRY_ISSUED);
15951 #endif
15952                         }
15953 
15954                         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15955                             "sd_retry_command: issuing immediate retry\n");
15956 
15957                         /*
15958                          * Call sd_start_cmds() to transport the command to
15959                          * the target.
15960                          */
15961                         sd_start_cmds(un, bp);
15962 
15963                         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15964                             "sd_retry_command exit\n");
15965                         return;
15966                 }
15967         }
15968 
15969         /*
15970          * Set up to retry the command after a delay.
15971          * First call the user-provided function (if any)
15972          */
15973         if (user_funcp != NULL) {
15974                 (*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15975         }
15976 
15977         sd_set_retry_bp(un, bp, retry_delay, statp);
15978 
15979         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15980         return;
15981 
15982 fail_command:
15983 
15984         if (user_funcp != NULL) {
15985                 (*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15986         }
15987 
15988 fail_command_no_log:
15989 
15990         SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15991             "sd_retry_command: returning failed command\n");
15992 
15993         sd_return_failed_command(un, bp, failure_code);
15994 
15995         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15996 }
15997 
15998 
15999 /*
16000  *    Function: sd_set_retry_bp
16001  *
16002  * Description: Set up the given bp for retry.
16003  *
16004  *   Arguments: un - ptr to associated softstate
16005  *              bp - ptr to buf(9S) for the command
16006  *              retry_delay - time interval before issuing retry (may be 0)
16007  *              statp - optional pointer to kstat function
16008  *
16009  *     Context: May be called under interrupt context
16010  */
16011 
16012 static void
16013 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
16014         void (*statp)(kstat_io_t *))
16015 {
16016         ASSERT(un != NULL);
16017         ASSERT(mutex_owned(SD_MUTEX(un)));
16018         ASSERT(bp != NULL);
16019 
16020         SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16021             "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
16022 
16023         /*
16024          * Indicate that the command is being retried. This will not allow any
16025          * other commands on the wait queue to be transported to the target
16026          * until this command has been completed (success or failure). The
16027          * "retry command" is not transported to the target until the given
16028          * time delay expires, unless the user specified a 0 retry_delay.
16029          *
16030          * Note: the timeout(9F) callback routine is what actually calls
16031          * sd_start_cmds() to transport the command, with the exception of a
16032          * zero retry_delay. The only current implementor of a zero retry delay
16033          * is the case where a START_STOP_UNIT is sent to spin-up a device.
16034          */
16035         if (un->un_retry_bp == NULL) {
16036                 ASSERT(un->un_retry_statp == NULL);
16037                 un->un_retry_bp = bp;
16038 
16039                 /*
16040                  * If the user has not specified a delay the command should
16041                  * be queued and no timeout should be scheduled.
16042                  */
16043                 if (retry_delay == 0) {
16044                         /*
16045                          * Save the kstat pointer that will be used in the
16046                          * call to SD_UPDATE_KSTATS() below, so that
16047                          * sd_start_cmds() can correctly decrement the waitq
16048                          * count when it is time to transport this command.
16049                          */
16050                         un->un_retry_statp = statp;
16051                         goto done;
16052                 }
16053         }
16054 
16055         if (un->un_retry_bp == bp) {
16056                 /*
16057                  * Save the kstat pointer that will be used in the call to
16058                  * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
16059                  * correctly decrement the waitq count when it is time to
16060                  * transport this command.
16061                  */
16062                 un->un_retry_statp = statp;
16063 
16064                 /*
16065                  * Schedule a timeout if:
16066                  *   1) The user has specified a delay.
16067                  *   2) There is not a START_STOP_UNIT callback pending.
16068                  *
16069                  * If no delay has been specified, then it is up to the caller
16070                  * to ensure that IO processing continues without stalling.
16071                  * Effectively, this means that the caller will issue the
16072                  * required call to sd_start_cmds(). The START_STOP_UNIT
16073                  * callback does this after the START STOP UNIT command has
16074                  * completed. In either of these cases we should not schedule
16075                  * a timeout callback here.  Also don't schedule the timeout if
16076                  * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
16077                  */
16078                 if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
16079                     (un->un_direct_priority_timeid == NULL)) {
16080                         un->un_retry_timeid =
16081                             timeout(sd_start_retry_command, un, retry_delay);
16082                         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16083                             "sd_set_retry_bp: setting timeout: un: 0x%p"
16084                             " bp:0x%p un_retry_timeid:0x%p\n",
16085                             un, bp, un->un_retry_timeid);
16086                 }
16087         } else {
16088                 /*
16089                  * We only get in here if there is already another command
16090                  * waiting to be retried.  In this case, we just put the
16091                  * given command onto the wait queue, so it can be transported
16092                  * after the current retry command has completed.
16093                  *
16094                  * Also we have to make sure that if the command at the head
16095                  * of the wait queue is the un_failfast_bp, that we do not
16096                  * put ahead of it any other commands that are to be retried.
16097                  */
16098                 if ((un->un_failfast_bp != NULL) &&
16099                     (un->un_failfast_bp == un->un_waitq_headp)) {
16100                         /*
16101                          * Enqueue this command AFTER the first command on
16102                          * the wait queue (which is also un_failfast_bp).
16103                          */
16104                         bp->av_forw = un->un_waitq_headp->av_forw;
16105                         un->un_waitq_headp->av_forw = bp;
16106                         if (un->un_waitq_headp == un->un_waitq_tailp) {
16107                                 un->un_waitq_tailp = bp;
16108                         }
16109                 } else {
16110                         /* Enqueue this command at the head of the waitq. */
16111                         bp->av_forw = un->un_waitq_headp;
16112                         un->un_waitq_headp = bp;
16113                         if (un->un_waitq_tailp == NULL) {
16114                                 un->un_waitq_tailp = bp;
16115                         }
16116                 }
16117 
16118                 if (statp == NULL) {
16119                         statp = kstat_waitq_enter;
16120                 }
16121                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16122                     "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
16123         }
16124 
16125 done:
16126         if (statp != NULL) {
16127                 SD_UPDATE_KSTATS(un, statp, bp);
16128         }
16129 
16130         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16131             "sd_set_retry_bp: exit un:0x%p\n", un);
16132 }
16133 
16134 
16135 /*
16136  *    Function: sd_start_retry_command
16137  *
16138  * Description: Start the command that has been waiting on the target's
16139  *              retry queue.  Called from timeout(9F) context after the
16140  *              retry delay interval has expired.
16141  *
16142  *   Arguments: arg - pointer to associated softstate for the device.
16143  *
16144  *     Context: timeout(9F) thread context.  May not sleep.
16145  */
16146 
16147 static void
16148 sd_start_retry_command(void *arg)
16149 {
16150         struct sd_lun *un = arg;
16151 
16152         ASSERT(un != NULL);
16153         ASSERT(!mutex_owned(SD_MUTEX(un)));
16154 
16155         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16156             "sd_start_retry_command: entry\n");
16157 
16158         mutex_enter(SD_MUTEX(un));
16159 
16160         un->un_retry_timeid = NULL;
16161 
16162         if (un->un_retry_bp != NULL) {
16163                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16164                     "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
16165                     un, un->un_retry_bp);
16166                 sd_start_cmds(un, un->un_retry_bp);
16167         }
16168 
16169         mutex_exit(SD_MUTEX(un));
16170 
16171         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16172             "sd_start_retry_command: exit\n");
16173 }
16174 
16175 /*
16176  *    Function: sd_rmw_msg_print_handler
16177  *
16178  * Description: If RMW mode is enabled and warning message is triggered
16179  *              print I/O count during a fixed interval.
16180  *
16181  *   Arguments: arg - pointer to associated softstate for the device.
16182  *
16183  *     Context: timeout(9F) thread context. May not sleep.
16184  */
16185 static void
16186 sd_rmw_msg_print_handler(void *arg)
16187 {
16188         struct sd_lun *un = arg;
16189 
16190         ASSERT(un != NULL);
16191         ASSERT(!mutex_owned(SD_MUTEX(un)));
16192 
16193         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16194             "sd_rmw_msg_print_handler: entry\n");
16195 
16196         mutex_enter(SD_MUTEX(un));
16197 
16198         if (un->un_rmw_incre_count > 0) {
16199                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16200                     "%"PRIu64" I/O requests are not aligned with %d disk "
16201                     "sector size in %ld seconds. They are handled through "
16202                     "Read Modify Write but the performance is very low!\n",
16203                     un->un_rmw_incre_count, un->un_tgt_blocksize,
16204                     drv_hztousec(SD_RMW_MSG_PRINT_TIMEOUT) / 1000000);
16205                 un->un_rmw_incre_count = 0;
16206                 un->un_rmw_msg_timeid = timeout(sd_rmw_msg_print_handler,
16207                     un, SD_RMW_MSG_PRINT_TIMEOUT);
16208         } else {
16209                 un->un_rmw_msg_timeid = NULL;
16210         }
16211 
16212         mutex_exit(SD_MUTEX(un));
16213 
16214         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16215             "sd_rmw_msg_print_handler: exit\n");
16216 }
16217 
16218 /*
16219  *    Function: sd_start_direct_priority_command
16220  *
16221  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
16222  *              received TRAN_BUSY when we called scsi_transport() to send it
16223  *              to the underlying HBA. This function is called from timeout(9F)
16224  *              context after the delay interval has expired.
16225  *
16226  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
16227  *
16228  *     Context: timeout(9F) thread context.  May not sleep.
16229  */
16230 
16231 static void
16232 sd_start_direct_priority_command(void *arg)
16233 {
16234         struct buf      *priority_bp = arg;
16235         struct sd_lun   *un;
16236 
16237         ASSERT(priority_bp != NULL);
16238         un = SD_GET_UN(priority_bp);
16239         ASSERT(un != NULL);
16240         ASSERT(!mutex_owned(SD_MUTEX(un)));
16241 
16242         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16243             "sd_start_direct_priority_command: entry\n");
16244 
16245         mutex_enter(SD_MUTEX(un));
16246         un->un_direct_priority_timeid = NULL;
16247         sd_start_cmds(un, priority_bp);
16248         mutex_exit(SD_MUTEX(un));
16249 
16250         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16251             "sd_start_direct_priority_command: exit\n");
16252 }
16253 
16254 
16255 /*
16256  *    Function: sd_send_request_sense_command
16257  *
16258  * Description: Sends a REQUEST SENSE command to the target
16259  *
16260  *     Context: May be called from interrupt context.
16261  */
16262 
16263 static void
16264 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
16265         struct scsi_pkt *pktp)
16266 {
16267         ASSERT(bp != NULL);
16268         ASSERT(un != NULL);
16269         ASSERT(mutex_owned(SD_MUTEX(un)));
16270 
16271         SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
16272             "entry: buf:0x%p\n", bp);
16273 
16274         /*
16275          * If we are syncing or dumping, then fail the command to avoid a
16276          * recursive callback into scsi_transport(). Also fail the command
16277          * if we are suspended (legacy behavior).
16278          */
16279         if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
16280             (un->un_state == SD_STATE_DUMPING)) {
16281                 sd_return_failed_command(un, bp, EIO);
16282                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16283                     "sd_send_request_sense_command: syncing/dumping, exit\n");
16284                 return;
16285         }
16286 
16287         /*
16288          * Retry the failed command and don't issue the request sense if:
16289          *    1) the sense buf is busy
16290          *    2) we have 1 or more outstanding commands on the target
16291          *    (the sense data will be cleared or invalidated any way)
16292          *
16293          * Note: There could be an issue with not checking a retry limit here,
16294          * the problem is determining which retry limit to check.
16295          */
16296         if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
16297                 /* Don't retry if the command is flagged as non-retryable */
16298                 if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16299                         sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
16300                             NULL, NULL, 0, un->un_busy_timeout,
16301                             kstat_waitq_enter);
16302                         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16303                             "sd_send_request_sense_command: "
16304                             "at full throttle, retrying exit\n");
16305                 } else {
16306                         sd_return_failed_command(un, bp, EIO);
16307                         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16308                             "sd_send_request_sense_command: "
16309                             "at full throttle, non-retryable exit\n");
16310                 }
16311                 return;
16312         }
16313 
16314         sd_mark_rqs_busy(un, bp);
16315         sd_start_cmds(un, un->un_rqs_bp);
16316 
16317         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16318             "sd_send_request_sense_command: exit\n");
16319 }
16320 
16321 
16322 /*
16323  *    Function: sd_mark_rqs_busy
16324  *
16325  * Description: Indicate that the request sense bp for this instance is
16326  *              in use.
16327  *
16328  *     Context: May be called under interrupt context
16329  */
16330 
16331 static void
16332 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
16333 {
16334         struct sd_xbuf  *sense_xp;
16335 
16336         ASSERT(un != NULL);
16337         ASSERT(bp != NULL);
16338         ASSERT(mutex_owned(SD_MUTEX(un)));
16339         ASSERT(un->un_sense_isbusy == 0);
16340 
16341         SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
16342             "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
16343 
16344         sense_xp = SD_GET_XBUF(un->un_rqs_bp);
16345         ASSERT(sense_xp != NULL);
16346 
16347         SD_INFO(SD_LOG_IO, un,
16348             "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
16349 
16350         ASSERT(sense_xp->xb_pktp != NULL);
16351         ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
16352             == (FLAG_SENSING | FLAG_HEAD));
16353 
16354         un->un_sense_isbusy = 1;
16355         un->un_rqs_bp->b_resid = 0;
16356         sense_xp->xb_pktp->pkt_resid  = 0;
16357         sense_xp->xb_pktp->pkt_reason = 0;
16358 
16359         /* So we can get back the bp at interrupt time! */
16360         sense_xp->xb_sense_bp = bp;
16361 
16362         bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
16363 
16364         /*
16365          * Mark this buf as awaiting sense data. (This is already set in
16366          * the pkt_flags for the RQS packet.)
16367          */
16368         ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
16369 
16370         /* Request sense down same path */
16371         if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) &&
16372             ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance)
16373                 sense_xp->xb_pktp->pkt_path_instance =
16374                     ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance;
16375 
16376         sense_xp->xb_retry_count     = 0;
16377         sense_xp->xb_victim_retry_count = 0;
16378         sense_xp->xb_ua_retry_count  = 0;
16379         sense_xp->xb_nr_retry_count  = 0;
16380         sense_xp->xb_dma_resid  = 0;
16381 
16382         /* Clean up the fields for auto-request sense */
16383         sense_xp->xb_sense_status = 0;
16384         sense_xp->xb_sense_state  = 0;
16385         sense_xp->xb_sense_resid  = 0;
16386         bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
16387 
16388         SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
16389 }
16390 
16391 
16392 /*
16393  *    Function: sd_mark_rqs_idle
16394  *
16395  * Description: SD_MUTEX must be held continuously through this routine
16396  *              to prevent reuse of the rqs struct before the caller can
16397  *              complete it's processing.
16398  *
16399  * Return Code: Pointer to the RQS buf
16400  *
16401  *     Context: May be called under interrupt context
16402  */
16403 
16404 static struct buf *
16405 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
16406 {
16407         struct buf *bp;
16408         ASSERT(un != NULL);
16409         ASSERT(sense_xp != NULL);
16410         ASSERT(mutex_owned(SD_MUTEX(un)));
16411         ASSERT(un->un_sense_isbusy != 0);
16412 
16413         un->un_sense_isbusy = 0;
16414         bp = sense_xp->xb_sense_bp;
16415         sense_xp->xb_sense_bp = NULL;
16416 
16417         /* This pkt is no longer interested in getting sense data */
16418         ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
16419 
16420         return (bp);
16421 }
16422 
16423 
16424 
16425 /*
16426  *    Function: sd_alloc_rqs
16427  *
16428  * Description: Set up the unit to receive auto request sense data
16429  *
16430  * Return Code: DDI_SUCCESS or DDI_FAILURE
16431  *
16432  *     Context: Called under attach(9E) context
16433  */
16434 
16435 static int
16436 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
16437 {
16438         struct sd_xbuf *xp;
16439 
16440         ASSERT(un != NULL);
16441         ASSERT(!mutex_owned(SD_MUTEX(un)));
16442         ASSERT(un->un_rqs_bp == NULL);
16443         ASSERT(un->un_rqs_pktp == NULL);
16444 
16445         /*
16446          * First allocate the required buf and scsi_pkt structs, then set up
16447          * the CDB in the scsi_pkt for a REQUEST SENSE command.
16448          */
16449         un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
16450             MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
16451         if (un->un_rqs_bp == NULL) {
16452                 return (DDI_FAILURE);
16453         }
16454 
16455         un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
16456             CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
16457 
16458         if (un->un_rqs_pktp == NULL) {
16459                 sd_free_rqs(un);
16460                 return (DDI_FAILURE);
16461         }
16462 
16463         /* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
16464         (void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
16465             SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
16466 
16467         SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
16468 
16469         /* Set up the other needed members in the ARQ scsi_pkt. */
16470         un->un_rqs_pktp->pkt_comp   = sdintr;
16471         un->un_rqs_pktp->pkt_time   = sd_io_time;
16472         un->un_rqs_pktp->pkt_flags |=
16473             (FLAG_SENSING | FLAG_HEAD); /* (1222170) */
16474 
16475         /*
16476          * Allocate  & init the sd_xbuf struct for the RQS command. Do not
16477          * provide any intpkt, destroypkt routines as we take care of
16478          * scsi_pkt allocation/freeing here and in sd_free_rqs().
16479          */
16480         xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
16481         sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
16482         xp->xb_pktp = un->un_rqs_pktp;
16483         SD_INFO(SD_LOG_ATTACH_DETACH, un,
16484             "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
16485             un, xp, un->un_rqs_pktp, un->un_rqs_bp);
16486 
16487         /*
16488          * Save the pointer to the request sense private bp so it can
16489          * be retrieved in sdintr.
16490          */
16491         un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
16492         ASSERT(un->un_rqs_bp->b_private == xp);
16493 
16494         /*
16495          * See if the HBA supports auto-request sense for the specified
16496          * target/lun. If it does, then try to enable it (if not already
16497          * enabled).
16498          *
16499          * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
16500          * failure, while for other HBAs (pln) scsi_ifsetcap will always
16501          * return success.  However, in both of these cases ARQ is always
16502          * enabled and scsi_ifgetcap will always return true. The best approach
16503          * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
16504          *
16505          * The 3rd case is the HBA (adp) always return enabled on
16506          * scsi_ifgetgetcap even when it's not enable, the best approach
16507          * is issue a scsi_ifsetcap then a scsi_ifgetcap
16508          * Note: this case is to circumvent the Adaptec bug. (x86 only)
16509          */
16510 
16511         if (un->un_f_is_fibre == TRUE) {
16512                 un->un_f_arq_enabled = TRUE;
16513         } else {
16514 #if defined(__i386) || defined(__amd64)
16515                 /*
16516                  * Circumvent the Adaptec bug, remove this code when
16517                  * the bug is fixed
16518                  */
16519                 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
16520 #endif
16521                 switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
16522                 case 0:
16523                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
16524                             "sd_alloc_rqs: HBA supports ARQ\n");
16525                         /*
16526                          * ARQ is supported by this HBA but currently is not
16527                          * enabled. Attempt to enable it and if successful then
16528                          * mark this instance as ARQ enabled.
16529                          */
16530                         if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
16531                             == 1) {
16532                                 /* Successfully enabled ARQ in the HBA */
16533                                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
16534                                     "sd_alloc_rqs: ARQ enabled\n");
16535                                 un->un_f_arq_enabled = TRUE;
16536                         } else {
16537                                 /* Could not enable ARQ in the HBA */
16538                                 SD_INFO(SD_LOG_ATTACH_DETACH, un,
16539                                     "sd_alloc_rqs: failed ARQ enable\n");
16540                                 un->un_f_arq_enabled = FALSE;
16541                         }
16542                         break;
16543                 case 1:
16544                         /*
16545                          * ARQ is supported by this HBA and is already enabled.
16546                          * Just mark ARQ as enabled for this instance.
16547                          */
16548                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
16549                             "sd_alloc_rqs: ARQ already enabled\n");
16550                         un->un_f_arq_enabled = TRUE;
16551                         break;
16552                 default:
16553                         /*
16554                          * ARQ is not supported by this HBA; disable it for this
16555                          * instance.
16556                          */
16557                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
16558                             "sd_alloc_rqs: HBA does not support ARQ\n");
16559                         un->un_f_arq_enabled = FALSE;
16560                         break;
16561                 }
16562         }
16563 
16564         return (DDI_SUCCESS);
16565 }
16566 
16567 
16568 /*
16569  *    Function: sd_free_rqs
16570  *
16571  * Description: Cleanup for the pre-instance RQS command.
16572  *
16573  *     Context: Kernel thread context
16574  */
16575 
16576 static void
16577 sd_free_rqs(struct sd_lun *un)
16578 {
16579         ASSERT(un != NULL);
16580 
16581         SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
16582 
16583         /*
16584          * If consistent memory is bound to a scsi_pkt, the pkt
16585          * has to be destroyed *before* freeing the consistent memory.
16586          * Don't change the sequence of this operations.
16587          * scsi_destroy_pkt() might access memory, which isn't allowed,
16588          * after it was freed in scsi_free_consistent_buf().
16589          */
16590         if (un->un_rqs_pktp != NULL) {
16591                 scsi_destroy_pkt(un->un_rqs_pktp);
16592                 un->un_rqs_pktp = NULL;
16593         }
16594 
16595         if (un->un_rqs_bp != NULL) {
16596                 struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
16597                 if (xp != NULL) {
16598                         kmem_free(xp, sizeof (struct sd_xbuf));
16599                 }
16600                 scsi_free_consistent_buf(un->un_rqs_bp);
16601                 un->un_rqs_bp = NULL;
16602         }
16603         SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
16604 }
16605 
16606 
16607 
16608 /*
16609  *    Function: sd_reduce_throttle
16610  *
16611  * Description: Reduces the maximum # of outstanding commands on a
16612  *              target to the current number of outstanding commands.
16613  *              Queues a tiemout(9F) callback to restore the limit
16614  *              after a specified interval has elapsed.
16615  *              Typically used when we get a TRAN_BUSY return code
16616  *              back from scsi_transport().
16617  *
16618  *   Arguments: un - ptr to the sd_lun softstate struct
16619  *              throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
16620  *
16621  *     Context: May be called from interrupt context
16622  */
16623 
16624 static void
16625 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
16626 {
16627         ASSERT(un != NULL);
16628         ASSERT(mutex_owned(SD_MUTEX(un)));
16629         ASSERT(un->un_ncmds_in_transport >= 0);
16630 
16631         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16632             "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
16633             un, un->un_throttle, un->un_ncmds_in_transport);
16634 
16635         if (un->un_throttle > 1) {
16636                 if (un->un_f_use_adaptive_throttle == TRUE) {
16637                         switch (throttle_type) {
16638                         case SD_THROTTLE_TRAN_BUSY:
16639                                 if (un->un_busy_throttle == 0) {
16640                                         un->un_busy_throttle = un->un_throttle;
16641                                 }
16642                                 break;
16643                         case SD_THROTTLE_QFULL:
16644                                 un->un_busy_throttle = 0;
16645                                 break;
16646                         default:
16647                                 ASSERT(FALSE);
16648                         }
16649 
16650                         if (un->un_ncmds_in_transport > 0) {
16651                                 un->un_throttle = un->un_ncmds_in_transport;
16652                         }
16653 
16654                 } else {
16655                         if (un->un_ncmds_in_transport == 0) {
16656                                 un->un_throttle = 1;
16657                         } else {
16658                                 un->un_throttle = un->un_ncmds_in_transport;
16659                         }
16660                 }
16661         }
16662 
16663         /* Reschedule the timeout if none is currently active */
16664         if (un->un_reset_throttle_timeid == NULL) {
16665                 un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
16666                     un, SD_THROTTLE_RESET_INTERVAL);
16667                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16668                     "sd_reduce_throttle: timeout scheduled!\n");
16669         }
16670 
16671         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16672             "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16673 }
16674 
16675 
16676 
16677 /*
16678  *    Function: sd_restore_throttle
16679  *
16680  * Description: Callback function for timeout(9F).  Resets the current
16681  *              value of un->un_throttle to its default.
16682  *
16683  *   Arguments: arg - pointer to associated softstate for the device.
16684  *
16685  *     Context: May be called from interrupt context
16686  */
16687 
16688 static void
16689 sd_restore_throttle(void *arg)
16690 {
16691         struct sd_lun   *un = arg;
16692 
16693         ASSERT(un != NULL);
16694         ASSERT(!mutex_owned(SD_MUTEX(un)));
16695 
16696         mutex_enter(SD_MUTEX(un));
16697 
16698         SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16699             "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16700 
16701         un->un_reset_throttle_timeid = NULL;
16702 
16703         if (un->un_f_use_adaptive_throttle == TRUE) {
16704                 /*
16705                  * If un_busy_throttle is nonzero, then it contains the
16706                  * value that un_throttle was when we got a TRAN_BUSY back
16707                  * from scsi_transport(). We want to revert back to this
16708                  * value.
16709                  *
16710                  * In the QFULL case, the throttle limit will incrementally
16711                  * increase until it reaches max throttle.
16712                  */
16713                 if (un->un_busy_throttle > 0) {
16714                         un->un_throttle = un->un_busy_throttle;
16715                         un->un_busy_throttle = 0;
16716                 } else {
16717                         /*
16718                          * increase throttle by 10% open gate slowly, schedule
16719                          * another restore if saved throttle has not been
16720                          * reached
16721                          */
16722                         short throttle;
16723                         if (sd_qfull_throttle_enable) {
16724                                 throttle = un->un_throttle +
16725                                     max((un->un_throttle / 10), 1);
16726                                 un->un_throttle =
16727                                     (throttle < un->un_saved_throttle) ?
16728                                     throttle : un->un_saved_throttle;
16729                                 if (un->un_throttle < un->un_saved_throttle) {
16730                                         un->un_reset_throttle_timeid =
16731                                             timeout(sd_restore_throttle,
16732                                             un,
16733                                             SD_QFULL_THROTTLE_RESET_INTERVAL);
16734                                 }
16735                         }
16736                 }
16737 
16738                 /*
16739                  * If un_throttle has fallen below the low-water mark, we
16740                  * restore the maximum value here (and allow it to ratchet
16741                  * down again if necessary).
16742                  */
16743                 if (un->un_throttle < un->un_min_throttle) {
16744                         un->un_throttle = un->un_saved_throttle;
16745                 }
16746         } else {
16747                 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16748                     "restoring limit from 0x%x to 0x%x\n",
16749                     un->un_throttle, un->un_saved_throttle);
16750                 un->un_throttle = un->un_saved_throttle;
16751         }
16752 
16753         SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16754             "sd_restore_throttle: calling sd_start_cmds!\n");
16755 
16756         sd_start_cmds(un, NULL);
16757 
16758         SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16759             "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
16760             un, un->un_throttle);
16761 
16762         mutex_exit(SD_MUTEX(un));
16763 
16764         SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
16765 }
16766 
16767 /*
16768  *    Function: sdrunout
16769  *
16770  * Description: Callback routine for scsi_init_pkt when a resource allocation
16771  *              fails.
16772  *
16773  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
16774  *              soft state instance.
16775  *
16776  * Return Code: The scsi_init_pkt routine allows for the callback function to
16777  *              return a 0 indicating the callback should be rescheduled or a 1
16778  *              indicating not to reschedule. This routine always returns 1
16779  *              because the driver always provides a callback function to
16780  *              scsi_init_pkt. This results in a callback always being scheduled
16781  *              (via the scsi_init_pkt callback implementation) if a resource
16782  *              failure occurs.
16783  *
16784  *     Context: This callback function may not block or call routines that block
16785  *
16786  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
16787  *              request persisting at the head of the list which cannot be
16788  *              satisfied even after multiple retries. In the future the driver
16789  *              may implement some time of maximum runout count before failing
16790  *              an I/O.
16791  */
16792 
16793 static int
16794 sdrunout(caddr_t arg)
16795 {
16796         struct sd_lun   *un = (struct sd_lun *)arg;
16797 
16798         ASSERT(un != NULL);
16799         ASSERT(!mutex_owned(SD_MUTEX(un)));
16800 
16801         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16802 
16803         mutex_enter(SD_MUTEX(un));
16804         sd_start_cmds(un, NULL);
16805         mutex_exit(SD_MUTEX(un));
16806         /*
16807          * This callback routine always returns 1 (i.e. do not reschedule)
16808          * because we always specify sdrunout as the callback handler for
16809          * scsi_init_pkt inside the call to sd_start_cmds.
16810          */
16811         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16812         return (1);
16813 }
16814 
16815 
16816 /*
16817  *    Function: sdintr
16818  *
16819  * Description: Completion callback routine for scsi_pkt(9S) structs
16820  *              sent to the HBA driver via scsi_transport(9F).
16821  *
16822  *     Context: Interrupt context
16823  */
16824 
16825 static void
16826 sdintr(struct scsi_pkt *pktp)
16827 {
16828         struct buf      *bp;
16829         struct sd_xbuf  *xp;
16830         struct sd_lun   *un;
16831         size_t          actual_len;
16832         sd_ssc_t        *sscp;
16833 
16834         ASSERT(pktp != NULL);
16835         bp = (struct buf *)pktp->pkt_private;
16836         ASSERT(bp != NULL);
16837         xp = SD_GET_XBUF(bp);
16838         ASSERT(xp != NULL);
16839         ASSERT(xp->xb_pktp != NULL);
16840         un = SD_GET_UN(bp);
16841         ASSERT(un != NULL);
16842         ASSERT(!mutex_owned(SD_MUTEX(un)));
16843 
16844 #ifdef SD_FAULT_INJECTION
16845 
16846         SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16847         /* SD FaultInjection */
16848         sd_faultinjection(pktp);
16849 
16850 #endif /* SD_FAULT_INJECTION */
16851 
16852         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16853             " xp:0x%p, un:0x%p\n", bp, xp, un);
16854 
16855         mutex_enter(SD_MUTEX(un));
16856 
16857         ASSERT(un->un_fm_private != NULL);
16858         sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
16859         ASSERT(sscp != NULL);
16860 
16861         /* Reduce the count of the #commands currently in transport */
16862         un->un_ncmds_in_transport--;
16863         ASSERT(un->un_ncmds_in_transport >= 0);
16864 
16865         /* Increment counter to indicate that the callback routine is active */
16866         un->un_in_callback++;
16867 
16868         SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16869 
16870 #ifdef  SDDEBUG
16871         if (bp == un->un_retry_bp) {
16872                 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16873                     "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16874                     un, un->un_retry_bp, un->un_ncmds_in_transport);
16875         }
16876 #endif
16877 
16878         /*
16879          * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
16880          * state if needed.
16881          */
16882         if (pktp->pkt_reason == CMD_DEV_GONE) {
16883                 /* Prevent multiple console messages for the same failure. */
16884                 if (un->un_last_pkt_reason != CMD_DEV_GONE) {
16885                         un->un_last_pkt_reason = CMD_DEV_GONE;
16886                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16887                             "Command failed to complete...Device is gone\n");
16888                 }
16889                 if (un->un_mediastate != DKIO_DEV_GONE) {
16890                         un->un_mediastate = DKIO_DEV_GONE;
16891                         cv_broadcast(&un->un_state_cv);
16892                 }
16893                 /*
16894                  * If the command happens to be the REQUEST SENSE command,
16895                  * free up the rqs buf and fail the original command.
16896                  */
16897                 if (bp == un->un_rqs_bp) {
16898                         bp = sd_mark_rqs_idle(un, xp);
16899                 }
16900                 sd_return_failed_command(un, bp, EIO);
16901                 goto exit;
16902         }
16903 
16904         if (pktp->pkt_state & STATE_XARQ_DONE) {
16905                 SD_TRACE(SD_LOG_COMMON, un,
16906                     "sdintr: extra sense data received. pkt=%p\n", pktp);
16907         }
16908 
16909         /*
16910          * First see if the pkt has auto-request sense data with it....
16911          * Look at the packet state first so we don't take a performance
16912          * hit looking at the arq enabled flag unless absolutely necessary.
16913          */
16914         if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16915             (un->un_f_arq_enabled == TRUE)) {
16916                 /*
16917                  * The HBA did an auto request sense for this command so check
16918                  * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16919                  * driver command that should not be retried.
16920                  */
16921                 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16922                         /*
16923                          * Save the relevant sense info into the xp for the
16924                          * original cmd.
16925                          */
16926                         struct scsi_arq_status *asp;
16927                         asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16928                         xp->xb_sense_status =
16929                             *((uchar_t *)(&(asp->sts_rqpkt_status)));
16930                         xp->xb_sense_state  = asp->sts_rqpkt_state;
16931                         xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16932                         if (pktp->pkt_state & STATE_XARQ_DONE) {
16933                                 actual_len = MAX_SENSE_LENGTH -
16934                                     xp->xb_sense_resid;
16935                                 bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16936                                     MAX_SENSE_LENGTH);
16937                         } else {
16938                                 if (xp->xb_sense_resid > SENSE_LENGTH) {
16939                                         actual_len = MAX_SENSE_LENGTH -
16940                                             xp->xb_sense_resid;
16941                                 } else {
16942                                         actual_len = SENSE_LENGTH -
16943                                             xp->xb_sense_resid;
16944                                 }
16945                                 if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16946                                         if ((((struct uscsi_cmd *)
16947                                             (xp->xb_pktinfo))->uscsi_rqlen) >
16948                                             actual_len) {
16949                                                 xp->xb_sense_resid =
16950                                                     (((struct uscsi_cmd *)
16951                                                     (xp->xb_pktinfo))->
16952                                                     uscsi_rqlen) - actual_len;
16953                                         } else {
16954                                                 xp->xb_sense_resid = 0;
16955                                         }
16956                                 }
16957                                 bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16958                                     SENSE_LENGTH);
16959                         }
16960 
16961                         /* fail the command */
16962                         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16963                             "sdintr: arq done and FLAG_DIAGNOSE set\n");
16964                         sd_return_failed_command(un, bp, EIO);
16965                         goto exit;
16966                 }
16967 
16968 #if (defined(__i386) || defined(__amd64))       /* DMAFREE for x86 only */
16969                 /*
16970                  * We want to either retry or fail this command, so free
16971                  * the DMA resources here.  If we retry the command then
16972                  * the DMA resources will be reallocated in sd_start_cmds().
16973                  * Note that when PKT_DMA_PARTIAL is used, this reallocation
16974                  * causes the *entire* transfer to start over again from the
16975                  * beginning of the request, even for PARTIAL chunks that
16976                  * have already transferred successfully.
16977                  */
16978                 if ((un->un_f_is_fibre == TRUE) &&
16979                     ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16980                     ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16981                         scsi_dmafree(pktp);
16982                         xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16983                 }
16984 #endif
16985 
16986                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16987                     "sdintr: arq done, sd_handle_auto_request_sense\n");
16988 
16989                 sd_handle_auto_request_sense(un, bp, xp, pktp);
16990                 goto exit;
16991         }
16992 
16993         /* Next see if this is the REQUEST SENSE pkt for the instance */
16994         if (pktp->pkt_flags & FLAG_SENSING)  {
16995                 /* This pktp is from the unit's REQUEST_SENSE command */
16996                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16997                     "sdintr: sd_handle_request_sense\n");
16998                 sd_handle_request_sense(un, bp, xp, pktp);
16999                 goto exit;
17000         }
17001 
17002         /*
17003          * Check to see if the command successfully completed as requested;
17004          * this is the most common case (and also the hot performance path).
17005          *
17006          * Requirements for successful completion are:
17007          * pkt_reason is CMD_CMPLT and packet status is status good.
17008          * In addition:
17009          * - A residual of zero indicates successful completion no matter what
17010          *   the command is.
17011          * - If the residual is not zero and the command is not a read or
17012          *   write, then it's still defined as successful completion. In other
17013          *   words, if the command is a read or write the residual must be
17014          *   zero for successful completion.
17015          * - If the residual is not zero and the command is a read or
17016          *   write, and it's a USCSICMD, then it's still defined as
17017          *   successful completion.
17018          */
17019         if ((pktp->pkt_reason == CMD_CMPLT) &&
17020             (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
17021 
17022                 /*
17023                  * Since this command is returned with a good status, we
17024                  * can reset the count for Sonoma failover.
17025                  */
17026                 un->un_sonoma_failure_count = 0;
17027 
17028                 /*
17029                  * Return all USCSI commands on good status
17030                  */
17031                 if (pktp->pkt_resid == 0) {
17032                         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17033                             "sdintr: returning command for resid == 0\n");
17034                 } else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
17035                     ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
17036                         SD_UPDATE_B_RESID(bp, pktp);
17037                         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17038                             "sdintr: returning command for resid != 0\n");
17039                 } else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
17040                         SD_UPDATE_B_RESID(bp, pktp);
17041                         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17042                             "sdintr: returning uscsi command\n");
17043                 } else {
17044                         goto not_successful;
17045                 }
17046                 sd_return_command(un, bp);
17047 
17048                 /*
17049                  * Decrement counter to indicate that the callback routine
17050                  * is done.
17051                  */
17052                 un->un_in_callback--;
17053                 ASSERT(un->un_in_callback >= 0);
17054                 mutex_exit(SD_MUTEX(un));
17055 
17056                 return;
17057         }
17058 
17059 not_successful:
17060 
17061 #if (defined(__i386) || defined(__amd64))       /* DMAFREE for x86 only */
17062         /*
17063          * The following is based upon knowledge of the underlying transport
17064          * and its use of DMA resources.  This code should be removed when
17065          * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
17066          * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
17067          * and sd_start_cmds().
17068          *
17069          * Free any DMA resources associated with this command if there
17070          * is a chance it could be retried or enqueued for later retry.
17071          * If we keep the DMA binding then mpxio cannot reissue the
17072          * command on another path whenever a path failure occurs.
17073          *
17074          * Note that when PKT_DMA_PARTIAL is used, free/reallocation
17075          * causes the *entire* transfer to start over again from the
17076          * beginning of the request, even for PARTIAL chunks that
17077          * have already transferred successfully.
17078          *
17079          * This is only done for non-uscsi commands (and also skipped for the
17080          * driver's internal RQS command). Also just do this for Fibre Channel
17081          * devices as these are the only ones that support mpxio.
17082          */
17083         if ((un->un_f_is_fibre == TRUE) &&
17084             ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
17085             ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
17086                 scsi_dmafree(pktp);
17087                 xp->xb_pkt_flags |= SD_XB_DMA_FREED;
17088         }
17089 #endif
17090 
17091         /*
17092          * The command did not successfully complete as requested so check
17093          * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
17094          * driver command that should not be retried so just return. If
17095          * FLAG_DIAGNOSE is not set the error will be processed below.
17096          */
17097         if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
17098                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17099                     "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
17100                 /*
17101                  * Issue a request sense if a check condition caused the error
17102                  * (we handle the auto request sense case above), otherwise
17103                  * just fail the command.
17104                  */
17105                 if ((pktp->pkt_reason == CMD_CMPLT) &&
17106                     (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
17107                         sd_send_request_sense_command(un, bp, pktp);
17108                 } else {
17109                         sd_return_failed_command(un, bp, EIO);
17110                 }
17111                 goto exit;
17112         }
17113 
17114         /*
17115          * The command did not successfully complete as requested so process
17116          * the error, retry, and/or attempt recovery.
17117          */
17118         switch (pktp->pkt_reason) {
17119         case CMD_CMPLT:
17120                 switch (SD_GET_PKT_STATUS(pktp)) {
17121                 case STATUS_GOOD:
17122                         /*
17123                          * The command completed successfully with a non-zero
17124                          * residual
17125                          */
17126                         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17127                             "sdintr: STATUS_GOOD \n");
17128                         sd_pkt_status_good(un, bp, xp, pktp);
17129                         break;
17130 
17131                 case STATUS_CHECK:
17132                 case STATUS_TERMINATED:
17133                         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17134                             "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
17135                         sd_pkt_status_check_condition(un, bp, xp, pktp);
17136                         break;
17137 
17138                 case STATUS_BUSY:
17139                         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17140                             "sdintr: STATUS_BUSY\n");
17141                         sd_pkt_status_busy(un, bp, xp, pktp);
17142                         break;
17143 
17144                 case STATUS_RESERVATION_CONFLICT:
17145                         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17146                             "sdintr: STATUS_RESERVATION_CONFLICT\n");
17147                         sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17148                         break;
17149 
17150                 case STATUS_QFULL:
17151                         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17152                             "sdintr: STATUS_QFULL\n");
17153                         sd_pkt_status_qfull(un, bp, xp, pktp);
17154                         break;
17155 
17156                 case STATUS_MET:
17157                 case STATUS_INTERMEDIATE:
17158                 case STATUS_SCSI2:
17159                 case STATUS_INTERMEDIATE_MET:
17160                 case STATUS_ACA_ACTIVE:
17161                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17162                             "Unexpected SCSI status received: 0x%x\n",
17163                             SD_GET_PKT_STATUS(pktp));
17164                         /*
17165                          * Mark the ssc_flags when detected invalid status
17166                          * code for non-USCSI command.
17167                          */
17168                         if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17169                                 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
17170                                     0, "stat-code");
17171                         }
17172                         sd_return_failed_command(un, bp, EIO);
17173                         break;
17174 
17175                 default:
17176                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17177                             "Invalid SCSI status received: 0x%x\n",
17178                             SD_GET_PKT_STATUS(pktp));
17179                         if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17180                                 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
17181                                     0, "stat-code");
17182                         }
17183                         sd_return_failed_command(un, bp, EIO);
17184                         break;
17185 
17186                 }
17187                 break;
17188 
17189         case CMD_INCOMPLETE:
17190                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17191                     "sdintr:  CMD_INCOMPLETE\n");
17192                 sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
17193                 break;
17194         case CMD_TRAN_ERR:
17195                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17196                     "sdintr: CMD_TRAN_ERR\n");
17197                 sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
17198                 break;
17199         case CMD_RESET:
17200                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17201                     "sdintr: CMD_RESET \n");
17202                 sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
17203                 break;
17204         case CMD_ABORTED:
17205                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17206                     "sdintr: CMD_ABORTED \n");
17207                 sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
17208                 break;
17209         case CMD_TIMEOUT:
17210                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17211                     "sdintr: CMD_TIMEOUT\n");
17212                 sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
17213                 break;
17214         case CMD_UNX_BUS_FREE:
17215                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17216                     "sdintr: CMD_UNX_BUS_FREE \n");
17217                 sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
17218                 break;
17219         case CMD_TAG_REJECT:
17220                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17221                     "sdintr: CMD_TAG_REJECT\n");
17222                 sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
17223                 break;
17224         default:
17225                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17226                     "sdintr: default\n");
17227                 /*
17228                  * Mark the ssc_flags for detecting invliad pkt_reason.
17229                  */
17230                 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17231                         sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON,
17232                             0, "pkt-reason");
17233                 }
17234                 sd_pkt_reason_default(un, bp, xp, pktp);
17235                 break;
17236         }
17237 
17238 exit:
17239         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
17240 
17241         /* Decrement counter to indicate that the callback routine is done. */
17242         un->un_in_callback--;
17243         ASSERT(un->un_in_callback >= 0);
17244 
17245         /*
17246          * At this point, the pkt has been dispatched, ie, it is either
17247          * being re-tried or has been returned to its caller and should
17248          * not be referenced.
17249          */
17250 
17251         mutex_exit(SD_MUTEX(un));
17252 }
17253 
17254 
17255 /*
17256  *    Function: sd_print_incomplete_msg
17257  *
17258  * Description: Prints the error message for a CMD_INCOMPLETE error.
17259  *
17260  *   Arguments: un - ptr to associated softstate for the device.
17261  *              bp - ptr to the buf(9S) for the command.
17262  *              arg - message string ptr
17263  *              code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
17264  *                      or SD_NO_RETRY_ISSUED.
17265  *
17266  *     Context: May be called under interrupt context
17267  */
17268 
17269 static void
17270 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17271 {
17272         struct scsi_pkt *pktp;
17273         char    *msgp;
17274         char    *cmdp = arg;
17275 
17276         ASSERT(un != NULL);
17277         ASSERT(mutex_owned(SD_MUTEX(un)));
17278         ASSERT(bp != NULL);
17279         ASSERT(arg != NULL);
17280         pktp = SD_GET_PKTP(bp);
17281         ASSERT(pktp != NULL);
17282 
17283         switch (code) {
17284         case SD_DELAYED_RETRY_ISSUED:
17285         case SD_IMMEDIATE_RETRY_ISSUED:
17286                 msgp = "retrying";
17287                 break;
17288         case SD_NO_RETRY_ISSUED:
17289         default:
17290                 msgp = "giving up";
17291                 break;
17292         }
17293 
17294         if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17295                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17296                     "incomplete %s- %s\n", cmdp, msgp);
17297         }
17298 }
17299 
17300 
17301 
17302 /*
17303  *    Function: sd_pkt_status_good
17304  *
17305  * Description: Processing for a STATUS_GOOD code in pkt_status.
17306  *
17307  *     Context: May be called under interrupt context
17308  */
17309 
17310 static void
17311 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
17312         struct sd_xbuf *xp, struct scsi_pkt *pktp)
17313 {
17314         char    *cmdp;
17315 
17316         ASSERT(un != NULL);
17317         ASSERT(mutex_owned(SD_MUTEX(un)));
17318         ASSERT(bp != NULL);
17319         ASSERT(xp != NULL);
17320         ASSERT(pktp != NULL);
17321         ASSERT(pktp->pkt_reason == CMD_CMPLT);
17322         ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
17323         ASSERT(pktp->pkt_resid != 0);
17324 
17325         SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
17326 
17327         SD_UPDATE_ERRSTATS(un, sd_harderrs);
17328         switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
17329         case SCMD_READ:
17330                 cmdp = "read";
17331                 break;
17332         case SCMD_WRITE:
17333                 cmdp = "write";
17334                 break;
17335         default:
17336                 SD_UPDATE_B_RESID(bp, pktp);
17337                 sd_return_command(un, bp);
17338                 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17339                 return;
17340         }
17341 
17342         /*
17343          * See if we can retry the read/write, preferrably immediately.
17344          * If retries are exhaused, then sd_retry_command() will update
17345          * the b_resid count.
17346          */
17347         sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
17348             cmdp, EIO, (clock_t)0, NULL);
17349 
17350         SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17351 }
17352 
17353 
17354 
17355 
17356 
17357 /*
17358  *    Function: sd_handle_request_sense
17359  *
17360  * Description: Processing for non-auto Request Sense command.
17361  *
17362  *   Arguments: un - ptr to associated softstate
17363  *              sense_bp - ptr to buf(9S) for the RQS command
17364  *              sense_xp - ptr to the sd_xbuf for the RQS command
17365  *              sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
17366  *
17367  *     Context: May be called under interrupt context
17368  */
17369 
17370 static void
17371 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
17372         struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
17373 {
17374         struct buf      *cmd_bp;        /* buf for the original command */
17375         struct sd_xbuf  *cmd_xp;        /* sd_xbuf for the original command */
17376         struct scsi_pkt *cmd_pktp;      /* pkt for the original command */
17377         size_t          actual_len;     /* actual sense data length */
17378 
17379         ASSERT(un != NULL);
17380         ASSERT(mutex_owned(SD_MUTEX(un)));
17381         ASSERT(sense_bp != NULL);
17382         ASSERT(sense_xp != NULL);
17383         ASSERT(sense_pktp != NULL);
17384 
17385         /*
17386          * Note the sense_bp, sense_xp, and sense_pktp here are for the
17387          * RQS command and not the original command.
17388          */
17389         ASSERT(sense_pktp == un->un_rqs_pktp);
17390         ASSERT(sense_bp   == un->un_rqs_bp);
17391         ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
17392             (FLAG_SENSING | FLAG_HEAD));
17393         ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
17394             FLAG_SENSING) == FLAG_SENSING);
17395 
17396         /* These are the bp, xp, and pktp for the original command */
17397         cmd_bp = sense_xp->xb_sense_bp;
17398         cmd_xp = SD_GET_XBUF(cmd_bp);
17399         cmd_pktp = SD_GET_PKTP(cmd_bp);
17400 
17401         if (sense_pktp->pkt_reason != CMD_CMPLT) {
17402                 /*
17403                  * The REQUEST SENSE command failed.  Release the REQUEST
17404                  * SENSE command for re-use, get back the bp for the original
17405                  * command, and attempt to re-try the original command if
17406                  * FLAG_DIAGNOSE is not set in the original packet.
17407                  */
17408                 SD_UPDATE_ERRSTATS(un, sd_harderrs);
17409                 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17410                         cmd_bp = sd_mark_rqs_idle(un, sense_xp);
17411                         sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
17412                             NULL, NULL, EIO, (clock_t)0, NULL);
17413                         return;
17414                 }
17415         }
17416 
17417         /*
17418          * Save the relevant sense info into the xp for the original cmd.
17419          *
17420          * Note: if the request sense failed the state info will be zero
17421          * as set in sd_mark_rqs_busy()
17422          */
17423         cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
17424         cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
17425         actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
17426         if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
17427             (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
17428             SENSE_LENGTH)) {
17429                 bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
17430                     MAX_SENSE_LENGTH);
17431                 cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
17432         } else {
17433                 bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
17434                     SENSE_LENGTH);
17435                 if (actual_len < SENSE_LENGTH) {
17436                         cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
17437                 } else {
17438                         cmd_xp->xb_sense_resid = 0;
17439                 }
17440         }
17441 
17442         /*
17443          *  Free up the RQS command....
17444          *  NOTE:
17445          *      Must do this BEFORE calling sd_validate_sense_data!
17446          *      sd_validate_sense_data may return the original command in
17447          *      which case the pkt will be freed and the flags can no
17448          *      longer be touched.
17449          *      SD_MUTEX is held through this process until the command
17450          *      is dispatched based upon the sense data, so there are
17451          *      no race conditions.
17452          */
17453         (void) sd_mark_rqs_idle(un, sense_xp);
17454 
17455         /*
17456          * For a retryable command see if we have valid sense data, if so then
17457          * turn it over to sd_decode_sense() to figure out the right course of
17458          * action. Just fail a non-retryable command.
17459          */
17460         if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17461                 if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
17462                     SD_SENSE_DATA_IS_VALID) {
17463                         sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
17464                 }
17465         } else {
17466                 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
17467                     (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17468                 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
17469                     (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
17470                 sd_return_failed_command(un, cmd_bp, EIO);
17471         }
17472 }
17473 
17474 
17475 
17476 
17477 /*
17478  *    Function: sd_handle_auto_request_sense
17479  *
17480  * Description: Processing for auto-request sense information.
17481  *
17482  *   Arguments: un - ptr to associated softstate
17483  *              bp - ptr to buf(9S) for the command
17484  *              xp - ptr to the sd_xbuf for the command
17485  *              pktp - ptr to the scsi_pkt(9S) for the command
17486  *
17487  *     Context: May be called under interrupt context
17488  */
17489 
17490 static void
17491 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
17492         struct sd_xbuf *xp, struct scsi_pkt *pktp)
17493 {
17494         struct scsi_arq_status *asp;
17495         size_t actual_len;
17496 
17497         ASSERT(un != NULL);
17498         ASSERT(mutex_owned(SD_MUTEX(un)));
17499         ASSERT(bp != NULL);
17500         ASSERT(xp != NULL);
17501         ASSERT(pktp != NULL);
17502         ASSERT(pktp != un->un_rqs_pktp);
17503         ASSERT(bp   != un->un_rqs_bp);
17504 
17505         /*
17506          * For auto-request sense, we get a scsi_arq_status back from
17507          * the HBA, with the sense data in the sts_sensedata member.
17508          * The pkt_scbp of the packet points to this scsi_arq_status.
17509          */
17510         asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
17511 
17512         if (asp->sts_rqpkt_reason != CMD_CMPLT) {
17513                 /*
17514                  * The auto REQUEST SENSE failed; see if we can re-try
17515                  * the original command.
17516                  */
17517                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17518                     "auto request sense failed (reason=%s)\n",
17519                     scsi_rname(asp->sts_rqpkt_reason));
17520 
17521                 sd_reset_target(un, pktp);
17522 
17523                 sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17524                     NULL, NULL, EIO, (clock_t)0, NULL);
17525                 return;
17526         }
17527 
17528         /* Save the relevant sense info into the xp for the original cmd. */
17529         xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
17530         xp->xb_sense_state  = asp->sts_rqpkt_state;
17531         xp->xb_sense_resid  = asp->sts_rqpkt_resid;
17532         if (xp->xb_sense_state & STATE_XARQ_DONE) {
17533                 actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
17534                 bcopy(&asp->sts_sensedata, xp->xb_sense_data,
17535                     MAX_SENSE_LENGTH);
17536         } else {
17537                 if (xp->xb_sense_resid > SENSE_LENGTH) {
17538                         actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
17539                 } else {
17540                         actual_len = SENSE_LENGTH - xp->xb_sense_resid;
17541                 }
17542                 if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
17543                         if ((((struct uscsi_cmd *)
17544                             (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) {
17545                                 xp->xb_sense_resid = (((struct uscsi_cmd *)
17546                                     (xp->xb_pktinfo))->uscsi_rqlen) -
17547                                     actual_len;
17548                         } else {
17549                                 xp->xb_sense_resid = 0;
17550                         }
17551                 }
17552                 bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
17553         }
17554 
17555         /*
17556          * See if we have valid sense data, if so then turn it over to
17557          * sd_decode_sense() to figure out the right course of action.
17558          */
17559         if (sd_validate_sense_data(un, bp, xp, actual_len) ==
17560             SD_SENSE_DATA_IS_VALID) {
17561                 sd_decode_sense(un, bp, xp, pktp);
17562         }
17563 }
17564 
17565 
17566 /*
17567  *    Function: sd_print_sense_failed_msg
17568  *
17569  * Description: Print log message when RQS has failed.
17570  *
17571  *   Arguments: un - ptr to associated softstate
17572  *              bp - ptr to buf(9S) for the command
17573  *              arg - generic message string ptr
17574  *              code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17575  *                      or SD_NO_RETRY_ISSUED
17576  *
17577  *     Context: May be called from interrupt context
17578  */
17579 
17580 static void
17581 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
17582         int code)
17583 {
17584         char    *msgp = arg;
17585 
17586         ASSERT(un != NULL);
17587         ASSERT(mutex_owned(SD_MUTEX(un)));
17588         ASSERT(bp != NULL);
17589 
17590         if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
17591                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
17592         }
17593 }
17594 
17595 
17596 /*
17597  *    Function: sd_validate_sense_data
17598  *
17599  * Description: Check the given sense data for validity.
17600  *              If the sense data is not valid, the command will
17601  *              be either failed or retried!
17602  *
17603  * Return Code: SD_SENSE_DATA_IS_INVALID
17604  *              SD_SENSE_DATA_IS_VALID
17605  *
17606  *     Context: May be called from interrupt context
17607  */
17608 
17609 static int
17610 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17611         size_t actual_len)
17612 {
17613         struct scsi_extended_sense *esp;
17614         struct  scsi_pkt *pktp;
17615         char    *msgp = NULL;
17616         sd_ssc_t *sscp;
17617 
17618         ASSERT(un != NULL);
17619         ASSERT(mutex_owned(SD_MUTEX(un)));
17620         ASSERT(bp != NULL);
17621         ASSERT(bp != un->un_rqs_bp);
17622         ASSERT(xp != NULL);
17623         ASSERT(un->un_fm_private != NULL);
17624 
17625         pktp = SD_GET_PKTP(bp);
17626         ASSERT(pktp != NULL);
17627 
17628         sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
17629         ASSERT(sscp != NULL);
17630 
17631         /*
17632          * Check the status of the RQS command (auto or manual).
17633          */
17634         switch (xp->xb_sense_status & STATUS_MASK) {
17635         case STATUS_GOOD:
17636                 break;
17637 
17638         case STATUS_RESERVATION_CONFLICT:
17639                 sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17640                 return (SD_SENSE_DATA_IS_INVALID);
17641 
17642         case STATUS_BUSY:
17643                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17644                     "Busy Status on REQUEST SENSE\n");
17645                 sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
17646                     NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
17647                 return (SD_SENSE_DATA_IS_INVALID);
17648 
17649         case STATUS_QFULL:
17650                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17651                     "QFULL Status on REQUEST SENSE\n");
17652                 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
17653                     NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
17654                 return (SD_SENSE_DATA_IS_INVALID);
17655 
17656         case STATUS_CHECK:
17657         case STATUS_TERMINATED:
17658                 msgp = "Check Condition on REQUEST SENSE\n";
17659                 goto sense_failed;
17660 
17661         default:
17662                 msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
17663                 goto sense_failed;
17664         }
17665 
17666         /*
17667          * See if we got the minimum required amount of sense data.
17668          * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
17669          * or less.
17670          */
17671         if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
17672             (actual_len == 0)) {
17673                 msgp = "Request Sense couldn't get sense data\n";
17674                 goto sense_failed;
17675         }
17676 
17677         if (actual_len < SUN_MIN_SENSE_LENGTH) {
17678                 msgp = "Not enough sense information\n";
17679                 /* Mark the ssc_flags for detecting invalid sense data */
17680                 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17681                         sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17682                             "sense-data");
17683                 }
17684                 goto sense_failed;
17685         }
17686 
17687         /*
17688          * We require the extended sense data
17689          */
17690         esp = (struct scsi_extended_sense *)xp->xb_sense_data;
17691         if (esp->es_class != CLASS_EXTENDED_SENSE) {
17692                 if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17693                         static char tmp[8];
17694                         static char buf[148];
17695                         char *p = (char *)(xp->xb_sense_data);
17696                         int i;
17697 
17698                         mutex_enter(&sd_sense_mutex);
17699                         (void) strcpy(buf, "undecodable sense information:");
17700                         for (i = 0; i < actual_len; i++) {
17701                                 (void) sprintf(tmp, " 0x%x", *(p++)&0xff);
17702                                 (void) strcpy(&buf[strlen(buf)], tmp);
17703                         }
17704                         i = strlen(buf);
17705                         (void) strcpy(&buf[i], "-(assumed fatal)\n");
17706 
17707                         if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
17708                                 scsi_log(SD_DEVINFO(un), sd_label,
17709                                     CE_WARN, buf);
17710                         }
17711                         mutex_exit(&sd_sense_mutex);
17712                 }
17713 
17714                 /* Mark the ssc_flags for detecting invalid sense data */
17715                 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17716                         sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17717                             "sense-data");
17718                 }
17719 
17720                 /* Note: Legacy behavior, fail the command with no retry */
17721                 sd_return_failed_command(un, bp, EIO);
17722                 return (SD_SENSE_DATA_IS_INVALID);
17723         }
17724 
17725         /*
17726          * Check that es_code is valid (es_class concatenated with es_code
17727          * make up the "response code" field.  es_class will always be 7, so
17728          * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
17729          * format.
17730          */
17731         if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
17732             (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
17733             (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
17734             (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
17735             (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
17736                 /* Mark the ssc_flags for detecting invalid sense data */
17737                 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17738                         sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17739                             "sense-data");
17740                 }
17741                 goto sense_failed;
17742         }
17743 
17744         return (SD_SENSE_DATA_IS_VALID);
17745 
17746 sense_failed:
17747         /*
17748          * If the request sense failed (for whatever reason), attempt
17749          * to retry the original command.
17750          */
17751 #if defined(__i386) || defined(__amd64)
17752         /*
17753          * SD_RETRY_DELAY is conditionally compile (#if fibre) in
17754          * sddef.h for Sparc platform, and x86 uses 1 binary
17755          * for both SCSI/FC.
17756          * The SD_RETRY_DELAY value need to be adjusted here
17757          * when SD_RETRY_DELAY change in sddef.h
17758          */
17759         sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17760             sd_print_sense_failed_msg, msgp, EIO,
17761             un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
17762 #else
17763         sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17764             sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
17765 #endif
17766 
17767         return (SD_SENSE_DATA_IS_INVALID);
17768 }
17769 
17770 /*
17771  *    Function: sd_decode_sense
17772  *
17773  * Description: Take recovery action(s) when SCSI Sense Data is received.
17774  *
17775  *     Context: Interrupt context.
17776  */
17777 
17778 static void
17779 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17780         struct scsi_pkt *pktp)
17781 {
17782         uint8_t sense_key;
17783 
17784         ASSERT(un != NULL);
17785         ASSERT(mutex_owned(SD_MUTEX(un)));
17786         ASSERT(bp != NULL);
17787         ASSERT(bp != un->un_rqs_bp);
17788         ASSERT(xp != NULL);
17789         ASSERT(pktp != NULL);
17790 
17791         sense_key = scsi_sense_key(xp->xb_sense_data);
17792 
17793         switch (sense_key) {
17794         case KEY_NO_SENSE:
17795                 sd_sense_key_no_sense(un, bp, xp, pktp);
17796                 break;
17797         case KEY_RECOVERABLE_ERROR:
17798                 sd_sense_key_recoverable_error(un, xp->xb_sense_data,
17799                     bp, xp, pktp);
17800                 break;
17801         case KEY_NOT_READY:
17802                 sd_sense_key_not_ready(un, xp->xb_sense_data,
17803                     bp, xp, pktp);
17804                 break;
17805         case KEY_MEDIUM_ERROR:
17806         case KEY_HARDWARE_ERROR:
17807                 sd_sense_key_medium_or_hardware_error(un,
17808                     xp->xb_sense_data, bp, xp, pktp);
17809                 break;
17810         case KEY_ILLEGAL_REQUEST:
17811                 sd_sense_key_illegal_request(un, bp, xp, pktp);
17812                 break;
17813         case KEY_UNIT_ATTENTION:
17814                 sd_sense_key_unit_attention(un, xp->xb_sense_data,
17815                     bp, xp, pktp);
17816                 break;
17817         case KEY_WRITE_PROTECT:
17818         case KEY_VOLUME_OVERFLOW:
17819         case KEY_MISCOMPARE:
17820                 sd_sense_key_fail_command(un, bp, xp, pktp);
17821                 break;
17822         case KEY_BLANK_CHECK:
17823                 sd_sense_key_blank_check(un, bp, xp, pktp);
17824                 break;
17825         case KEY_ABORTED_COMMAND:
17826                 sd_sense_key_aborted_command(un, bp, xp, pktp);
17827                 break;
17828         case KEY_VENDOR_UNIQUE:
17829         case KEY_COPY_ABORTED:
17830         case KEY_EQUAL:
17831         case KEY_RESERVED:
17832         default:
17833                 sd_sense_key_default(un, xp->xb_sense_data,
17834                     bp, xp, pktp);
17835                 break;
17836         }
17837 }
17838 
17839 
17840 /*
17841  *    Function: sd_dump_memory
17842  *
17843  * Description: Debug logging routine to print the contents of a user provided
17844  *              buffer. The output of the buffer is broken up into 256 byte
17845  *              segments due to a size constraint of the scsi_log.
17846  *              implementation.
17847  *
17848  *   Arguments: un - ptr to softstate
17849  *              comp - component mask
17850  *              title - "title" string to preceed data when printed
17851  *              data - ptr to data block to be printed
17852  *              len - size of data block to be printed
17853  *              fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17854  *
17855  *     Context: May be called from interrupt context
17856  */
17857 
17858 #define SD_DUMP_MEMORY_BUF_SIZE 256
17859 
17860 static char *sd_dump_format_string[] = {
17861                 " 0x%02x",
17862                 " %c"
17863 };
17864 
17865 static void
17866 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17867     int len, int fmt)
17868 {
17869         int     i, j;
17870         int     avail_count;
17871         int     start_offset;
17872         int     end_offset;
17873         size_t  entry_len;
17874         char    *bufp;
17875         char    *local_buf;
17876         char    *format_string;
17877 
17878         ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17879 
17880         /*
17881          * In the debug version of the driver, this function is called from a
17882          * number of places which are NOPs in the release driver.
17883          * The debug driver therefore has additional methods of filtering
17884          * debug output.
17885          */
17886 #ifdef SDDEBUG
17887         /*
17888          * In the debug version of the driver we can reduce the amount of debug
17889          * messages by setting sd_error_level to something other than
17890          * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17891          * sd_component_mask.
17892          */
17893         if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17894             (sd_error_level != SCSI_ERR_ALL)) {
17895                 return;
17896         }
17897         if (((sd_component_mask & comp) == 0) ||
17898             (sd_error_level != SCSI_ERR_ALL)) {
17899                 return;
17900         }
17901 #else
17902         if (sd_error_level != SCSI_ERR_ALL) {
17903                 return;
17904         }
17905 #endif
17906 
17907         local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17908         bufp = local_buf;
17909         /*
17910          * Available length is the length of local_buf[], minus the
17911          * length of the title string, minus one for the ":", minus
17912          * one for the newline, minus one for the NULL terminator.
17913          * This gives the #bytes available for holding the printed
17914          * values from the given data buffer.
17915          */
17916         if (fmt == SD_LOG_HEX) {
17917                 format_string = sd_dump_format_string[0];
17918         } else /* SD_LOG_CHAR */ {
17919                 format_string = sd_dump_format_string[1];
17920         }
17921         /*
17922          * Available count is the number of elements from the given
17923          * data buffer that we can fit into the available length.
17924          * This is based upon the size of the format string used.
17925          * Make one entry and find it's size.
17926          */
17927         (void) sprintf(bufp, format_string, data[0]);
17928         entry_len = strlen(bufp);
17929         avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17930 
17931         j = 0;
17932         while (j < len) {
17933                 bufp = local_buf;
17934                 bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17935                 start_offset = j;
17936 
17937                 end_offset = start_offset + avail_count;
17938 
17939                 (void) sprintf(bufp, "%s:", title);
17940                 bufp += strlen(bufp);
17941                 for (i = start_offset; ((i < end_offset) && (j < len));
17942                     i++, j++) {
17943                         (void) sprintf(bufp, format_string, data[i]);
17944                         bufp += entry_len;
17945                 }
17946                 (void) sprintf(bufp, "\n");
17947 
17948                 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17949         }
17950         kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17951 }
17952 
17953 /*
17954  *    Function: sd_print_sense_msg
17955  *
17956  * Description: Log a message based upon the given sense data.
17957  *
17958  *   Arguments: un - ptr to associated softstate
17959  *              bp - ptr to buf(9S) for the command
17960  *              arg - ptr to associate sd_sense_info struct
17961  *              code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17962  *                      or SD_NO_RETRY_ISSUED
17963  *
17964  *     Context: May be called from interrupt context
17965  */
17966 
17967 static void
17968 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17969 {
17970         struct sd_xbuf  *xp;
17971         struct scsi_pkt *pktp;
17972         uint8_t *sensep;
17973         daddr_t request_blkno;
17974         diskaddr_t err_blkno;
17975         int severity;
17976         int pfa_flag;
17977         extern struct scsi_key_strings scsi_cmds[];
17978 
17979         ASSERT(un != NULL);
17980         ASSERT(mutex_owned(SD_MUTEX(un)));
17981         ASSERT(bp != NULL);
17982         xp = SD_GET_XBUF(bp);
17983         ASSERT(xp != NULL);
17984         pktp = SD_GET_PKTP(bp);
17985         ASSERT(pktp != NULL);
17986         ASSERT(arg != NULL);
17987 
17988         severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17989         pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17990 
17991         if ((code == SD_DELAYED_RETRY_ISSUED) ||
17992             (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17993                 severity = SCSI_ERR_RETRYABLE;
17994         }
17995 
17996         /* Use absolute block number for the request block number */
17997         request_blkno = xp->xb_blkno;
17998 
17999         /*
18000          * Now try to get the error block number from the sense data
18001          */
18002         sensep = xp->xb_sense_data;
18003 
18004         if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
18005             (uint64_t *)&err_blkno)) {
18006                 /*
18007                  * We retrieved the error block number from the information
18008                  * portion of the sense data.
18009                  *
18010                  * For USCSI commands we are better off using the error
18011                  * block no. as the requested block no. (This is the best
18012                  * we can estimate.)
18013                  */
18014                 if ((SD_IS_BUFIO(xp) == FALSE) &&
18015                     ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
18016                         request_blkno = err_blkno;
18017                 }
18018         } else {
18019                 /*
18020                  * Without the es_valid bit set (for fixed format) or an
18021                  * information descriptor (for descriptor format) we cannot
18022                  * be certain of the error blkno, so just use the
18023                  * request_blkno.
18024                  */
18025                 err_blkno = (diskaddr_t)request_blkno;
18026         }
18027 
18028         /*
18029          * The following will log the buffer contents for the release driver
18030          * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
18031          * level is set to verbose.
18032          */
18033         sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
18034             (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
18035         sd_dump_memory(un, SD_LOG_IO, "Sense Data",
18036             (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
18037 
18038         if (pfa_flag == FALSE) {
18039                 /* This is normally only set for USCSI */
18040                 if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
18041                         return;
18042                 }
18043 
18044                 if ((SD_IS_BUFIO(xp) == TRUE) &&
18045                     (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
18046                     (severity < sd_error_level))) {
18047                         return;
18048                 }
18049         }
18050         /*
18051          * Check for Sonoma Failover and keep a count of how many failed I/O's
18052          */
18053         if ((SD_IS_LSI(un)) &&
18054             (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
18055             (scsi_sense_asc(sensep) == 0x94) &&
18056             (scsi_sense_ascq(sensep) == 0x01)) {
18057                 un->un_sonoma_failure_count++;
18058                 if (un->un_sonoma_failure_count > 1) {
18059                         return;
18060                 }
18061         }
18062 
18063         if (SD_FM_LOG(un) == SD_FM_LOG_NSUP ||
18064             ((scsi_sense_key(sensep) == KEY_RECOVERABLE_ERROR) &&
18065             (pktp->pkt_resid == 0))) {
18066                 scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
18067                     request_blkno, err_blkno, scsi_cmds,
18068                     (struct scsi_extended_sense *)sensep,
18069                     un->un_additional_codes, NULL);
18070         }
18071 }
18072 
18073 /*
18074  *    Function: sd_sense_key_no_sense
18075  *
18076  * Description: Recovery action when sense data was not received.
18077  *
18078  *     Context: May be called from interrupt context
18079  */
18080 
18081 static void
18082 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
18083         struct sd_xbuf *xp, struct scsi_pkt *pktp)
18084 {
18085         struct sd_sense_info    si;
18086 
18087         ASSERT(un != NULL);
18088         ASSERT(mutex_owned(SD_MUTEX(un)));
18089         ASSERT(bp != NULL);
18090         ASSERT(xp != NULL);
18091         ASSERT(pktp != NULL);
18092 
18093         si.ssi_severity = SCSI_ERR_FATAL;
18094         si.ssi_pfa_flag = FALSE;
18095 
18096         SD_UPDATE_ERRSTATS(un, sd_softerrs);
18097 
18098         sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18099             &si, EIO, (clock_t)0, NULL);
18100 }
18101 
18102 
18103 /*
18104  *    Function: sd_sense_key_recoverable_error
18105  *
18106  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
18107  *
18108  *     Context: May be called from interrupt context
18109  */
18110 
18111 static void
18112 sd_sense_key_recoverable_error(struct sd_lun *un,
18113         uint8_t *sense_datap,
18114         struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18115 {
18116         struct sd_sense_info    si;
18117         uint8_t asc = scsi_sense_asc(sense_datap);
18118         uint8_t ascq = scsi_sense_ascq(sense_datap);
18119 
18120         ASSERT(un != NULL);
18121         ASSERT(mutex_owned(SD_MUTEX(un)));
18122         ASSERT(bp != NULL);
18123         ASSERT(xp != NULL);
18124         ASSERT(pktp != NULL);
18125 
18126         /*
18127          * 0x00, 0x1D: ATA PASSTHROUGH INFORMATION AVAILABLE
18128          */
18129         if (asc == 0x00 && ascq == 0x1D) {
18130                 sd_return_command(un, bp);
18131                 return;
18132         }
18133 
18134         /*
18135          * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
18136          */
18137         if ((asc == 0x5D) && (sd_report_pfa != 0)) {
18138                 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18139                 si.ssi_severity = SCSI_ERR_INFO;
18140                 si.ssi_pfa_flag = TRUE;
18141         } else {
18142                 SD_UPDATE_ERRSTATS(un, sd_softerrs);
18143                 SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
18144                 si.ssi_severity = SCSI_ERR_RECOVERED;
18145                 si.ssi_pfa_flag = FALSE;
18146         }
18147 
18148         if (pktp->pkt_resid == 0) {
18149                 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18150                 sd_return_command(un, bp);
18151                 return;
18152         }
18153 
18154         sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18155             &si, EIO, (clock_t)0, NULL);
18156 }
18157 
18158 
18159 
18160 
18161 /*
18162  *    Function: sd_sense_key_not_ready
18163  *
18164  * Description: Recovery actions for a SCSI "Not Ready" sense key.
18165  *
18166  *     Context: May be called from interrupt context
18167  */
18168 
18169 static void
18170 sd_sense_key_not_ready(struct sd_lun *un,
18171         uint8_t *sense_datap,
18172         struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18173 {
18174         struct sd_sense_info    si;
18175         uint8_t asc = scsi_sense_asc(sense_datap);
18176         uint8_t ascq = scsi_sense_ascq(sense_datap);
18177 
18178         ASSERT(un != NULL);
18179         ASSERT(mutex_owned(SD_MUTEX(un)));
18180         ASSERT(bp != NULL);
18181         ASSERT(xp != NULL);
18182         ASSERT(pktp != NULL);
18183 
18184         si.ssi_severity = SCSI_ERR_FATAL;
18185         si.ssi_pfa_flag = FALSE;
18186 
18187         /*
18188          * Update error stats after first NOT READY error. Disks may have
18189          * been powered down and may need to be restarted.  For CDROMs,
18190          * report NOT READY errors only if media is present.
18191          */
18192         if ((ISCD(un) && (asc == 0x3A)) ||
18193             (xp->xb_nr_retry_count > 0)) {
18194                 SD_UPDATE_ERRSTATS(un, sd_harderrs);
18195                 SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
18196         }
18197 
18198         /*
18199          * Just fail if the "not ready" retry limit has been reached.
18200          */
18201         if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
18202                 /* Special check for error message printing for removables. */
18203                 if (un->un_f_has_removable_media && (asc == 0x04) &&
18204                     (ascq >= 0x04)) {
18205                         si.ssi_severity = SCSI_ERR_ALL;
18206                 }
18207                 goto fail_command;
18208         }
18209 
18210         /*
18211          * Check the ASC and ASCQ in the sense data as needed, to determine
18212          * what to do.
18213          */
18214         switch (asc) {
18215         case 0x04:      /* LOGICAL UNIT NOT READY */
18216                 /*
18217                  * disk drives that don't spin up result in a very long delay
18218                  * in format without warning messages. We will log a message
18219                  * if the error level is set to verbose.
18220                  */
18221                 if (sd_error_level < SCSI_ERR_RETRYABLE) {
18222                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18223                             "logical unit not ready, resetting disk\n");
18224                 }
18225 
18226                 /*
18227                  * There are different requirements for CDROMs and disks for
18228                  * the number of retries.  If a CD-ROM is giving this, it is
18229                  * probably reading TOC and is in the process of getting
18230                  * ready, so we should keep on trying for a long time to make
18231                  * sure that all types of media are taken in account (for
18232                  * some media the drive takes a long time to read TOC).  For
18233                  * disks we do not want to retry this too many times as this
18234                  * can cause a long hang in format when the drive refuses to
18235                  * spin up (a very common failure).
18236                  */
18237                 switch (ascq) {
18238                 case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
18239                         /*
18240                          * Disk drives frequently refuse to spin up which
18241                          * results in a very long hang in format without
18242                          * warning messages.
18243                          *
18244                          * Note: This code preserves the legacy behavior of
18245                          * comparing xb_nr_retry_count against zero for fibre
18246                          * channel targets instead of comparing against the
18247                          * un_reset_retry_count value.  The reason for this
18248                          * discrepancy has been so utterly lost beneath the
18249                          * Sands of Time that even Indiana Jones could not
18250                          * find it.
18251                          */
18252                         if (un->un_f_is_fibre == TRUE) {
18253                                 if (((sd_level_mask & SD_LOGMASK_DIAG) ||
18254                                     (xp->xb_nr_retry_count > 0)) &&
18255                                     (un->un_startstop_timeid == NULL)) {
18256                                         scsi_log(SD_DEVINFO(un), sd_label,
18257                                             CE_WARN, "logical unit not ready, "
18258                                             "resetting disk\n");
18259                                         sd_reset_target(un, pktp);
18260                                 }
18261                         } else {
18262                                 if (((sd_level_mask & SD_LOGMASK_DIAG) ||
18263                                     (xp->xb_nr_retry_count >
18264                                     un->un_reset_retry_count)) &&
18265                                     (un->un_startstop_timeid == NULL)) {
18266                                         scsi_log(SD_DEVINFO(un), sd_label,
18267                                             CE_WARN, "logical unit not ready, "
18268                                             "resetting disk\n");
18269                                         sd_reset_target(un, pktp);
18270                                 }
18271                         }
18272                         break;
18273 
18274                 case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
18275                         /*
18276                          * If the target is in the process of becoming
18277                          * ready, just proceed with the retry. This can
18278                          * happen with CD-ROMs that take a long time to
18279                          * read TOC after a power cycle or reset.
18280                          */
18281                         goto do_retry;
18282 
18283                 case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
18284                         break;
18285 
18286                 case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
18287                         /*
18288                          * Retries cannot help here so just fail right away.
18289                          */
18290                         goto fail_command;
18291 
18292                 case 0x88:
18293                         /*
18294                          * Vendor-unique code for T3/T4: it indicates a
18295                          * path problem in a mutipathed config, but as far as
18296                          * the target driver is concerned it equates to a fatal
18297                          * error, so we should just fail the command right away
18298                          * (without printing anything to the console). If this
18299                          * is not a T3/T4, fall thru to the default recovery
18300                          * action.
18301                          * T3/T4 is FC only, don't need to check is_fibre
18302                          */
18303                         if (SD_IS_T3(un) || SD_IS_T4(un)) {
18304                                 sd_return_failed_command(un, bp, EIO);
18305                                 return;
18306                         }
18307                         /* FALLTHRU */
18308 
18309                 case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
18310                 case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
18311                 case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
18312                 case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
18313                 case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
18314                 default:    /* Possible future codes in SCSI spec? */
18315                         /*
18316                          * For removable-media devices, do not retry if
18317                          * ASCQ > 2 as these result mostly from USCSI commands
18318                          * on MMC devices issued to check status of an
18319                          * operation initiated in immediate mode.  Also for
18320                          * ASCQ >= 4 do not print console messages as these
18321                          * mainly represent a user-initiated operation
18322                          * instead of a system failure.
18323                          */
18324                         if (un->un_f_has_removable_media) {
18325                                 si.ssi_severity = SCSI_ERR_ALL;
18326                                 goto fail_command;
18327                         }
18328                         break;
18329                 }
18330 
18331                 /*
18332                  * As part of our recovery attempt for the NOT READY
18333                  * condition, we issue a START STOP UNIT command. However
18334                  * we want to wait for a short delay before attempting this
18335                  * as there may still be more commands coming back from the
18336                  * target with the check condition. To do this we use
18337                  * timeout(9F) to call sd_start_stop_unit_callback() after
18338                  * the delay interval expires. (sd_start_stop_unit_callback()
18339                  * dispatches sd_start_stop_unit_task(), which will issue
18340                  * the actual START STOP UNIT command. The delay interval
18341                  * is one-half of the delay that we will use to retry the
18342                  * command that generated the NOT READY condition.
18343                  *
18344                  * Note that we could just dispatch sd_start_stop_unit_task()
18345                  * from here and allow it to sleep for the delay interval,
18346                  * but then we would be tying up the taskq thread
18347                  * uncesessarily for the duration of the delay.
18348                  *
18349                  * Do not issue the START STOP UNIT if the current command
18350                  * is already a START STOP UNIT.
18351                  */
18352                 if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
18353                         break;
18354                 }
18355 
18356                 /*
18357                  * Do not schedule the timeout if one is already pending.
18358                  */
18359                 if (un->un_startstop_timeid != NULL) {
18360                         SD_INFO(SD_LOG_ERROR, un,
18361                             "sd_sense_key_not_ready: restart already issued to"
18362                             " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
18363                             ddi_get_instance(SD_DEVINFO(un)));
18364                         break;
18365                 }
18366 
18367                 /*
18368                  * Schedule the START STOP UNIT command, then queue the command
18369                  * for a retry.
18370                  *
18371                  * Note: A timeout is not scheduled for this retry because we
18372                  * want the retry to be serial with the START_STOP_UNIT. The
18373                  * retry will be started when the START_STOP_UNIT is completed
18374                  * in sd_start_stop_unit_task.
18375                  */
18376                 un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
18377                     un, un->un_busy_timeout / 2);
18378                 xp->xb_nr_retry_count++;
18379                 sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
18380                 return;
18381 
18382         case 0x05:      /* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
18383                 if (sd_error_level < SCSI_ERR_RETRYABLE) {
18384                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18385                             "unit does not respond to selection\n");
18386                 }
18387                 break;
18388 
18389         case 0x3A:      /* MEDIUM NOT PRESENT */
18390                 if (sd_error_level >= SCSI_ERR_FATAL) {
18391                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18392                             "Caddy not inserted in drive\n");
18393                 }
18394 
18395                 sr_ejected(un);
18396                 un->un_mediastate = DKIO_EJECTED;
18397                 /* The state has changed, inform the media watch routines */
18398                 cv_broadcast(&un->un_state_cv);
18399                 /* Just fail if no media is present in the drive. */
18400                 goto fail_command;
18401 
18402         default:
18403                 if (sd_error_level < SCSI_ERR_RETRYABLE) {
18404                         scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
18405                             "Unit not Ready. Additional sense code 0x%x\n",
18406                             asc);
18407                 }
18408                 break;
18409         }
18410 
18411 do_retry:
18412 
18413         /*
18414          * Retry the command, as some targets may report NOT READY for
18415          * several seconds after being reset.
18416          */
18417         xp->xb_nr_retry_count++;
18418         si.ssi_severity = SCSI_ERR_RETRYABLE;
18419         sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18420             &si, EIO, un->un_busy_timeout, NULL);
18421 
18422         return;
18423 
18424 fail_command:
18425         sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18426         sd_return_failed_command(un, bp, EIO);
18427 }
18428 
18429 
18430 
18431 /*
18432  *    Function: sd_sense_key_medium_or_hardware_error
18433  *
18434  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
18435  *              sense key.
18436  *
18437  *     Context: May be called from interrupt context
18438  */
18439 
18440 static void
18441 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
18442         uint8_t *sense_datap,
18443         struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18444 {
18445         struct sd_sense_info    si;
18446         uint8_t sense_key = scsi_sense_key(sense_datap);
18447         uint8_t asc = scsi_sense_asc(sense_datap);
18448 
18449         ASSERT(un != NULL);
18450         ASSERT(mutex_owned(SD_MUTEX(un)));
18451         ASSERT(bp != NULL);
18452         ASSERT(xp != NULL);
18453         ASSERT(pktp != NULL);
18454 
18455         si.ssi_severity = SCSI_ERR_FATAL;
18456         si.ssi_pfa_flag = FALSE;
18457 
18458         if (sense_key == KEY_MEDIUM_ERROR) {
18459                 SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
18460         }
18461 
18462         SD_UPDATE_ERRSTATS(un, sd_harderrs);
18463 
18464         if ((un->un_reset_retry_count != 0) &&
18465             (xp->xb_retry_count == un->un_reset_retry_count)) {
18466                 mutex_exit(SD_MUTEX(un));
18467                 /* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
18468                 if (un->un_f_allow_bus_device_reset == TRUE) {
18469 
18470                         boolean_t try_resetting_target = B_TRUE;
18471 
18472                         /*
18473                          * We need to be able to handle specific ASC when we are
18474                          * handling a KEY_HARDWARE_ERROR. In particular
18475                          * taking the default action of resetting the target may
18476                          * not be the appropriate way to attempt recovery.
18477                          * Resetting a target because of a single LUN failure
18478                          * victimizes all LUNs on that target.
18479                          *
18480                          * This is true for the LSI arrays, if an LSI
18481                          * array controller returns an ASC of 0x84 (LUN Dead) we
18482                          * should trust it.
18483                          */
18484 
18485                         if (sense_key == KEY_HARDWARE_ERROR) {
18486                                 switch (asc) {
18487                                 case 0x84:
18488                                         if (SD_IS_LSI(un)) {
18489                                                 try_resetting_target = B_FALSE;
18490                                         }
18491                                         break;
18492                                 default:
18493                                         break;
18494                                 }
18495                         }
18496 
18497                         if (try_resetting_target == B_TRUE) {
18498                                 int reset_retval = 0;
18499                                 if (un->un_f_lun_reset_enabled == TRUE) {
18500                                         SD_TRACE(SD_LOG_IO_CORE, un,
18501                                             "sd_sense_key_medium_or_hardware_"
18502                                             "error: issuing RESET_LUN\n");
18503                                         reset_retval =
18504                                             scsi_reset(SD_ADDRESS(un),
18505                                             RESET_LUN);
18506                                 }
18507                                 if (reset_retval == 0) {
18508                                         SD_TRACE(SD_LOG_IO_CORE, un,
18509                                             "sd_sense_key_medium_or_hardware_"
18510                                             "error: issuing RESET_TARGET\n");
18511                                         (void) scsi_reset(SD_ADDRESS(un),
18512                                             RESET_TARGET);
18513                                 }
18514                         }
18515                 }
18516                 mutex_enter(SD_MUTEX(un));
18517         }
18518 
18519         /*
18520          * This really ought to be a fatal error, but we will retry anyway
18521          * as some drives report this as a spurious error.
18522          */
18523         sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18524             &si, EIO, (clock_t)0, NULL);
18525 }
18526 
18527 
18528 
18529 /*
18530  *    Function: sd_sense_key_illegal_request
18531  *
18532  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
18533  *
18534  *     Context: May be called from interrupt context
18535  */
18536 
18537 static void
18538 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
18539         struct sd_xbuf *xp, struct scsi_pkt *pktp)
18540 {
18541         struct sd_sense_info    si;
18542 
18543         ASSERT(un != NULL);
18544         ASSERT(mutex_owned(SD_MUTEX(un)));
18545         ASSERT(bp != NULL);
18546         ASSERT(xp != NULL);
18547         ASSERT(pktp != NULL);
18548 
18549         SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
18550 
18551         si.ssi_severity = SCSI_ERR_INFO;
18552         si.ssi_pfa_flag = FALSE;
18553 
18554         /* Pointless to retry if the target thinks it's an illegal request */
18555         sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18556         sd_return_failed_command(un, bp, EIO);
18557 }
18558 
18559 
18560 
18561 
18562 /*
18563  *    Function: sd_sense_key_unit_attention
18564  *
18565  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
18566  *
18567  *     Context: May be called from interrupt context
18568  */
18569 
18570 static void
18571 sd_sense_key_unit_attention(struct sd_lun *un,
18572         uint8_t *sense_datap,
18573         struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18574 {
18575         /*
18576          * For UNIT ATTENTION we allow retries for one minute. Devices
18577          * like Sonoma can return UNIT ATTENTION close to a minute
18578          * under certain conditions.
18579          */
18580         int     retry_check_flag = SD_RETRIES_UA;
18581         boolean_t       kstat_updated = B_FALSE;
18582         struct  sd_sense_info           si;
18583         uint8_t asc = scsi_sense_asc(sense_datap);
18584         uint8_t ascq = scsi_sense_ascq(sense_datap);
18585 
18586         ASSERT(un != NULL);
18587         ASSERT(mutex_owned(SD_MUTEX(un)));
18588         ASSERT(bp != NULL);
18589         ASSERT(xp != NULL);
18590         ASSERT(pktp != NULL);
18591 
18592         si.ssi_severity = SCSI_ERR_INFO;
18593         si.ssi_pfa_flag = FALSE;
18594 
18595 
18596         switch (asc) {
18597         case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
18598                 if (sd_report_pfa != 0) {
18599                         SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18600                         si.ssi_pfa_flag = TRUE;
18601                         retry_check_flag = SD_RETRIES_STANDARD;
18602                         goto do_retry;
18603                 }
18604 
18605                 break;
18606 
18607         case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
18608                 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
18609                         un->un_resvd_status |=
18610                             (SD_LOST_RESERVE | SD_WANT_RESERVE);
18611                 }
18612 #ifdef _LP64
18613                 if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
18614                         if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
18615                             un, KM_NOSLEEP) == 0) {
18616                                 /*
18617                                  * If we can't dispatch the task we'll just
18618                                  * live without descriptor sense.  We can
18619                                  * try again on the next "unit attention"
18620                                  */
18621                                 SD_ERROR(SD_LOG_ERROR, un,
18622                                     "sd_sense_key_unit_attention: "
18623                                     "Could not dispatch "
18624                                     "sd_reenable_dsense_task\n");
18625                         }
18626                 }
18627 #endif /* _LP64 */
18628                 /* FALLTHRU */
18629 
18630         case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
18631                 if (!un->un_f_has_removable_media) {
18632                         break;
18633                 }
18634 
18635                 /*
18636                  * When we get a unit attention from a removable-media device,
18637                  * it may be in a state that will take a long time to recover
18638                  * (e.g., from a reset).  Since we are executing in interrupt
18639                  * context here, we cannot wait around for the device to come
18640                  * back. So hand this command off to sd_media_change_task()
18641                  * for deferred processing under taskq thread context. (Note
18642                  * that the command still may be failed if a problem is
18643                  * encountered at a later time.)
18644                  */
18645                 if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
18646                     KM_NOSLEEP) == 0) {
18647                         /*
18648                          * Cannot dispatch the request so fail the command.
18649                          */
18650                         SD_UPDATE_ERRSTATS(un, sd_harderrs);
18651                         SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18652                         si.ssi_severity = SCSI_ERR_FATAL;
18653                         sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18654                         sd_return_failed_command(un, bp, EIO);
18655                 }
18656 
18657                 /*
18658                  * If failed to dispatch sd_media_change_task(), we already
18659                  * updated kstat. If succeed to dispatch sd_media_change_task(),
18660                  * we should update kstat later if it encounters an error. So,
18661                  * we update kstat_updated flag here.
18662                  */
18663                 kstat_updated = B_TRUE;
18664 
18665                 /*
18666                  * Either the command has been successfully dispatched to a
18667                  * task Q for retrying, or the dispatch failed. In either case
18668                  * do NOT retry again by calling sd_retry_command. This sets up
18669                  * two retries of the same command and when one completes and
18670                  * frees the resources the other will access freed memory,
18671                  * a bad thing.
18672                  */
18673                 return;
18674 
18675         default:
18676                 break;
18677         }
18678 
18679         /*
18680          * ASC  ASCQ
18681          *  2A   09     Capacity data has changed
18682          *  2A   01     Mode parameters changed
18683          *  3F   0E     Reported luns data has changed
18684          * Arrays that support logical unit expansion should report
18685          * capacity changes(2Ah/09). Mode parameters changed and
18686          * reported luns data has changed are the approximation.
18687          */
18688         if (((asc == 0x2a) && (ascq == 0x09)) ||
18689             ((asc == 0x2a) && (ascq == 0x01)) ||
18690             ((asc == 0x3f) && (ascq == 0x0e))) {
18691                 if (taskq_dispatch(sd_tq, sd_target_change_task, un,
18692                     KM_NOSLEEP) == 0) {
18693                         SD_ERROR(SD_LOG_ERROR, un,
18694                             "sd_sense_key_unit_attention: "
18695                             "Could not dispatch sd_target_change_task\n");
18696                 }
18697         }
18698 
18699         /*
18700          * Update kstat if we haven't done that.
18701          */
18702         if (!kstat_updated) {
18703                 SD_UPDATE_ERRSTATS(un, sd_harderrs);
18704                 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18705         }
18706 
18707 do_retry:
18708         sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
18709             EIO, SD_UA_RETRY_DELAY, NULL);
18710 }
18711 
18712 
18713 
18714 /*
18715  *    Function: sd_sense_key_fail_command
18716  *
18717  * Description: Use to fail a command when we don't like the sense key that
18718  *              was returned.
18719  *
18720  *     Context: May be called from interrupt context
18721  */
18722 
18723 static void
18724 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
18725         struct sd_xbuf *xp, struct scsi_pkt *pktp)
18726 {
18727         struct sd_sense_info    si;
18728 
18729         ASSERT(un != NULL);
18730         ASSERT(mutex_owned(SD_MUTEX(un)));
18731         ASSERT(bp != NULL);
18732         ASSERT(xp != NULL);
18733         ASSERT(pktp != NULL);
18734 
18735         si.ssi_severity = SCSI_ERR_FATAL;
18736         si.ssi_pfa_flag = FALSE;
18737 
18738         sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18739         sd_return_failed_command(un, bp, EIO);
18740 }
18741 
18742 
18743 
18744 /*
18745  *    Function: sd_sense_key_blank_check
18746  *
18747  * Description: Recovery actions for a SCSI "Blank Check" sense key.
18748  *              Has no monetary connotation.
18749  *
18750  *     Context: May be called from interrupt context
18751  */
18752 
18753 static void
18754 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
18755         struct sd_xbuf *xp, struct scsi_pkt *pktp)
18756 {
18757         struct sd_sense_info    si;
18758 
18759         ASSERT(un != NULL);
18760         ASSERT(mutex_owned(SD_MUTEX(un)));
18761         ASSERT(bp != NULL);
18762         ASSERT(xp != NULL);
18763         ASSERT(pktp != NULL);
18764 
18765         /*
18766          * Blank check is not fatal for removable devices, therefore
18767          * it does not require a console message.
18768          */
18769         si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
18770             SCSI_ERR_FATAL;
18771         si.ssi_pfa_flag = FALSE;
18772 
18773         sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18774         sd_return_failed_command(un, bp, EIO);
18775 }
18776 
18777 
18778 
18779 
18780 /*
18781  *    Function: sd_sense_key_aborted_command
18782  *
18783  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
18784  *
18785  *     Context: May be called from interrupt context
18786  */
18787 
18788 static void
18789 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
18790         struct sd_xbuf *xp, struct scsi_pkt *pktp)
18791 {
18792         struct sd_sense_info    si;
18793 
18794         ASSERT(un != NULL);
18795         ASSERT(mutex_owned(SD_MUTEX(un)));
18796         ASSERT(bp != NULL);
18797         ASSERT(xp != NULL);
18798         ASSERT(pktp != NULL);
18799 
18800         si.ssi_severity = SCSI_ERR_FATAL;
18801         si.ssi_pfa_flag = FALSE;
18802 
18803         SD_UPDATE_ERRSTATS(un, sd_harderrs);
18804 
18805         /*
18806          * This really ought to be a fatal error, but we will retry anyway
18807          * as some drives report this as a spurious error.
18808          */
18809         sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18810             &si, EIO, drv_usectohz(100000), NULL);
18811 }
18812 
18813 
18814 
18815 /*
18816  *    Function: sd_sense_key_default
18817  *
18818  * Description: Default recovery action for several SCSI sense keys (basically
18819  *              attempts a retry).
18820  *
18821  *     Context: May be called from interrupt context
18822  */
18823 
18824 static void
18825 sd_sense_key_default(struct sd_lun *un,
18826         uint8_t *sense_datap,
18827         struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18828 {
18829         struct sd_sense_info    si;
18830         uint8_t sense_key = scsi_sense_key(sense_datap);
18831 
18832         ASSERT(un != NULL);
18833         ASSERT(mutex_owned(SD_MUTEX(un)));
18834         ASSERT(bp != NULL);
18835         ASSERT(xp != NULL);
18836         ASSERT(pktp != NULL);
18837 
18838         SD_UPDATE_ERRSTATS(un, sd_harderrs);
18839 
18840         /*
18841          * Undecoded sense key. Attempt retries and hope that will fix
18842          * the problem.  Otherwise, we're dead.
18843          */
18844         if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
18845                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18846                     "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
18847         }
18848 
18849         si.ssi_severity = SCSI_ERR_FATAL;
18850         si.ssi_pfa_flag = FALSE;
18851 
18852         sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18853             &si, EIO, (clock_t)0, NULL);
18854 }
18855 
18856 
18857 
18858 /*
18859  *    Function: sd_print_retry_msg
18860  *
18861  * Description: Print a message indicating the retry action being taken.
18862  *
18863  *   Arguments: un - ptr to associated softstate
18864  *              bp - ptr to buf(9S) for the command
18865  *              arg - not used.
18866  *              flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18867  *                      or SD_NO_RETRY_ISSUED
18868  *
18869  *     Context: May be called from interrupt context
18870  */
18871 /* ARGSUSED */
18872 static void
18873 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18874 {
18875         struct sd_xbuf  *xp;
18876         struct scsi_pkt *pktp;
18877         char *reasonp;
18878         char *msgp;
18879 
18880         ASSERT(un != NULL);
18881         ASSERT(mutex_owned(SD_MUTEX(un)));
18882         ASSERT(bp != NULL);
18883         pktp = SD_GET_PKTP(bp);
18884         ASSERT(pktp != NULL);
18885         xp = SD_GET_XBUF(bp);
18886         ASSERT(xp != NULL);
18887 
18888         ASSERT(!mutex_owned(&un->un_pm_mutex));
18889         mutex_enter(&un->un_pm_mutex);
18890         if ((un->un_state == SD_STATE_SUSPENDED) ||
18891             (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18892             (pktp->pkt_flags & FLAG_SILENT)) {
18893                 mutex_exit(&un->un_pm_mutex);
18894                 goto update_pkt_reason;
18895         }
18896         mutex_exit(&un->un_pm_mutex);
18897 
18898         /*
18899          * Suppress messages if they are all the same pkt_reason; with
18900          * TQ, many (up to 256) are returned with the same pkt_reason.
18901          * If we are in panic, then suppress the retry messages.
18902          */
18903         switch (flag) {
18904         case SD_NO_RETRY_ISSUED:
18905                 msgp = "giving up";
18906                 break;
18907         case SD_IMMEDIATE_RETRY_ISSUED:
18908         case SD_DELAYED_RETRY_ISSUED:
18909                 if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18910                     ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18911                     (sd_error_level != SCSI_ERR_ALL))) {
18912                         return;
18913                 }
18914                 msgp = "retrying command";
18915                 break;
18916         default:
18917                 goto update_pkt_reason;
18918         }
18919 
18920         reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18921             scsi_rname(pktp->pkt_reason));
18922 
18923         if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
18924                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18925                     "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18926         }
18927 
18928 update_pkt_reason:
18929         /*
18930          * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18931          * This is to prevent multiple console messages for the same failure
18932          * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18933          * when the command is retried successfully because there still may be
18934          * more commands coming back with the same value of pktp->pkt_reason.
18935          */
18936         if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18937                 un->un_last_pkt_reason = pktp->pkt_reason;
18938         }
18939 }
18940 
18941 
18942 /*
18943  *    Function: sd_print_cmd_incomplete_msg
18944  *
18945  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18946  *
18947  *   Arguments: un - ptr to associated softstate
18948  *              bp - ptr to buf(9S) for the command
18949  *              arg - passed to sd_print_retry_msg()
18950  *              code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18951  *                      or SD_NO_RETRY_ISSUED
18952  *
18953  *     Context: May be called from interrupt context
18954  */
18955 
18956 static void
18957 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18958         int code)
18959 {
18960         dev_info_t      *dip;
18961 
18962         ASSERT(un != NULL);
18963         ASSERT(mutex_owned(SD_MUTEX(un)));
18964         ASSERT(bp != NULL);
18965 
18966         switch (code) {
18967         case SD_NO_RETRY_ISSUED:
18968                 /* Command was failed. Someone turned off this target? */
18969                 if (un->un_state != SD_STATE_OFFLINE) {
18970                         /*
18971                          * Suppress message if we are detaching and
18972                          * device has been disconnected
18973                          * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18974                          * private interface and not part of the DDI
18975                          */
18976                         dip = un->un_sd->sd_dev;
18977                         if (!(DEVI_IS_DETACHING(dip) &&
18978                             DEVI_IS_DEVICE_REMOVED(dip))) {
18979                                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18980                                 "disk not responding to selection\n");
18981                         }
18982                         New_state(un, SD_STATE_OFFLINE);
18983                 }
18984                 break;
18985 
18986         case SD_DELAYED_RETRY_ISSUED:
18987         case SD_IMMEDIATE_RETRY_ISSUED:
18988         default:
18989                 /* Command was successfully queued for retry */
18990                 sd_print_retry_msg(un, bp, arg, code);
18991                 break;
18992         }
18993 }
18994 
18995 
18996 /*
18997  *    Function: sd_pkt_reason_cmd_incomplete
18998  *
18999  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
19000  *
19001  *     Context: May be called from interrupt context
19002  */
19003 
19004 static void
19005 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
19006         struct sd_xbuf *xp, struct scsi_pkt *pktp)
19007 {
19008         int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
19009 
19010         ASSERT(un != NULL);
19011         ASSERT(mutex_owned(SD_MUTEX(un)));
19012         ASSERT(bp != NULL);
19013         ASSERT(xp != NULL);
19014         ASSERT(pktp != NULL);
19015 
19016         /* Do not do a reset if selection did not complete */
19017         /* Note: Should this not just check the bit? */
19018         if (pktp->pkt_state != STATE_GOT_BUS) {
19019                 SD_UPDATE_ERRSTATS(un, sd_transerrs);
19020                 sd_reset_target(un, pktp);
19021         }
19022 
19023         /*
19024          * If the target was not successfully selected, then set
19025          * SD_RETRIES_FAILFAST to indicate that we lost communication
19026          * with the target, and further retries and/or commands are
19027          * likely to take a long time.
19028          */
19029         if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
19030                 flag |= SD_RETRIES_FAILFAST;
19031         }
19032 
19033         SD_UPDATE_RESERVATION_STATUS(un, pktp);
19034 
19035         sd_retry_command(un, bp, flag,
19036             sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19037 }
19038 
19039 
19040 
19041 /*
19042  *    Function: sd_pkt_reason_cmd_tran_err
19043  *
19044  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
19045  *
19046  *     Context: May be called from interrupt context
19047  */
19048 
19049 static void
19050 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
19051         struct sd_xbuf *xp, struct scsi_pkt *pktp)
19052 {
19053         ASSERT(un != NULL);
19054         ASSERT(mutex_owned(SD_MUTEX(un)));
19055         ASSERT(bp != NULL);
19056         ASSERT(xp != NULL);
19057         ASSERT(pktp != NULL);
19058 
19059         /*
19060          * Do not reset if we got a parity error, or if
19061          * selection did not complete.
19062          */
19063         SD_UPDATE_ERRSTATS(un, sd_harderrs);
19064         /* Note: Should this not just check the bit for pkt_state? */
19065         if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
19066             (pktp->pkt_state != STATE_GOT_BUS)) {
19067                 SD_UPDATE_ERRSTATS(un, sd_transerrs);
19068                 sd_reset_target(un, pktp);
19069         }
19070 
19071         SD_UPDATE_RESERVATION_STATUS(un, pktp);
19072 
19073         sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19074             sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19075 }
19076 
19077 
19078 
19079 /*
19080  *    Function: sd_pkt_reason_cmd_reset
19081  *
19082  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
19083  *
19084  *     Context: May be called from interrupt context
19085  */
19086 
19087 static void
19088 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
19089         struct sd_xbuf *xp, struct scsi_pkt *pktp)
19090 {
19091         ASSERT(un != NULL);
19092         ASSERT(mutex_owned(SD_MUTEX(un)));
19093         ASSERT(bp != NULL);
19094         ASSERT(xp != NULL);
19095         ASSERT(pktp != NULL);
19096 
19097         /* The target may still be running the command, so try to reset. */
19098         SD_UPDATE_ERRSTATS(un, sd_transerrs);
19099         sd_reset_target(un, pktp);
19100 
19101         SD_UPDATE_RESERVATION_STATUS(un, pktp);
19102 
19103         /*
19104          * If pkt_reason is CMD_RESET chances are that this pkt got
19105          * reset because another target on this bus caused it. The target
19106          * that caused it should get CMD_TIMEOUT with pkt_statistics
19107          * of STAT_TIMEOUT/STAT_DEV_RESET.
19108          */
19109 
19110         sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
19111             sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19112 }
19113 
19114 
19115 
19116 
19117 /*
19118  *    Function: sd_pkt_reason_cmd_aborted
19119  *
19120  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
19121  *
19122  *     Context: May be called from interrupt context
19123  */
19124 
19125 static void
19126 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
19127         struct sd_xbuf *xp, struct scsi_pkt *pktp)
19128 {
19129         ASSERT(un != NULL);
19130         ASSERT(mutex_owned(SD_MUTEX(un)));
19131         ASSERT(bp != NULL);
19132         ASSERT(xp != NULL);
19133         ASSERT(pktp != NULL);
19134 
19135         /* The target may still be running the command, so try to reset. */
19136         SD_UPDATE_ERRSTATS(un, sd_transerrs);
19137         sd_reset_target(un, pktp);
19138 
19139         SD_UPDATE_RESERVATION_STATUS(un, pktp);
19140 
19141         /*
19142          * If pkt_reason is CMD_ABORTED chances are that this pkt got
19143          * aborted because another target on this bus caused it. The target
19144          * that caused it should get CMD_TIMEOUT with pkt_statistics
19145          * of STAT_TIMEOUT/STAT_DEV_RESET.
19146          */
19147 
19148         sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
19149             sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19150 }
19151 
19152 
19153 
19154 /*
19155  *    Function: sd_pkt_reason_cmd_timeout
19156  *
19157  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
19158  *
19159  *     Context: May be called from interrupt context
19160  */
19161 
19162 static void
19163 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
19164         struct sd_xbuf *xp, struct scsi_pkt *pktp)
19165 {
19166         ASSERT(un != NULL);
19167         ASSERT(mutex_owned(SD_MUTEX(un)));
19168         ASSERT(bp != NULL);
19169         ASSERT(xp != NULL);
19170         ASSERT(pktp != NULL);
19171 
19172 
19173         SD_UPDATE_ERRSTATS(un, sd_transerrs);
19174         sd_reset_target(un, pktp);
19175 
19176         SD_UPDATE_RESERVATION_STATUS(un, pktp);
19177 
19178         /*
19179          * A command timeout indicates that we could not establish
19180          * communication with the target, so set SD_RETRIES_FAILFAST
19181          * as further retries/commands are likely to take a long time.
19182          */
19183         sd_retry_command(un, bp,
19184             (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
19185             sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19186 }
19187 
19188 
19189 
19190 /*
19191  *    Function: sd_pkt_reason_cmd_unx_bus_free
19192  *
19193  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
19194  *
19195  *     Context: May be called from interrupt context
19196  */
19197 
19198 static void
19199 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
19200         struct sd_xbuf *xp, struct scsi_pkt *pktp)
19201 {
19202         void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
19203 
19204         ASSERT(un != NULL);
19205         ASSERT(mutex_owned(SD_MUTEX(un)));
19206         ASSERT(bp != NULL);
19207         ASSERT(xp != NULL);
19208         ASSERT(pktp != NULL);
19209 
19210         SD_UPDATE_ERRSTATS(un, sd_harderrs);
19211         SD_UPDATE_RESERVATION_STATUS(un, pktp);
19212 
19213         funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
19214             sd_print_retry_msg : NULL;
19215 
19216         sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19217             funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19218 }
19219 
19220 
19221 /*
19222  *    Function: sd_pkt_reason_cmd_tag_reject
19223  *
19224  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
19225  *
19226  *     Context: May be called from interrupt context
19227  */
19228 
19229 static void
19230 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
19231         struct sd_xbuf *xp, struct scsi_pkt *pktp)
19232 {
19233         ASSERT(un != NULL);
19234         ASSERT(mutex_owned(SD_MUTEX(un)));
19235         ASSERT(bp != NULL);
19236         ASSERT(xp != NULL);
19237         ASSERT(pktp != NULL);
19238 
19239         SD_UPDATE_ERRSTATS(un, sd_harderrs);
19240         pktp->pkt_flags = 0;
19241         un->un_tagflags = 0;
19242         if (un->un_f_opt_queueing == TRUE) {
19243                 un->un_throttle = min(un->un_throttle, 3);
19244         } else {
19245                 un->un_throttle = 1;
19246         }
19247         mutex_exit(SD_MUTEX(un));
19248         (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
19249         mutex_enter(SD_MUTEX(un));
19250 
19251         SD_UPDATE_RESERVATION_STATUS(un, pktp);
19252 
19253         /* Legacy behavior not to check retry counts here. */
19254         sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
19255             sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19256 }
19257 
19258 
19259 /*
19260  *    Function: sd_pkt_reason_default
19261  *
19262  * Description: Default recovery actions for SCSA pkt_reason values that
19263  *              do not have more explicit recovery actions.
19264  *
19265  *     Context: May be called from interrupt context
19266  */
19267 
19268 static void
19269 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
19270         struct sd_xbuf *xp, struct scsi_pkt *pktp)
19271 {
19272         ASSERT(un != NULL);
19273         ASSERT(mutex_owned(SD_MUTEX(un)));
19274         ASSERT(bp != NULL);
19275         ASSERT(xp != NULL);
19276         ASSERT(pktp != NULL);
19277 
19278         SD_UPDATE_ERRSTATS(un, sd_transerrs);
19279         sd_reset_target(un, pktp);
19280 
19281         SD_UPDATE_RESERVATION_STATUS(un, pktp);
19282 
19283         sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19284             sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19285 }
19286 
19287 
19288 
19289 /*
19290  *    Function: sd_pkt_status_check_condition
19291  *
19292  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
19293  *
19294  *     Context: May be called from interrupt context
19295  */
19296 
19297 static void
19298 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
19299         struct sd_xbuf *xp, struct scsi_pkt *pktp)
19300 {
19301         ASSERT(un != NULL);
19302         ASSERT(mutex_owned(SD_MUTEX(un)));
19303         ASSERT(bp != NULL);
19304         ASSERT(xp != NULL);
19305         ASSERT(pktp != NULL);
19306 
19307         SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
19308             "entry: buf:0x%p xp:0x%p\n", bp, xp);
19309 
19310         /*
19311          * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
19312          * command will be retried after the request sense). Otherwise, retry
19313          * the command. Note: we are issuing the request sense even though the
19314          * retry limit may have been reached for the failed command.
19315          */
19316         if (un->un_f_arq_enabled == FALSE) {
19317                 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
19318                     "no ARQ, sending request sense command\n");
19319                 sd_send_request_sense_command(un, bp, pktp);
19320         } else {
19321                 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
19322                     "ARQ,retrying request sense command\n");
19323 #if defined(__i386) || defined(__amd64)
19324                 /*
19325                  * The SD_RETRY_DELAY value need to be adjusted here
19326                  * when SD_RETRY_DELAY change in sddef.h
19327                  */
19328                 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19329                     un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
19330                     NULL);
19331 #else
19332                 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
19333                     EIO, SD_RETRY_DELAY, NULL);
19334 #endif
19335         }
19336 
19337         SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
19338 }
19339 
19340 
19341 /*
19342  *    Function: sd_pkt_status_busy
19343  *
19344  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
19345  *
19346  *     Context: May be called from interrupt context
19347  */
19348 
19349 static void
19350 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
19351         struct scsi_pkt *pktp)
19352 {
19353         ASSERT(un != NULL);
19354         ASSERT(mutex_owned(SD_MUTEX(un)));
19355         ASSERT(bp != NULL);
19356         ASSERT(xp != NULL);
19357         ASSERT(pktp != NULL);
19358 
19359         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19360             "sd_pkt_status_busy: entry\n");
19361 
19362         /* If retries are exhausted, just fail the command. */
19363         if (xp->xb_retry_count >= un->un_busy_retry_count) {
19364                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
19365                     "device busy too long\n");
19366                 sd_return_failed_command(un, bp, EIO);
19367                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19368                     "sd_pkt_status_busy: exit\n");
19369                 return;
19370         }
19371         xp->xb_retry_count++;
19372 
19373         /*
19374          * Try to reset the target. However, we do not want to perform
19375          * more than one reset if the device continues to fail. The reset
19376          * will be performed when the retry count reaches the reset
19377          * threshold.  This threshold should be set such that at least
19378          * one retry is issued before the reset is performed.
19379          */
19380         if (xp->xb_retry_count ==
19381             ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
19382                 int rval = 0;
19383                 mutex_exit(SD_MUTEX(un));
19384                 if (un->un_f_allow_bus_device_reset == TRUE) {
19385                         /*
19386                          * First try to reset the LUN; if we cannot then
19387                          * try to reset the target.
19388                          */
19389                         if (un->un_f_lun_reset_enabled == TRUE) {
19390                                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19391                                     "sd_pkt_status_busy: RESET_LUN\n");
19392                                 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19393                         }
19394                         if (rval == 0) {
19395                                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19396                                     "sd_pkt_status_busy: RESET_TARGET\n");
19397                                 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19398                         }
19399                 }
19400                 if (rval == 0) {
19401                         /*
19402                          * If the RESET_LUN and/or RESET_TARGET failed,
19403                          * try RESET_ALL
19404                          */
19405                         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19406                             "sd_pkt_status_busy: RESET_ALL\n");
19407                         rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
19408                 }
19409                 mutex_enter(SD_MUTEX(un));
19410                 if (rval == 0) {
19411                         /*
19412                          * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
19413                          * At this point we give up & fail the command.
19414                          */
19415                         sd_return_failed_command(un, bp, EIO);
19416                         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19417                             "sd_pkt_status_busy: exit (failed cmd)\n");
19418                         return;
19419                 }
19420         }
19421 
19422         /*
19423          * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
19424          * we have already checked the retry counts above.
19425          */
19426         sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
19427             EIO, un->un_busy_timeout, NULL);
19428 
19429         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19430             "sd_pkt_status_busy: exit\n");
19431 }
19432 
19433 
19434 /*
19435  *    Function: sd_pkt_status_reservation_conflict
19436  *
19437  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
19438  *              command status.
19439  *
19440  *     Context: May be called from interrupt context
19441  */
19442 
19443 static void
19444 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
19445         struct sd_xbuf *xp, struct scsi_pkt *pktp)
19446 {
19447         ASSERT(un != NULL);
19448         ASSERT(mutex_owned(SD_MUTEX(un)));
19449         ASSERT(bp != NULL);
19450         ASSERT(xp != NULL);
19451         ASSERT(pktp != NULL);
19452 
19453         /*
19454          * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
19455          * conflict could be due to various reasons like incorrect keys, not
19456          * registered or not reserved etc. So, we return EACCES to the caller.
19457          */
19458         if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
19459                 int cmd = SD_GET_PKT_OPCODE(pktp);
19460                 if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
19461                     (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
19462                         sd_return_failed_command(un, bp, EACCES);
19463                         return;
19464                 }
19465         }
19466 
19467         un->un_resvd_status |= SD_RESERVATION_CONFLICT;
19468 
19469         if ((un->un_resvd_status & SD_FAILFAST) != 0) {
19470                 if (sd_failfast_enable != 0) {
19471                         /* By definition, we must panic here.... */
19472                         sd_panic_for_res_conflict(un);
19473                         /*NOTREACHED*/
19474                 }
19475                 SD_ERROR(SD_LOG_IO, un,
19476                     "sd_handle_resv_conflict: Disk Reserved\n");
19477                 sd_return_failed_command(un, bp, EACCES);
19478                 return;
19479         }
19480 
19481         /*
19482          * 1147670: retry only if sd_retry_on_reservation_conflict
19483          * property is set (default is 1). Retries will not succeed
19484          * on a disk reserved by another initiator. HA systems
19485          * may reset this via sd.conf to avoid these retries.
19486          *
19487          * Note: The legacy return code for this failure is EIO, however EACCES
19488          * seems more appropriate for a reservation conflict.
19489          */
19490         if (sd_retry_on_reservation_conflict == 0) {
19491                 SD_ERROR(SD_LOG_IO, un,
19492                     "sd_handle_resv_conflict: Device Reserved\n");
19493                 sd_return_failed_command(un, bp, EIO);
19494                 return;
19495         }
19496 
19497         /*
19498          * Retry the command if we can.
19499          *
19500          * Note: The legacy return code for this failure is EIO, however EACCES
19501          * seems more appropriate for a reservation conflict.
19502          */
19503         sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19504             (clock_t)2, NULL);
19505 }
19506 
19507 
19508 
19509 /*
19510  *    Function: sd_pkt_status_qfull
19511  *
19512  * Description: Handle a QUEUE FULL condition from the target.  This can
19513  *              occur if the HBA does not handle the queue full condition.
19514  *              (Basically this means third-party HBAs as Sun HBAs will
19515  *              handle the queue full condition.)  Note that if there are
19516  *              some commands already in the transport, then the queue full
19517  *              has occurred because the queue for this nexus is actually
19518  *              full. If there are no commands in the transport, then the
19519  *              queue full is resulting from some other initiator or lun
19520  *              consuming all the resources at the target.
19521  *
19522  *     Context: May be called from interrupt context
19523  */
19524 
19525 static void
19526 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
19527         struct sd_xbuf *xp, struct scsi_pkt *pktp)
19528 {
19529         ASSERT(un != NULL);
19530         ASSERT(mutex_owned(SD_MUTEX(un)));
19531         ASSERT(bp != NULL);
19532         ASSERT(xp != NULL);
19533         ASSERT(pktp != NULL);
19534 
19535         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19536             "sd_pkt_status_qfull: entry\n");
19537 
19538         /*
19539          * Just lower the QFULL throttle and retry the command.  Note that
19540          * we do not limit the number of retries here.
19541          */
19542         sd_reduce_throttle(un, SD_THROTTLE_QFULL);
19543         sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
19544             SD_RESTART_TIMEOUT, NULL);
19545 
19546         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19547             "sd_pkt_status_qfull: exit\n");
19548 }
19549 
19550 
19551 /*
19552  *    Function: sd_reset_target
19553  *
19554  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
19555  *              RESET_TARGET, or RESET_ALL.
19556  *
19557  *     Context: May be called under interrupt context.
19558  */
19559 
19560 static void
19561 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
19562 {
19563         int rval = 0;
19564 
19565         ASSERT(un != NULL);
19566         ASSERT(mutex_owned(SD_MUTEX(un)));
19567         ASSERT(pktp != NULL);
19568 
19569         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
19570 
19571         /*
19572          * No need to reset if the transport layer has already done so.
19573          */
19574         if ((pktp->pkt_statistics &
19575             (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
19576                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19577                     "sd_reset_target: no reset\n");
19578                 return;
19579         }
19580 
19581         mutex_exit(SD_MUTEX(un));
19582 
19583         if (un->un_f_allow_bus_device_reset == TRUE) {
19584                 if (un->un_f_lun_reset_enabled == TRUE) {
19585                         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19586                             "sd_reset_target: RESET_LUN\n");
19587                         rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19588                 }
19589                 if (rval == 0) {
19590                         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19591                             "sd_reset_target: RESET_TARGET\n");
19592                         rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19593                 }
19594         }
19595 
19596         if (rval == 0) {
19597                 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19598                     "sd_reset_target: RESET_ALL\n");
19599                 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
19600         }
19601 
19602         mutex_enter(SD_MUTEX(un));
19603 
19604         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
19605 }
19606 
19607 /*
19608  *    Function: sd_target_change_task
19609  *
19610  * Description: Handle dynamic target change
19611  *
19612  *     Context: Executes in a taskq() thread context
19613  */
19614 static void
19615 sd_target_change_task(void *arg)
19616 {
19617         struct sd_lun           *un = arg;
19618         uint64_t                capacity;
19619         diskaddr_t              label_cap;
19620         uint_t                  lbasize;
19621         sd_ssc_t                *ssc;
19622 
19623         ASSERT(un != NULL);
19624         ASSERT(!mutex_owned(SD_MUTEX(un)));
19625 
19626         if ((un->un_f_blockcount_is_valid == FALSE) ||
19627             (un->un_f_tgt_blocksize_is_valid == FALSE)) {
19628                 return;
19629         }
19630 
19631         ssc = sd_ssc_init(un);
19632 
19633         if (sd_send_scsi_READ_CAPACITY(ssc, &capacity,
19634             &lbasize, SD_PATH_DIRECT) != 0) {
19635                 SD_ERROR(SD_LOG_ERROR, un,
19636                     "sd_target_change_task: fail to read capacity\n");
19637                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19638                 goto task_exit;
19639         }
19640 
19641         mutex_enter(SD_MUTEX(un));
19642         if (capacity <= un->un_blockcount) {
19643                 mutex_exit(SD_MUTEX(un));
19644                 goto task_exit;
19645         }
19646 
19647         sd_update_block_info(un, lbasize, capacity);
19648         mutex_exit(SD_MUTEX(un));
19649 
19650         /*
19651          * If lun is EFI labeled and lun capacity is greater than the
19652          * capacity contained in the label, log a sys event.
19653          */
19654         if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
19655             (void*)SD_PATH_DIRECT) == 0) {
19656                 mutex_enter(SD_MUTEX(un));
19657                 if (un->un_f_blockcount_is_valid &&
19658                     un->un_blockcount > label_cap) {
19659                         mutex_exit(SD_MUTEX(un));
19660                         sd_log_lun_expansion_event(un, KM_SLEEP);
19661                 } else {
19662                         mutex_exit(SD_MUTEX(un));
19663                 }
19664         }
19665 
19666 task_exit:
19667         sd_ssc_fini(ssc);
19668 }
19669 
19670 
19671 /*
19672  *    Function: sd_log_dev_status_event
19673  *
19674  * Description: Log EC_dev_status sysevent
19675  *
19676  *     Context: Never called from interrupt context
19677  */
19678 static void
19679 sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag)
19680 {
19681         int err;
19682         char                    *path;
19683         nvlist_t                *attr_list;
19684 
19685         /* Allocate and build sysevent attribute list */
19686         err = nvlist_alloc(&attr_list, NV_UNIQUE_NAME_TYPE, km_flag);
19687         if (err != 0) {
19688                 SD_ERROR(SD_LOG_ERROR, un,
19689                     "sd_log_dev_status_event: fail to allocate space\n");
19690                 return;
19691         }
19692 
19693         path = kmem_alloc(MAXPATHLEN, km_flag);
19694         if (path == NULL) {
19695                 nvlist_free(attr_list);
19696                 SD_ERROR(SD_LOG_ERROR, un,
19697                     "sd_log_dev_status_event: fail to allocate space\n");
19698                 return;
19699         }
19700         /*
19701          * Add path attribute to identify the lun.
19702          * We are using minor node 'a' as the sysevent attribute.
19703          */
19704         (void) snprintf(path, MAXPATHLEN, "/devices");
19705         (void) ddi_pathname(SD_DEVINFO(un), path + strlen(path));
19706         (void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path),
19707             ":a");
19708 
19709         err = nvlist_add_string(attr_list, DEV_PHYS_PATH, path);
19710         if (err != 0) {
19711                 nvlist_free(attr_list);
19712                 kmem_free(path, MAXPATHLEN);
19713                 SD_ERROR(SD_LOG_ERROR, un,
19714                     "sd_log_dev_status_event: fail to add attribute\n");
19715                 return;
19716         }
19717 
19718         /* Log dynamic lun expansion sysevent */
19719         err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS,
19720             esc, attr_list, NULL, km_flag);
19721         if (err != DDI_SUCCESS) {
19722                 SD_ERROR(SD_LOG_ERROR, un,
19723                     "sd_log_dev_status_event: fail to log sysevent\n");
19724         }
19725 
19726         nvlist_free(attr_list);
19727         kmem_free(path, MAXPATHLEN);
19728 }
19729 
19730 
19731 /*
19732  *    Function: sd_log_lun_expansion_event
19733  *
19734  * Description: Log lun expansion sys event
19735  *
19736  *     Context: Never called from interrupt context
19737  */
19738 static void
19739 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag)
19740 {
19741         sd_log_dev_status_event(un, ESC_DEV_DLE, km_flag);
19742 }
19743 
19744 
19745 /*
19746  *    Function: sd_log_eject_request_event
19747  *
19748  * Description: Log eject request sysevent
19749  *
19750  *     Context: Never called from interrupt context
19751  */
19752 static void
19753 sd_log_eject_request_event(struct sd_lun *un, int km_flag)
19754 {
19755         sd_log_dev_status_event(un, ESC_DEV_EJECT_REQUEST, km_flag);
19756 }
19757 
19758 
19759 /*
19760  *    Function: sd_media_change_task
19761  *
19762  * Description: Recovery action for CDROM to become available.
19763  *
19764  *     Context: Executes in a taskq() thread context
19765  */
19766 
19767 static void
19768 sd_media_change_task(void *arg)
19769 {
19770         struct  scsi_pkt        *pktp = arg;
19771         struct  sd_lun          *un;
19772         struct  buf             *bp;
19773         struct  sd_xbuf         *xp;
19774         int     err             = 0;
19775         int     retry_count     = 0;
19776         int     retry_limit     = SD_UNIT_ATTENTION_RETRY/10;
19777         struct  sd_sense_info   si;
19778 
19779         ASSERT(pktp != NULL);
19780         bp = (struct buf *)pktp->pkt_private;
19781         ASSERT(bp != NULL);
19782         xp = SD_GET_XBUF(bp);
19783         ASSERT(xp != NULL);
19784         un = SD_GET_UN(bp);
19785         ASSERT(un != NULL);
19786         ASSERT(!mutex_owned(SD_MUTEX(un)));
19787         ASSERT(un->un_f_monitor_media_state);
19788 
19789         si.ssi_severity = SCSI_ERR_INFO;
19790         si.ssi_pfa_flag = FALSE;
19791 
19792         /*
19793          * When a reset is issued on a CDROM, it takes a long time to
19794          * recover. First few attempts to read capacity and other things
19795          * related to handling unit attention fail (with a ASC 0x4 and
19796          * ASCQ 0x1). In that case we want to do enough retries and we want
19797          * to limit the retries in other cases of genuine failures like
19798          * no media in drive.
19799          */
19800         while (retry_count++ < retry_limit) {
19801                 if ((err = sd_handle_mchange(un)) == 0) {
19802                         break;
19803                 }
19804                 if (err == EAGAIN) {
19805                         retry_limit = SD_UNIT_ATTENTION_RETRY;
19806                 }
19807                 /* Sleep for 0.5 sec. & try again */
19808                 delay(drv_usectohz(500000));
19809         }
19810 
19811         /*
19812          * Dispatch (retry or fail) the original command here,
19813          * along with appropriate console messages....
19814          *
19815          * Must grab the mutex before calling sd_retry_command,
19816          * sd_print_sense_msg and sd_return_failed_command.
19817          */
19818         mutex_enter(SD_MUTEX(un));
19819         if (err != SD_CMD_SUCCESS) {
19820                 SD_UPDATE_ERRSTATS(un, sd_harderrs);
19821                 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
19822                 si.ssi_severity = SCSI_ERR_FATAL;
19823                 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
19824                 sd_return_failed_command(un, bp, EIO);
19825         } else {
19826                 sd_retry_command(un, bp, SD_RETRIES_UA, sd_print_sense_msg,
19827                     &si, EIO, (clock_t)0, NULL);
19828         }
19829         mutex_exit(SD_MUTEX(un));
19830 }
19831 
19832 
19833 
19834 /*
19835  *    Function: sd_handle_mchange
19836  *
19837  * Description: Perform geometry validation & other recovery when CDROM
19838  *              has been removed from drive.
19839  *
19840  * Return Code: 0 for success
19841  *              errno-type return code of either sd_send_scsi_DOORLOCK() or
19842  *              sd_send_scsi_READ_CAPACITY()
19843  *
19844  *     Context: Executes in a taskq() thread context
19845  */
19846 
19847 static int
19848 sd_handle_mchange(struct sd_lun *un)
19849 {
19850         uint64_t        capacity;
19851         uint32_t        lbasize;
19852         int             rval;
19853         sd_ssc_t        *ssc;
19854 
19855         ASSERT(!mutex_owned(SD_MUTEX(un)));
19856         ASSERT(un->un_f_monitor_media_state);
19857 
19858         ssc = sd_ssc_init(un);
19859         rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
19860             SD_PATH_DIRECT_PRIORITY);
19861 
19862         if (rval != 0)
19863                 goto failed;
19864 
19865         mutex_enter(SD_MUTEX(un));
19866         sd_update_block_info(un, lbasize, capacity);
19867 
19868         if (un->un_errstats != NULL) {
19869                 struct  sd_errstats *stp =
19870                     (struct sd_errstats *)un->un_errstats->ks_data;
19871                 stp->sd_capacity.value.ui64 = (uint64_t)
19872                     ((uint64_t)un->un_blockcount *
19873                     (uint64_t)un->un_tgt_blocksize);
19874         }
19875 
19876         /*
19877          * Check if the media in the device is writable or not
19878          */
19879         if (ISCD(un)) {
19880                 sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY);
19881         }
19882 
19883         /*
19884          * Note: Maybe let the strategy/partitioning chain worry about getting
19885          * valid geometry.
19886          */
19887         mutex_exit(SD_MUTEX(un));
19888         cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
19889 
19890 
19891         if (cmlb_validate(un->un_cmlbhandle, 0,
19892             (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
19893                 sd_ssc_fini(ssc);
19894                 return (EIO);
19895         } else {
19896                 if (un->un_f_pkstats_enabled) {
19897                         sd_set_pstats(un);
19898                         SD_TRACE(SD_LOG_IO_PARTITION, un,
19899                             "sd_handle_mchange: un:0x%p pstats created and "
19900                             "set\n", un);
19901                 }
19902         }
19903 
19904         /*
19905          * Try to lock the door
19906          */
19907         rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
19908             SD_PATH_DIRECT_PRIORITY);
19909 failed:
19910         if (rval != 0)
19911                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19912         sd_ssc_fini(ssc);
19913         return (rval);
19914 }
19915 
19916 
19917 /*
19918  *    Function: sd_send_scsi_DOORLOCK
19919  *
19920  * Description: Issue the scsi DOOR LOCK command
19921  *
19922  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19923  *                      structure for this target.
19924  *              flag  - SD_REMOVAL_ALLOW
19925  *                      SD_REMOVAL_PREVENT
19926  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19927  *                      the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19928  *                      to use the USCSI "direct" chain and bypass the normal
19929  *                      command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19930  *                      command is issued as part of an error recovery action.
19931  *
19932  * Return Code: 0   - Success
19933  *              errno return code from sd_ssc_send()
19934  *
19935  *     Context: Can sleep.
19936  */
19937 
19938 static int
19939 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag)
19940 {
19941         struct scsi_extended_sense      sense_buf;
19942         union scsi_cdb          cdb;
19943         struct uscsi_cmd        ucmd_buf;
19944         int                     status;
19945         struct sd_lun           *un;
19946 
19947         ASSERT(ssc != NULL);
19948         un = ssc->ssc_un;
19949         ASSERT(un != NULL);
19950         ASSERT(!mutex_owned(SD_MUTEX(un)));
19951 
19952         SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19953 
19954         /* already determined doorlock is not supported, fake success */
19955         if (un->un_f_doorlock_supported == FALSE) {
19956                 return (0);
19957         }
19958 
19959         /*
19960          * If we are ejecting and see an SD_REMOVAL_PREVENT
19961          * ignore the command so we can complete the eject
19962          * operation.
19963          */
19964         if (flag == SD_REMOVAL_PREVENT) {
19965                 mutex_enter(SD_MUTEX(un));
19966                 if (un->un_f_ejecting == TRUE) {
19967                         mutex_exit(SD_MUTEX(un));
19968                         return (EAGAIN);
19969                 }
19970                 mutex_exit(SD_MUTEX(un));
19971         }
19972 
19973         bzero(&cdb, sizeof (cdb));
19974         bzero(&ucmd_buf, sizeof (ucmd_buf));
19975 
19976         cdb.scc_cmd = SCMD_DOORLOCK;
19977         cdb.cdb_opaque[4] = (uchar_t)flag;
19978 
19979         ucmd_buf.uscsi_cdb      = (char *)&cdb;
19980         ucmd_buf.uscsi_cdblen   = CDB_GROUP0;
19981         ucmd_buf.uscsi_bufaddr  = NULL;
19982         ucmd_buf.uscsi_buflen   = 0;
19983         ucmd_buf.uscsi_rqbuf    = (caddr_t)&sense_buf;
19984         ucmd_buf.uscsi_rqlen    = sizeof (sense_buf);
19985         ucmd_buf.uscsi_flags    = USCSI_RQENABLE | USCSI_SILENT;
19986         ucmd_buf.uscsi_timeout  = 15;
19987 
19988         SD_TRACE(SD_LOG_IO, un,
19989             "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n");
19990 
19991         status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19992             UIO_SYSSPACE, path_flag);
19993 
19994         if (status == 0)
19995                 sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19996 
19997         if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
19998             (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19999             (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
20000                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
20001 
20002                 /* fake success and skip subsequent doorlock commands */
20003                 un->un_f_doorlock_supported = FALSE;
20004                 return (0);
20005         }
20006 
20007         return (status);
20008 }
20009 
20010 /*
20011  *    Function: sd_send_scsi_READ_CAPACITY
20012  *
20013  * Description: This routine uses the scsi READ CAPACITY command to determine
20014  *              the device capacity in number of blocks and the device native
20015  *              block size. If this function returns a failure, then the
20016  *              values in *capp and *lbap are undefined.  If the capacity
20017  *              returned is 0xffffffff then the lun is too large for a
20018  *              normal READ CAPACITY command and the results of a
20019  *              READ CAPACITY 16 will be used instead.
20020  *
20021  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
20022  *              capp - ptr to unsigned 64-bit variable to receive the
20023  *                      capacity value from the command.
20024  *              lbap - ptr to unsigned 32-bit varaible to receive the
20025  *                      block size value from the command
20026  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20027  *                      the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20028  *                      to use the USCSI "direct" chain and bypass the normal
20029  *                      command waitq. SD_PATH_DIRECT_PRIORITY is used when this
20030  *                      command is issued as part of an error recovery action.
20031  *
20032  * Return Code: 0   - Success
20033  *              EIO - IO error
20034  *              EACCES - Reservation conflict detected
20035  *              EAGAIN - Device is becoming ready
20036  *              errno return code from sd_ssc_send()
20037  *
20038  *     Context: Can sleep.  Blocks until command completes.
20039  */
20040 
20041 #define SD_CAPACITY_SIZE        sizeof (struct scsi_capacity)
20042 
20043 static int
20044 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap,
20045         int path_flag)
20046 {
20047         struct  scsi_extended_sense     sense_buf;
20048         struct  uscsi_cmd       ucmd_buf;
20049         union   scsi_cdb        cdb;
20050         uint32_t                *capacity_buf;
20051         uint64_t                capacity;
20052         uint32_t                lbasize;
20053         uint32_t                pbsize;
20054         int                     status;
20055         struct sd_lun           *un;
20056 
20057         ASSERT(ssc != NULL);
20058 
20059         un = ssc->ssc_un;
20060         ASSERT(un != NULL);
20061         ASSERT(!mutex_owned(SD_MUTEX(un)));
20062         ASSERT(capp != NULL);
20063         ASSERT(lbap != NULL);
20064 
20065         SD_TRACE(SD_LOG_IO, un,
20066             "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
20067 
20068         /*
20069          * First send a READ_CAPACITY command to the target.
20070          * (This command is mandatory under SCSI-2.)
20071          *
20072          * Set up the CDB for the READ_CAPACITY command.  The Partial
20073          * Medium Indicator bit is cleared.  The address field must be
20074          * zero if the PMI bit is zero.
20075          */
20076         bzero(&cdb, sizeof (cdb));
20077         bzero(&ucmd_buf, sizeof (ucmd_buf));
20078 
20079         capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
20080 
20081         cdb.scc_cmd = SCMD_READ_CAPACITY;
20082 
20083         ucmd_buf.uscsi_cdb      = (char *)&cdb;
20084         ucmd_buf.uscsi_cdblen   = CDB_GROUP1;
20085         ucmd_buf.uscsi_bufaddr  = (caddr_t)capacity_buf;
20086         ucmd_buf.uscsi_buflen   = SD_CAPACITY_SIZE;
20087         ucmd_buf.uscsi_rqbuf    = (caddr_t)&sense_buf;
20088         ucmd_buf.uscsi_rqlen    = sizeof (sense_buf);
20089         ucmd_buf.uscsi_flags    = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20090         ucmd_buf.uscsi_timeout  = 60;
20091 
20092         status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20093             UIO_SYSSPACE, path_flag);
20094 
20095         switch (status) {
20096         case 0:
20097                 /* Return failure if we did not get valid capacity data. */
20098                 if (ucmd_buf.uscsi_resid != 0) {
20099                         sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20100                             "sd_send_scsi_READ_CAPACITY received invalid "
20101                             "capacity data");
20102                         kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20103                         return (EIO);
20104                 }
20105                 /*
20106                  * Read capacity and block size from the READ CAPACITY 10 data.
20107                  * This data may be adjusted later due to device specific
20108                  * issues.
20109                  *
20110                  * According to the SCSI spec, the READ CAPACITY 10
20111                  * command returns the following:
20112                  *
20113                  *  bytes 0-3: Maximum logical block address available.
20114                  *              (MSB in byte:0 & LSB in byte:3)
20115                  *
20116                  *  bytes 4-7: Block length in bytes
20117                  *              (MSB in byte:4 & LSB in byte:7)
20118                  *
20119                  */
20120                 capacity = BE_32(capacity_buf[0]);
20121                 lbasize = BE_32(capacity_buf[1]);
20122 
20123                 /*
20124                  * Done with capacity_buf
20125                  */
20126                 kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20127 
20128                 /*
20129                  * if the reported capacity is set to all 0xf's, then
20130                  * this disk is too large and requires SBC-2 commands.
20131                  * Reissue the request using READ CAPACITY 16.
20132                  */
20133                 if (capacity == 0xffffffff) {
20134                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
20135                         status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity,
20136                             &lbasize, &pbsize, path_flag);
20137                         if (status != 0) {
20138                                 return (status);
20139                         } else {
20140                                 goto rc16_done;
20141                         }
20142                 }
20143                 break;  /* Success! */
20144         case EIO:
20145                 switch (ucmd_buf.uscsi_status) {
20146                 case STATUS_RESERVATION_CONFLICT:
20147                         status = EACCES;
20148                         break;
20149                 case STATUS_CHECK:
20150                         /*
20151                          * Check condition; look for ASC/ASCQ of 0x04/0x01
20152                          * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
20153                          */
20154                         if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20155                             (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
20156                             (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
20157                                 kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20158                                 return (EAGAIN);
20159                         }
20160                         break;
20161                 default:
20162                         break;
20163                 }
20164                 /* FALLTHRU */
20165         default:
20166                 kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20167                 return (status);
20168         }
20169 
20170         /*
20171          * Some ATAPI CD-ROM drives report inaccurate LBA size values
20172          * (2352 and 0 are common) so for these devices always force the value
20173          * to 2048 as required by the ATAPI specs.
20174          */
20175         if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
20176                 lbasize = 2048;
20177         }
20178 
20179         /*
20180          * Get the maximum LBA value from the READ CAPACITY data.
20181          * Here we assume that the Partial Medium Indicator (PMI) bit
20182          * was cleared when issuing the command. This means that the LBA
20183          * returned from the device is the LBA of the last logical block
20184          * on the logical unit.  The actual logical block count will be
20185          * this value plus one.
20186          */
20187         capacity += 1;
20188 
20189         /*
20190          * Currently, for removable media, the capacity is saved in terms
20191          * of un->un_sys_blocksize, so scale the capacity value to reflect this.
20192          */
20193         if (un->un_f_has_removable_media)
20194                 capacity *= (lbasize / un->un_sys_blocksize);
20195 
20196 rc16_done:
20197 
20198         /*
20199          * Copy the values from the READ CAPACITY command into the space
20200          * provided by the caller.
20201          */
20202         *capp = capacity;
20203         *lbap = lbasize;
20204 
20205         SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
20206             "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
20207 
20208         /*
20209          * Both the lbasize and capacity from the device must be nonzero,
20210          * otherwise we assume that the values are not valid and return
20211          * failure to the caller. (4203735)
20212          */
20213         if ((capacity == 0) || (lbasize == 0)) {
20214                 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20215                     "sd_send_scsi_READ_CAPACITY received invalid value "
20216                     "capacity %llu lbasize %d", capacity, lbasize);
20217                 return (EIO);
20218         }
20219         sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20220         return (0);
20221 }
20222 
20223 /*
20224  *    Function: sd_send_scsi_READ_CAPACITY_16
20225  *
20226  * Description: This routine uses the scsi READ CAPACITY 16 command to
20227  *              determine the device capacity in number of blocks and the
20228  *              device native block size.  If this function returns a failure,
20229  *              then the values in *capp and *lbap are undefined.
20230  *              This routine should be called by sd_send_scsi_READ_CAPACITY
20231  *              which will apply any device specific adjustments to capacity
20232  *              and lbasize. One exception is it is also called by
20233  *              sd_get_media_info_ext. In that function, there is no need to
20234  *              adjust the capacity and lbasize.
20235  *
20236  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
20237  *              capp - ptr to unsigned 64-bit variable to receive the
20238  *                      capacity value from the command.
20239  *              lbap - ptr to unsigned 32-bit varaible to receive the
20240  *                      block size value from the command
20241  *              psp  - ptr to unsigned 32-bit variable to receive the
20242  *                      physical block size value from the command
20243  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20244  *                      the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20245  *                      to use the USCSI "direct" chain and bypass the normal
20246  *                      command waitq. SD_PATH_DIRECT_PRIORITY is used when
20247  *                      this command is issued as part of an error recovery
20248  *                      action.
20249  *
20250  * Return Code: 0   - Success
20251  *              EIO - IO error
20252  *              EACCES - Reservation conflict detected
20253  *              EAGAIN - Device is becoming ready
20254  *              errno return code from sd_ssc_send()
20255  *
20256  *     Context: Can sleep.  Blocks until command completes.
20257  */
20258 
20259 #define SD_CAPACITY_16_SIZE     sizeof (struct scsi_capacity_16)
20260 
20261 static int
20262 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
20263         uint32_t *lbap, uint32_t *psp, int path_flag)
20264 {
20265         struct  scsi_extended_sense     sense_buf;
20266         struct  uscsi_cmd       ucmd_buf;
20267         union   scsi_cdb        cdb;
20268         uint64_t                *capacity16_buf;
20269         uint64_t                capacity;
20270         uint32_t                lbasize;
20271         uint32_t                pbsize;
20272         uint32_t                lbpb_exp;
20273         int                     status;
20274         struct sd_lun           *un;
20275 
20276         ASSERT(ssc != NULL);
20277 
20278         un = ssc->ssc_un;
20279         ASSERT(un != NULL);
20280         ASSERT(!mutex_owned(SD_MUTEX(un)));
20281         ASSERT(capp != NULL);
20282         ASSERT(lbap != NULL);
20283 
20284         SD_TRACE(SD_LOG_IO, un,
20285             "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
20286 
20287         /*
20288          * First send a READ_CAPACITY_16 command to the target.
20289          *
20290          * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
20291          * Medium Indicator bit is cleared.  The address field must be
20292          * zero if the PMI bit is zero.
20293          */
20294         bzero(&cdb, sizeof (cdb));
20295         bzero(&ucmd_buf, sizeof (ucmd_buf));
20296 
20297         capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
20298 
20299         ucmd_buf.uscsi_cdb      = (char *)&cdb;
20300         ucmd_buf.uscsi_cdblen   = CDB_GROUP4;
20301         ucmd_buf.uscsi_bufaddr  = (caddr_t)capacity16_buf;
20302         ucmd_buf.uscsi_buflen   = SD_CAPACITY_16_SIZE;
20303         ucmd_buf.uscsi_rqbuf    = (caddr_t)&sense_buf;
20304         ucmd_buf.uscsi_rqlen    = sizeof (sense_buf);
20305         ucmd_buf.uscsi_flags    = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20306         ucmd_buf.uscsi_timeout  = 60;
20307 
20308         /*
20309          * Read Capacity (16) is a Service Action In command.  One
20310          * command byte (0x9E) is overloaded for multiple operations,
20311          * with the second CDB byte specifying the desired operation
20312          */
20313         cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
20314         cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
20315 
20316         /*
20317          * Fill in allocation length field
20318          */
20319         FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
20320 
20321         status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20322             UIO_SYSSPACE, path_flag);
20323 
20324         switch (status) {
20325         case 0:
20326                 /* Return failure if we did not get valid capacity data. */
20327                 if (ucmd_buf.uscsi_resid > 20) {
20328                         sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20329                             "sd_send_scsi_READ_CAPACITY_16 received invalid "
20330                             "capacity data");
20331                         kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20332                         return (EIO);
20333                 }
20334 
20335                 /*
20336                  * Read capacity and block size from the READ CAPACITY 16 data.
20337                  * This data may be adjusted later due to device specific
20338                  * issues.
20339                  *
20340                  * According to the SCSI spec, the READ CAPACITY 16
20341                  * command returns the following:
20342                  *
20343                  *  bytes 0-7: Maximum logical block address available.
20344                  *              (MSB in byte:0 & LSB in byte:7)
20345                  *
20346                  *  bytes 8-11: Block length in bytes
20347                  *              (MSB in byte:8 & LSB in byte:11)
20348                  *
20349                  *  byte 13: LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT
20350                  */
20351                 capacity = BE_64(capacity16_buf[0]);
20352                 lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
20353                 lbpb_exp = (BE_64(capacity16_buf[1]) >> 16) & 0x0f;
20354 
20355                 pbsize = lbasize << lbpb_exp;
20356 
20357                 /*
20358                  * Done with capacity16_buf
20359                  */
20360                 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20361 
20362                 /*
20363                  * if the reported capacity is set to all 0xf's, then
20364                  * this disk is too large.  This could only happen with
20365                  * a device that supports LBAs larger than 64 bits which
20366                  * are not defined by any current T10 standards.
20367                  */
20368                 if (capacity == 0xffffffffffffffff) {
20369                         sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20370                             "disk is too large");
20371                         return (EIO);
20372                 }
20373                 break;  /* Success! */
20374         case EIO:
20375                 switch (ucmd_buf.uscsi_status) {
20376                 case STATUS_RESERVATION_CONFLICT:
20377                         status = EACCES;
20378                         break;
20379                 case STATUS_CHECK:
20380                         /*
20381                          * Check condition; look for ASC/ASCQ of 0x04/0x01
20382                          * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
20383                          */
20384                         if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20385                             (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
20386                             (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
20387                                 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20388                                 return (EAGAIN);
20389                         }
20390                         break;
20391                 default:
20392                         break;
20393                 }
20394                 /* FALLTHRU */
20395         default:
20396                 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20397                 return (status);
20398         }
20399 
20400         /*
20401          * Some ATAPI CD-ROM drives report inaccurate LBA size values
20402          * (2352 and 0 are common) so for these devices always force the value
20403          * to 2048 as required by the ATAPI specs.
20404          */
20405         if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
20406                 lbasize = 2048;
20407         }
20408 
20409         /*
20410          * Get the maximum LBA value from the READ CAPACITY 16 data.
20411          * Here we assume that the Partial Medium Indicator (PMI) bit
20412          * was cleared when issuing the command. This means that the LBA
20413          * returned from the device is the LBA of the last logical block
20414          * on the logical unit.  The actual logical block count will be
20415          * this value plus one.
20416          */
20417         capacity += 1;
20418 
20419         /*
20420          * Currently, for removable media, the capacity is saved in terms
20421          * of un->un_sys_blocksize, so scale the capacity value to reflect this.
20422          */
20423         if (un->un_f_has_removable_media)
20424                 capacity *= (lbasize / un->un_sys_blocksize);
20425 
20426         *capp = capacity;
20427         *lbap = lbasize;
20428         *psp = pbsize;
20429 
20430         SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
20431             "capacity:0x%llx  lbasize:0x%x, pbsize: 0x%x\n",
20432             capacity, lbasize, pbsize);
20433 
20434         if ((capacity == 0) || (lbasize == 0) || (pbsize == 0)) {
20435                 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20436                     "sd_send_scsi_READ_CAPACITY_16 received invalid value "
20437                     "capacity %llu lbasize %d pbsize %d", capacity, lbasize);
20438                 return (EIO);
20439         }
20440 
20441         sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20442         return (0);
20443 }
20444 
20445 
20446 /*
20447  *    Function: sd_send_scsi_START_STOP_UNIT
20448  *
20449  * Description: Issue a scsi START STOP UNIT command to the target.
20450  *
20451  *   Arguments: ssc    - ssc contatins pointer to driver soft state (unit)
20452  *                       structure for this target.
20453  *      pc_flag - SD_POWER_CONDITION
20454  *                SD_START_STOP
20455  *              flag  - SD_TARGET_START
20456  *                      SD_TARGET_STOP
20457  *                      SD_TARGET_EJECT
20458  *                      SD_TARGET_CLOSE
20459  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20460  *                      the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20461  *                      to use the USCSI "direct" chain and bypass the normal
20462  *                      command waitq. SD_PATH_DIRECT_PRIORITY is used when this
20463  *                      command is issued as part of an error recovery action.
20464  *
20465  * Return Code: 0   - Success
20466  *              EIO - IO error
20467  *              EACCES - Reservation conflict detected
20468  *              ENXIO  - Not Ready, medium not present
20469  *              errno return code from sd_ssc_send()
20470  *
20471  *     Context: Can sleep.
20472  */
20473 
20474 static int
20475 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag, int flag,
20476     int path_flag)
20477 {
20478         struct  scsi_extended_sense     sense_buf;
20479         union scsi_cdb          cdb;
20480         struct uscsi_cmd        ucmd_buf;
20481         int                     status;
20482         struct sd_lun           *un;
20483 
20484         ASSERT(ssc != NULL);
20485         un = ssc->ssc_un;
20486         ASSERT(un != NULL);
20487         ASSERT(!mutex_owned(SD_MUTEX(un)));
20488 
20489         SD_TRACE(SD_LOG_IO, un,
20490             "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
20491 
20492         if (un->un_f_check_start_stop &&
20493             (pc_flag == SD_START_STOP) &&
20494             ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
20495             (un->un_f_start_stop_supported != TRUE)) {
20496                 return (0);
20497         }
20498 
20499         /*
20500          * If we are performing an eject operation and
20501          * we receive any command other than SD_TARGET_EJECT
20502          * we should immediately return.
20503          */
20504         if (flag != SD_TARGET_EJECT) {
20505                 mutex_enter(SD_MUTEX(un));
20506                 if (un->un_f_ejecting == TRUE) {
20507                         mutex_exit(SD_MUTEX(un));
20508                         return (EAGAIN);
20509                 }
20510                 mutex_exit(SD_MUTEX(un));
20511         }
20512 
20513         bzero(&cdb, sizeof (cdb));
20514         bzero(&ucmd_buf, sizeof (ucmd_buf));
20515         bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20516 
20517         cdb.scc_cmd = SCMD_START_STOP;
20518         cdb.cdb_opaque[4] = (pc_flag == SD_POWER_CONDITION) ?
20519             (uchar_t)(flag << 4) : (uchar_t)flag;
20520 
20521         ucmd_buf.uscsi_cdb      = (char *)&cdb;
20522         ucmd_buf.uscsi_cdblen   = CDB_GROUP0;
20523         ucmd_buf.uscsi_bufaddr  = NULL;
20524         ucmd_buf.uscsi_buflen   = 0;
20525         ucmd_buf.uscsi_rqbuf    = (caddr_t)&sense_buf;
20526         ucmd_buf.uscsi_rqlen    = sizeof (struct scsi_extended_sense);
20527         ucmd_buf.uscsi_flags    = USCSI_RQENABLE | USCSI_SILENT;
20528         ucmd_buf.uscsi_timeout  = 200;
20529 
20530         status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20531             UIO_SYSSPACE, path_flag);
20532 
20533         switch (status) {
20534         case 0:
20535                 sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20536                 break;  /* Success! */
20537         case EIO:
20538                 switch (ucmd_buf.uscsi_status) {
20539                 case STATUS_RESERVATION_CONFLICT:
20540                         status = EACCES;
20541                         break;
20542                 case STATUS_CHECK:
20543                         if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
20544                                 switch (scsi_sense_key(
20545                                     (uint8_t *)&sense_buf)) {
20546                                 case KEY_ILLEGAL_REQUEST:
20547                                         status = ENOTSUP;
20548                                         break;
20549                                 case KEY_NOT_READY:
20550                                         if (scsi_sense_asc(
20551                                             (uint8_t *)&sense_buf)
20552                                             == 0x3A) {
20553                                                 status = ENXIO;
20554                                         }
20555                                         break;
20556                                 default:
20557                                         break;
20558                                 }
20559                         }
20560                         break;
20561                 default:
20562                         break;
20563                 }
20564                 break;
20565         default:
20566                 break;
20567         }
20568 
20569         SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
20570 
20571         return (status);
20572 }
20573 
20574 
20575 /*
20576  *    Function: sd_start_stop_unit_callback
20577  *
20578  * Description: timeout(9F) callback to begin recovery process for a
20579  *              device that has spun down.
20580  *
20581  *   Arguments: arg - pointer to associated softstate struct.
20582  *
20583  *     Context: Executes in a timeout(9F) thread context
20584  */
20585 
20586 static void
20587 sd_start_stop_unit_callback(void *arg)
20588 {
20589         struct sd_lun   *un = arg;
20590         ASSERT(un != NULL);
20591         ASSERT(!mutex_owned(SD_MUTEX(un)));
20592 
20593         SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
20594 
20595         (void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
20596 }
20597 
20598 
20599 /*
20600  *    Function: sd_start_stop_unit_task
20601  *
20602  * Description: Recovery procedure when a drive is spun down.
20603  *
20604  *   Arguments: arg - pointer to associated softstate struct.
20605  *
20606  *     Context: Executes in a taskq() thread context
20607  */
20608 
20609 static void
20610 sd_start_stop_unit_task(void *arg)
20611 {
20612         struct sd_lun   *un = arg;
20613         sd_ssc_t        *ssc;
20614         int             power_level;
20615         int             rval;
20616 
20617         ASSERT(un != NULL);
20618         ASSERT(!mutex_owned(SD_MUTEX(un)));
20619 
20620         SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
20621 
20622         /*
20623          * Some unformatted drives report not ready error, no need to
20624          * restart if format has been initiated.
20625          */
20626         mutex_enter(SD_MUTEX(un));
20627         if (un->un_f_format_in_progress == TRUE) {
20628                 mutex_exit(SD_MUTEX(un));
20629                 return;
20630         }
20631         mutex_exit(SD_MUTEX(un));
20632 
20633         ssc = sd_ssc_init(un);
20634         /*
20635          * When a START STOP command is issued from here, it is part of a
20636          * failure recovery operation and must be issued before any other
20637          * commands, including any pending retries. Thus it must be sent
20638          * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
20639          * succeeds or not, we will start I/O after the attempt.
20640          * If power condition is supported and the current power level
20641          * is capable of performing I/O, we should set the power condition
20642          * to that level. Otherwise, set the power condition to ACTIVE.
20643          */
20644         if (un->un_f_power_condition_supported) {
20645                 mutex_enter(SD_MUTEX(un));
20646                 ASSERT(SD_PM_IS_LEVEL_VALID(un, un->un_power_level));
20647                 power_level = sd_pwr_pc.ran_perf[un->un_power_level]
20648                     > 0 ? un->un_power_level : SD_SPINDLE_ACTIVE;
20649                 mutex_exit(SD_MUTEX(un));
20650                 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION,
20651                     sd_pl2pc[power_level], SD_PATH_DIRECT_PRIORITY);
20652         } else {
20653                 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
20654                     SD_TARGET_START, SD_PATH_DIRECT_PRIORITY);
20655         }
20656 
20657         if (rval != 0)
20658                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
20659         sd_ssc_fini(ssc);
20660         /*
20661          * The above call blocks until the START_STOP_UNIT command completes.
20662          * Now that it has completed, we must re-try the original IO that
20663          * received the NOT READY condition in the first place. There are
20664          * three possible conditions here:
20665          *
20666          *  (1) The original IO is on un_retry_bp.
20667          *  (2) The original IO is on the regular wait queue, and un_retry_bp
20668          *      is NULL.
20669          *  (3) The original IO is on the regular wait queue, and un_retry_bp
20670          *      points to some other, unrelated bp.
20671          *
20672          * For each case, we must call sd_start_cmds() with un_retry_bp
20673          * as the argument. If un_retry_bp is NULL, this will initiate
20674          * processing of the regular wait queue.  If un_retry_bp is not NULL,
20675          * then this will process the bp on un_retry_bp. That may or may not
20676          * be the original IO, but that does not matter: the important thing
20677          * is to keep the IO processing going at this point.
20678          *
20679          * Note: This is a very specific error recovery sequence associated
20680          * with a drive that is not spun up. We attempt a START_STOP_UNIT and
20681          * serialize the I/O with completion of the spin-up.
20682          */
20683         mutex_enter(SD_MUTEX(un));
20684         SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
20685             "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
20686             un, un->un_retry_bp);
20687         un->un_startstop_timeid = NULL;      /* Timeout is no longer pending */
20688         sd_start_cmds(un, un->un_retry_bp);
20689         mutex_exit(SD_MUTEX(un));
20690 
20691         SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
20692 }
20693 
20694 
20695 /*
20696  *    Function: sd_send_scsi_INQUIRY
20697  *
20698  * Description: Issue the scsi INQUIRY command.
20699  *
20700  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20701  *                      structure for this target.
20702  *              bufaddr
20703  *              buflen
20704  *              evpd
20705  *              page_code
20706  *              page_length
20707  *
20708  * Return Code: 0   - Success
20709  *              errno return code from sd_ssc_send()
20710  *
20711  *     Context: Can sleep. Does not return until command is completed.
20712  */
20713 
20714 static int
20715 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen,
20716         uchar_t evpd, uchar_t page_code, size_t *residp)
20717 {
20718         union scsi_cdb          cdb;
20719         struct uscsi_cmd        ucmd_buf;
20720         int                     status;
20721         struct sd_lun           *un;
20722 
20723         ASSERT(ssc != NULL);
20724         un = ssc->ssc_un;
20725         ASSERT(un != NULL);
20726         ASSERT(!mutex_owned(SD_MUTEX(un)));
20727         ASSERT(bufaddr != NULL);
20728 
20729         SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
20730 
20731         bzero(&cdb, sizeof (cdb));
20732         bzero(&ucmd_buf, sizeof (ucmd_buf));
20733         bzero(bufaddr, buflen);
20734 
20735         cdb.scc_cmd = SCMD_INQUIRY;
20736         cdb.cdb_opaque[1] = evpd;
20737         cdb.cdb_opaque[2] = page_code;
20738         FORMG0COUNT(&cdb, buflen);
20739 
20740         ucmd_buf.uscsi_cdb      = (char *)&cdb;
20741         ucmd_buf.uscsi_cdblen   = CDB_GROUP0;
20742         ucmd_buf.uscsi_bufaddr  = (caddr_t)bufaddr;
20743         ucmd_buf.uscsi_buflen   = buflen;
20744         ucmd_buf.uscsi_rqbuf    = NULL;
20745         ucmd_buf.uscsi_rqlen    = 0;
20746         ucmd_buf.uscsi_flags    = USCSI_READ | USCSI_SILENT;
20747         ucmd_buf.uscsi_timeout  = 200;  /* Excessive legacy value */
20748 
20749         status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20750             UIO_SYSSPACE, SD_PATH_DIRECT);
20751 
20752         /*
20753          * Only handle status == 0, the upper-level caller
20754          * will put different assessment based on the context.
20755          */
20756         if (status == 0)
20757                 sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20758 
20759         if ((status == 0) && (residp != NULL)) {
20760                 *residp = ucmd_buf.uscsi_resid;
20761         }
20762 
20763         SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
20764 
20765         return (status);
20766 }
20767 
20768 
20769 /*
20770  *    Function: sd_send_scsi_TEST_UNIT_READY
20771  *
20772  * Description: Issue the scsi TEST UNIT READY command.
20773  *              This routine can be told to set the flag USCSI_DIAGNOSE to
20774  *              prevent retrying failed commands. Use this when the intent
20775  *              is either to check for device readiness, to clear a Unit
20776  *              Attention, or to clear any outstanding sense data.
20777  *              However under specific conditions the expected behavior
20778  *              is for retries to bring a device ready, so use the flag
20779  *              with caution.
20780  *
20781  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20782  *                      structure for this target.
20783  *              flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
20784  *                      SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
20785  *                      0: dont check for media present, do retries on cmd.
20786  *
20787  * Return Code: 0   - Success
20788  *              EIO - IO error
20789  *              EACCES - Reservation conflict detected
20790  *              ENXIO  - Not Ready, medium not present
20791  *              errno return code from sd_ssc_send()
20792  *
20793  *     Context: Can sleep. Does not return until command is completed.
20794  */
20795 
20796 static int
20797 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag)
20798 {
20799         struct  scsi_extended_sense     sense_buf;
20800         union scsi_cdb          cdb;
20801         struct uscsi_cmd        ucmd_buf;
20802         int                     status;
20803         struct sd_lun           *un;
20804 
20805         ASSERT(ssc != NULL);
20806         un = ssc->ssc_un;
20807         ASSERT(un != NULL);
20808         ASSERT(!mutex_owned(SD_MUTEX(un)));
20809 
20810         SD_TRACE(SD_LOG_IO, un,
20811             "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
20812 
20813         /*
20814          * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
20815          * timeouts when they receive a TUR and the queue is not empty. Check
20816          * the configuration flag set during attach (indicating the drive has
20817          * this firmware bug) and un_ncmds_in_transport before issuing the
20818          * TUR. If there are
20819          * pending commands return success, this is a bit arbitrary but is ok
20820          * for non-removables (i.e. the eliteI disks) and non-clustering
20821          * configurations.
20822          */
20823         if (un->un_f_cfg_tur_check == TRUE) {
20824                 mutex_enter(SD_MUTEX(un));
20825                 if (un->un_ncmds_in_transport != 0) {
20826                         mutex_exit(SD_MUTEX(un));
20827                         return (0);
20828                 }
20829                 mutex_exit(SD_MUTEX(un));
20830         }
20831 
20832         bzero(&cdb, sizeof (cdb));
20833         bzero(&ucmd_buf, sizeof (ucmd_buf));
20834         bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20835 
20836         cdb.scc_cmd = SCMD_TEST_UNIT_READY;
20837 
20838         ucmd_buf.uscsi_cdb      = (char *)&cdb;
20839         ucmd_buf.uscsi_cdblen   = CDB_GROUP0;
20840         ucmd_buf.uscsi_bufaddr  = NULL;
20841         ucmd_buf.uscsi_buflen   = 0;
20842         ucmd_buf.uscsi_rqbuf    = (caddr_t)&sense_buf;
20843         ucmd_buf.uscsi_rqlen    = sizeof (struct scsi_extended_sense);
20844         ucmd_buf.uscsi_flags    = USCSI_RQENABLE | USCSI_SILENT;
20845 
20846         /* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
20847         if ((flag & SD_DONT_RETRY_TUR) != 0) {
20848                 ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
20849         }
20850         ucmd_buf.uscsi_timeout  = 60;
20851 
20852         status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20853             UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
20854             SD_PATH_STANDARD));
20855 
20856         switch (status) {
20857         case 0:
20858                 sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20859                 break;  /* Success! */
20860         case EIO:
20861                 switch (ucmd_buf.uscsi_status) {
20862                 case STATUS_RESERVATION_CONFLICT:
20863                         status = EACCES;
20864                         break;
20865                 case STATUS_CHECK:
20866                         if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
20867                                 break;
20868                         }
20869                         if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20870                             (scsi_sense_key((uint8_t *)&sense_buf) ==
20871                             KEY_NOT_READY) &&
20872                             (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
20873                                 status = ENXIO;
20874                         }
20875                         break;
20876                 default:
20877                         break;
20878                 }
20879                 break;
20880         default:
20881                 break;
20882         }
20883 
20884         SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
20885 
20886         return (status);
20887 }
20888 
20889 /*
20890  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
20891  *
20892  * Description: Issue the scsi PERSISTENT RESERVE IN command.
20893  *
20894  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20895  *                      structure for this target.
20896  *
20897  * Return Code: 0   - Success
20898  *              EACCES
20899  *              ENOTSUP
20900  *              errno return code from sd_ssc_send()
20901  *
20902  *     Context: Can sleep. Does not return until command is completed.
20903  */
20904 
20905 static int
20906 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t  usr_cmd,
20907         uint16_t data_len, uchar_t *data_bufp)
20908 {
20909         struct scsi_extended_sense      sense_buf;
20910         union scsi_cdb          cdb;
20911         struct uscsi_cmd        ucmd_buf;
20912         int                     status;
20913         int                     no_caller_buf = FALSE;
20914         struct sd_lun           *un;
20915 
20916         ASSERT(ssc != NULL);
20917         un = ssc->ssc_un;
20918         ASSERT(un != NULL);
20919         ASSERT(!mutex_owned(SD_MUTEX(un)));
20920         ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
20921 
20922         SD_TRACE(SD_LOG_IO, un,
20923             "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
20924 
20925         bzero(&cdb, sizeof (cdb));
20926         bzero(&ucmd_buf, sizeof (ucmd_buf));
20927         bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20928         if (data_bufp == NULL) {
20929                 /* Allocate a default buf if the caller did not give one */
20930                 ASSERT(data_len == 0);
20931                 data_len  = MHIOC_RESV_KEY_SIZE;
20932                 data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
20933                 no_caller_buf = TRUE;
20934         }
20935 
20936         cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
20937         cdb.cdb_opaque[1] = usr_cmd;
20938         FORMG1COUNT(&cdb, data_len);
20939 
20940         ucmd_buf.uscsi_cdb      = (char *)&cdb;
20941         ucmd_buf.uscsi_cdblen   = CDB_GROUP1;
20942         ucmd_buf.uscsi_bufaddr  = (caddr_t)data_bufp;
20943         ucmd_buf.uscsi_buflen   = data_len;
20944         ucmd_buf.uscsi_rqbuf    = (caddr_t)&sense_buf;
20945         ucmd_buf.uscsi_rqlen    = sizeof (struct scsi_extended_sense);
20946         ucmd_buf.uscsi_flags    = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20947         ucmd_buf.uscsi_timeout  = 60;
20948 
20949         status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20950             UIO_SYSSPACE, SD_PATH_STANDARD);
20951 
20952         switch (status) {
20953         case 0:
20954                 sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20955 
20956                 break;  /* Success! */
20957         case EIO:
20958                 switch (ucmd_buf.uscsi_status) {
20959                 case STATUS_RESERVATION_CONFLICT:
20960                         status = EACCES;
20961                         break;
20962                 case STATUS_CHECK:
20963                         if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20964                             (scsi_sense_key((uint8_t *)&sense_buf) ==
20965                             KEY_ILLEGAL_REQUEST)) {
20966                                 status = ENOTSUP;
20967                         }
20968                         break;
20969                 default:
20970                         break;
20971                 }
20972                 break;
20973         default:
20974                 break;
20975         }
20976 
20977         SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
20978 
20979         if (no_caller_buf == TRUE) {
20980                 kmem_free(data_bufp, data_len);
20981         }
20982 
20983         return (status);
20984 }
20985 
20986 
20987 /*
20988  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
20989  *
20990  * Description: This routine is the driver entry point for handling CD-ROM
20991  *              multi-host persistent reservation requests (MHIOCGRP_INKEYS,
20992  *              MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
20993  *              device.
20994  *
20995  *   Arguments: ssc  -  ssc contains un - pointer to soft state struct
20996  *                      for the target.
20997  *              usr_cmd SCSI-3 reservation facility command (one of
20998  *                      SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
20999  *                      SD_SCSI3_PREEMPTANDABORT, SD_SCSI3_CLEAR)
21000  *              usr_bufp - user provided pointer register, reserve descriptor or
21001  *                      preempt and abort structure (mhioc_register_t,
21002  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
21003  *
21004  * Return Code: 0   - Success
21005  *              EACCES
21006  *              ENOTSUP
21007  *              errno return code from sd_ssc_send()
21008  *
21009  *     Context: Can sleep. Does not return until command is completed.
21010  */
21011 
21012 static int
21013 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd,
21014         uchar_t *usr_bufp)
21015 {
21016         struct scsi_extended_sense      sense_buf;
21017         union scsi_cdb          cdb;
21018         struct uscsi_cmd        ucmd_buf;
21019         int                     status;
21020         uchar_t                 data_len = sizeof (sd_prout_t);
21021         sd_prout_t              *prp;
21022         struct sd_lun           *un;
21023 
21024         ASSERT(ssc != NULL);
21025         un = ssc->ssc_un;
21026         ASSERT(un != NULL);
21027         ASSERT(!mutex_owned(SD_MUTEX(un)));
21028         ASSERT(data_len == 24); /* required by scsi spec */
21029 
21030         SD_TRACE(SD_LOG_IO, un,
21031             "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
21032 
21033         if (usr_bufp == NULL) {
21034                 return (EINVAL);
21035         }
21036 
21037         bzero(&cdb, sizeof (cdb));
21038         bzero(&ucmd_buf, sizeof (ucmd_buf));
21039         bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21040         prp = kmem_zalloc(data_len, KM_SLEEP);
21041 
21042         cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
21043         cdb.cdb_opaque[1] = usr_cmd;
21044         FORMG1COUNT(&cdb, data_len);
21045 
21046         ucmd_buf.uscsi_cdb      = (char *)&cdb;
21047         ucmd_buf.uscsi_cdblen   = CDB_GROUP1;
21048         ucmd_buf.uscsi_bufaddr  = (caddr_t)prp;
21049         ucmd_buf.uscsi_buflen   = data_len;
21050         ucmd_buf.uscsi_rqbuf    = (caddr_t)&sense_buf;
21051         ucmd_buf.uscsi_rqlen    = sizeof (struct scsi_extended_sense);
21052         ucmd_buf.uscsi_flags    = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
21053         ucmd_buf.uscsi_timeout  = 60;
21054 
21055         switch (usr_cmd) {
21056         case SD_SCSI3_REGISTER: {
21057                 mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
21058 
21059                 bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21060                 bcopy(ptr->newkey.key, prp->service_key,
21061                     MHIOC_RESV_KEY_SIZE);
21062                 prp->aptpl = ptr->aptpl;
21063                 break;
21064         }
21065         case SD_SCSI3_CLEAR: {
21066                 mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
21067 
21068                 bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21069                 break;
21070         }
21071         case SD_SCSI3_RESERVE:
21072         case SD_SCSI3_RELEASE: {
21073                 mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
21074 
21075                 bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21076                 prp->scope_address = BE_32(ptr->scope_specific_addr);
21077                 cdb.cdb_opaque[2] = ptr->type;
21078                 break;
21079         }
21080         case SD_SCSI3_PREEMPTANDABORT: {
21081                 mhioc_preemptandabort_t *ptr =
21082                     (mhioc_preemptandabort_t *)usr_bufp;
21083 
21084                 bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21085                 bcopy(ptr->victim_key.key, prp->service_key,
21086                     MHIOC_RESV_KEY_SIZE);
21087                 prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
21088                 cdb.cdb_opaque[2] = ptr->resvdesc.type;
21089                 ucmd_buf.uscsi_flags |= USCSI_HEAD;
21090                 break;
21091         }
21092         case SD_SCSI3_REGISTERANDIGNOREKEY:
21093         {
21094                 mhioc_registerandignorekey_t *ptr;
21095                 ptr = (mhioc_registerandignorekey_t *)usr_bufp;
21096                 bcopy(ptr->newkey.key,
21097                     prp->service_key, MHIOC_RESV_KEY_SIZE);
21098                 prp->aptpl = ptr->aptpl;
21099                 break;
21100         }
21101         default:
21102                 ASSERT(FALSE);
21103                 break;
21104         }
21105 
21106         status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21107             UIO_SYSSPACE, SD_PATH_STANDARD);
21108 
21109         switch (status) {
21110         case 0:
21111                 sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21112                 break;  /* Success! */
21113         case EIO:
21114                 switch (ucmd_buf.uscsi_status) {
21115                 case STATUS_RESERVATION_CONFLICT:
21116                         status = EACCES;
21117                         break;
21118                 case STATUS_CHECK:
21119                         if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21120                             (scsi_sense_key((uint8_t *)&sense_buf) ==
21121                             KEY_ILLEGAL_REQUEST)) {
21122                                 status = ENOTSUP;
21123                         }
21124                         break;
21125                 default:
21126                         break;
21127                 }
21128                 break;
21129         default:
21130                 break;
21131         }
21132 
21133         kmem_free(prp, data_len);
21134         SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
21135         return (status);
21136 }
21137 
21138 
21139 /*
21140  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
21141  *
21142  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
21143  *
21144  *   Arguments: un - pointer to the target's soft state struct
21145  *              dkc - pointer to the callback structure
21146  *
21147  * Return Code: 0 - success
21148  *              errno-type error code
21149  *
21150  *     Context: kernel thread context only.
21151  *
21152  *  _______________________________________________________________
21153  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
21154  * |FLUSH_VOLATILE|              | operation                       |
21155  * |______________|______________|_________________________________|
21156  * | 0            | NULL         | Synchronous flush on both       |
21157  * |              |              | volatile and non-volatile cache |
21158  * |______________|______________|_________________________________|
21159  * | 1            | NULL         | Synchronous flush on volatile   |
21160  * |              |              | cache; disk drivers may suppress|
21161  * |              |              | flush if disk table indicates   |
21162  * |              |              | non-volatile cache              |
21163  * |______________|______________|_________________________________|
21164  * | 0            | !NULL        | Asynchronous flush on both      |
21165  * |              |              | volatile and non-volatile cache;|
21166  * |______________|______________|_________________________________|
21167  * | 1            | !NULL        | Asynchronous flush on volatile  |
21168  * |              |              | cache; disk drivers may suppress|
21169  * |              |              | flush if disk table indicates   |
21170  * |              |              | non-volatile cache              |
21171  * |______________|______________|_________________________________|
21172  *
21173  */
21174 
21175 static int
21176 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
21177 {
21178         struct sd_uscsi_info    *uip;
21179         struct uscsi_cmd        *uscmd;
21180         union scsi_cdb          *cdb;
21181         struct buf              *bp;
21182         int                     rval = 0;
21183         int                     is_async;
21184 
21185         SD_TRACE(SD_LOG_IO, un,
21186             "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
21187 
21188         ASSERT(un != NULL);
21189         ASSERT(!mutex_owned(SD_MUTEX(un)));
21190 
21191         if (dkc == NULL || dkc->dkc_callback == NULL) {
21192                 is_async = FALSE;
21193         } else {
21194                 is_async = TRUE;
21195         }
21196 
21197         mutex_enter(SD_MUTEX(un));
21198         /* check whether cache flush should be suppressed */
21199         if (un->un_f_suppress_cache_flush == TRUE) {
21200                 mutex_exit(SD_MUTEX(un));
21201                 /*
21202                  * suppress the cache flush if the device is told to do
21203                  * so by sd.conf or disk table
21204                  */
21205                 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
21206                     skip the cache flush since suppress_cache_flush is %d!\n",
21207                     un->un_f_suppress_cache_flush);
21208 
21209                 if (is_async == TRUE) {
21210                         /* invoke callback for asynchronous flush */
21211                         (*dkc->dkc_callback)(dkc->dkc_cookie, 0);
21212                 }
21213                 return (rval);
21214         }
21215         mutex_exit(SD_MUTEX(un));
21216 
21217         /*
21218          * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
21219          * set properly
21220          */
21221         cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
21222         cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
21223 
21224         mutex_enter(SD_MUTEX(un));
21225         if (dkc != NULL && un->un_f_sync_nv_supported &&
21226             (dkc->dkc_flag & FLUSH_VOLATILE)) {
21227                 /*
21228                  * if the device supports SYNC_NV bit, turn on
21229                  * the SYNC_NV bit to only flush volatile cache
21230                  */
21231                 cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
21232         }
21233         mutex_exit(SD_MUTEX(un));
21234 
21235         /*
21236          * First get some memory for the uscsi_cmd struct and cdb
21237          * and initialize for SYNCHRONIZE_CACHE cmd.
21238          */
21239         uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
21240         uscmd->uscsi_cdblen = CDB_GROUP1;
21241         uscmd->uscsi_cdb = (caddr_t)cdb;
21242         uscmd->uscsi_bufaddr = NULL;
21243         uscmd->uscsi_buflen = 0;
21244         uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
21245         uscmd->uscsi_rqlen = SENSE_LENGTH;
21246         uscmd->uscsi_rqresid = SENSE_LENGTH;
21247         uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
21248         uscmd->uscsi_timeout = sd_io_time;
21249 
21250         /*
21251          * Allocate an sd_uscsi_info struct and fill it with the info
21252          * needed by sd_initpkt_for_uscsi().  Then put the pointer into
21253          * b_private in the buf for sd_initpkt_for_uscsi().  Note that
21254          * since we allocate the buf here in this function, we do not
21255          * need to preserve the prior contents of b_private.
21256          * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
21257          */
21258         uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
21259         uip->ui_flags = SD_PATH_DIRECT;
21260         uip->ui_cmdp  = uscmd;
21261 
21262         bp = getrbuf(KM_SLEEP);
21263         bp->b_private = uip;
21264 
21265         /*
21266          * Setup buffer to carry uscsi request.
21267          */
21268         bp->b_flags  = B_BUSY;
21269         bp->b_bcount = 0;
21270         bp->b_blkno  = 0;
21271 
21272         if (is_async == TRUE) {
21273                 bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
21274                 uip->ui_dkc = *dkc;
21275         }
21276 
21277         bp->b_edev = SD_GET_DEV(un);
21278         bp->b_dev = cmpdev(bp->b_edev);   /* maybe unnecessary? */
21279 
21280         /*
21281          * Unset un_f_sync_cache_required flag
21282          */
21283         mutex_enter(SD_MUTEX(un));
21284         un->un_f_sync_cache_required = FALSE;
21285         mutex_exit(SD_MUTEX(un));
21286 
21287         (void) sd_uscsi_strategy(bp);
21288 
21289         /*
21290          * If synchronous request, wait for completion
21291          * If async just return and let b_iodone callback
21292          * cleanup.
21293          * NOTE: On return, u_ncmds_in_driver will be decremented,
21294          * but it was also incremented in sd_uscsi_strategy(), so
21295          * we should be ok.
21296          */
21297         if (is_async == FALSE) {
21298                 (void) biowait(bp);
21299                 rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
21300         }
21301 
21302         return (rval);
21303 }
21304 
21305 
21306 static int
21307 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
21308 {
21309         struct sd_uscsi_info *uip;
21310         struct uscsi_cmd *uscmd;
21311         uint8_t *sense_buf;
21312         struct sd_lun *un;
21313         int status;
21314         union scsi_cdb *cdb;
21315 
21316         uip = (struct sd_uscsi_info *)(bp->b_private);
21317         ASSERT(uip != NULL);
21318 
21319         uscmd = uip->ui_cmdp;
21320         ASSERT(uscmd != NULL);
21321 
21322         sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
21323         ASSERT(sense_buf != NULL);
21324 
21325         un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
21326         ASSERT(un != NULL);
21327 
21328         cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
21329 
21330         status = geterror(bp);
21331         switch (status) {
21332         case 0:
21333                 break;  /* Success! */
21334         case EIO:
21335                 switch (uscmd->uscsi_status) {
21336                 case STATUS_RESERVATION_CONFLICT:
21337                         /* Ignore reservation conflict */
21338                         status = 0;
21339                         goto done;
21340 
21341                 case STATUS_CHECK:
21342                         if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
21343                             (scsi_sense_key(sense_buf) ==
21344                             KEY_ILLEGAL_REQUEST)) {
21345                                 /* Ignore Illegal Request error */
21346                                 if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) {
21347                                         mutex_enter(SD_MUTEX(un));
21348                                         un->un_f_sync_nv_supported = FALSE;
21349                                         mutex_exit(SD_MUTEX(un));
21350                                         status = 0;
21351                                         SD_TRACE(SD_LOG_IO, un,
21352                                             "un_f_sync_nv_supported \
21353                                             is set to false.\n");
21354                                         goto done;
21355                                 }
21356 
21357                                 mutex_enter(SD_MUTEX(un));
21358                                 un->un_f_sync_cache_supported = FALSE;
21359                                 mutex_exit(SD_MUTEX(un));
21360                                 SD_TRACE(SD_LOG_IO, un,
21361                                     "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
21362                                     un_f_sync_cache_supported set to false \
21363                                     with asc = %x, ascq = %x\n",
21364                                     scsi_sense_asc(sense_buf),
21365                                     scsi_sense_ascq(sense_buf));
21366                                 status = ENOTSUP;
21367                                 goto done;
21368                         }
21369                         break;
21370                 default:
21371                         break;
21372                 }
21373                 /* FALLTHRU */
21374         default:
21375                 /*
21376                  * Turn on the un_f_sync_cache_required flag
21377                  * since the SYNC CACHE command failed
21378                  */
21379                 mutex_enter(SD_MUTEX(un));
21380                 un->un_f_sync_cache_required = TRUE;
21381                 mutex_exit(SD_MUTEX(un));
21382 
21383                 /*
21384                  * Don't log an error message if this device
21385                  * has removable media.
21386                  */
21387                 if (!un->un_f_has_removable_media) {
21388                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
21389                             "SYNCHRONIZE CACHE command failed (%d)\n", status);
21390                 }
21391                 break;
21392         }
21393 
21394 done:
21395         if (uip->ui_dkc.dkc_callback != NULL) {
21396                 (*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
21397         }
21398 
21399         ASSERT((bp->b_flags & B_REMAPPED) == 0);
21400         freerbuf(bp);
21401         kmem_free(uip, sizeof (struct sd_uscsi_info));
21402         kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
21403         kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
21404         kmem_free(uscmd, sizeof (struct uscsi_cmd));
21405 
21406         return (status);
21407 }
21408 
21409 
21410 /*
21411  *    Function: sd_send_scsi_GET_CONFIGURATION
21412  *
21413  * Description: Issues the get configuration command to the device.
21414  *              Called from sd_check_for_writable_cd & sd_get_media_info
21415  *              caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
21416  *   Arguments: ssc
21417  *              ucmdbuf
21418  *              rqbuf
21419  *              rqbuflen
21420  *              bufaddr
21421  *              buflen
21422  *              path_flag
21423  *
21424  * Return Code: 0   - Success
21425  *              errno return code from sd_ssc_send()
21426  *
21427  *     Context: Can sleep. Does not return until command is completed.
21428  *
21429  */
21430 
21431 static int
21432 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf,
21433         uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
21434         int path_flag)
21435 {
21436         char    cdb[CDB_GROUP1];
21437         int     status;
21438         struct sd_lun   *un;
21439 
21440         ASSERT(ssc != NULL);
21441         un = ssc->ssc_un;
21442         ASSERT(un != NULL);
21443         ASSERT(!mutex_owned(SD_MUTEX(un)));
21444         ASSERT(bufaddr != NULL);
21445         ASSERT(ucmdbuf != NULL);
21446         ASSERT(rqbuf != NULL);
21447 
21448         SD_TRACE(SD_LOG_IO, un,
21449             "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
21450 
21451         bzero(cdb, sizeof (cdb));
21452         bzero(ucmdbuf, sizeof (struct uscsi_cmd));
21453         bzero(rqbuf, rqbuflen);
21454         bzero(bufaddr, buflen);
21455 
21456         /*
21457          * Set up cdb field for the get configuration command.
21458          */
21459         cdb[0] = SCMD_GET_CONFIGURATION;
21460         cdb[1] = 0x02;  /* Requested Type */
21461         cdb[8] = SD_PROFILE_HEADER_LEN;
21462         ucmdbuf->uscsi_cdb = cdb;
21463         ucmdbuf->uscsi_cdblen = CDB_GROUP1;
21464         ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
21465         ucmdbuf->uscsi_buflen = buflen;
21466         ucmdbuf->uscsi_timeout = sd_io_time;
21467         ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
21468         ucmdbuf->uscsi_rqlen = rqbuflen;
21469         ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
21470 
21471         status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
21472             UIO_SYSSPACE, path_flag);
21473 
21474         switch (status) {
21475         case 0:
21476                 sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21477                 break;  /* Success! */
21478         case EIO:
21479                 switch (ucmdbuf->uscsi_status) {
21480                 case STATUS_RESERVATION_CONFLICT:
21481                         status = EACCES;
21482                         break;
21483                 default:
21484                         break;
21485                 }
21486                 break;
21487         default:
21488                 break;
21489         }
21490 
21491         if (status == 0) {
21492                 SD_DUMP_MEMORY(un, SD_LOG_IO,
21493                     "sd_send_scsi_GET_CONFIGURATION: data",
21494                     (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
21495         }
21496 
21497         SD_TRACE(SD_LOG_IO, un,
21498             "sd_send_scsi_GET_CONFIGURATION: exit\n");
21499 
21500         return (status);
21501 }
21502 
21503 /*
21504  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
21505  *
21506  * Description: Issues the get configuration command to the device to
21507  *              retrieve a specific feature. Called from
21508  *              sd_check_for_writable_cd & sd_set_mmc_caps.
21509  *   Arguments: ssc
21510  *              ucmdbuf
21511  *              rqbuf
21512  *              rqbuflen
21513  *              bufaddr
21514  *              buflen
21515  *              feature
21516  *
21517  * Return Code: 0   - Success
21518  *              errno return code from sd_ssc_send()
21519  *
21520  *     Context: Can sleep. Does not return until command is completed.
21521  *
21522  */
21523 static int
21524 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
21525         struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
21526         uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
21527 {
21528         char    cdb[CDB_GROUP1];
21529         int     status;
21530         struct sd_lun   *un;
21531 
21532         ASSERT(ssc != NULL);
21533         un = ssc->ssc_un;
21534         ASSERT(un != NULL);
21535         ASSERT(!mutex_owned(SD_MUTEX(un)));
21536         ASSERT(bufaddr != NULL);
21537         ASSERT(ucmdbuf != NULL);
21538         ASSERT(rqbuf != NULL);
21539 
21540         SD_TRACE(SD_LOG_IO, un,
21541             "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
21542 
21543         bzero(cdb, sizeof (cdb));
21544         bzero(ucmdbuf, sizeof (struct uscsi_cmd));
21545         bzero(rqbuf, rqbuflen);
21546         bzero(bufaddr, buflen);
21547 
21548         /*
21549          * Set up cdb field for the get configuration command.
21550          */
21551         cdb[0] = SCMD_GET_CONFIGURATION;
21552         cdb[1] = 0x02;  /* Requested Type */
21553         cdb[3] = feature;
21554         cdb[8] = buflen;
21555         ucmdbuf->uscsi_cdb = cdb;
21556         ucmdbuf->uscsi_cdblen = CDB_GROUP1;
21557         ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
21558         ucmdbuf->uscsi_buflen = buflen;
21559         ucmdbuf->uscsi_timeout = sd_io_time;
21560         ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
21561         ucmdbuf->uscsi_rqlen = rqbuflen;
21562         ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
21563 
21564         status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
21565             UIO_SYSSPACE, path_flag);
21566 
21567         switch (status) {
21568         case 0:
21569 
21570                 break;  /* Success! */
21571         case EIO:
21572                 switch (ucmdbuf->uscsi_status) {
21573                 case STATUS_RESERVATION_CONFLICT:
21574                         status = EACCES;
21575                         break;
21576                 default:
21577                         break;
21578                 }
21579                 break;
21580         default:
21581                 break;
21582         }
21583 
21584         if (status == 0) {
21585                 SD_DUMP_MEMORY(un, SD_LOG_IO,
21586                     "sd_send_scsi_feature_GET_CONFIGURATION: data",
21587                     (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
21588         }
21589 
21590         SD_TRACE(SD_LOG_IO, un,
21591             "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
21592 
21593         return (status);
21594 }
21595 
21596 
21597 /*
21598  *    Function: sd_send_scsi_MODE_SENSE
21599  *
21600  * Description: Utility function for issuing a scsi MODE SENSE command.
21601  *              Note: This routine uses a consistent implementation for Group0,
21602  *              Group1, and Group2 commands across all platforms. ATAPI devices
21603  *              use Group 1 Read/Write commands and Group 2 Mode Sense/Select
21604  *
21605  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21606  *                      structure for this target.
21607  *              cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
21608  *                        CDB_GROUP[1|2] (10 byte).
21609  *              bufaddr - buffer for page data retrieved from the target.
21610  *              buflen - size of page to be retrieved.
21611  *              page_code - page code of data to be retrieved from the target.
21612  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21613  *                      the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21614  *                      to use the USCSI "direct" chain and bypass the normal
21615  *                      command waitq.
21616  *
21617  * Return Code: 0   - Success
21618  *              errno return code from sd_ssc_send()
21619  *
21620  *     Context: Can sleep. Does not return until command is completed.
21621  */
21622 
21623 static int
21624 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
21625         size_t buflen,  uchar_t page_code, int path_flag)
21626 {
21627         struct  scsi_extended_sense     sense_buf;
21628         union scsi_cdb          cdb;
21629         struct uscsi_cmd        ucmd_buf;
21630         int                     status;
21631         int                     headlen;
21632         struct sd_lun           *un;
21633 
21634         ASSERT(ssc != NULL);
21635         un = ssc->ssc_un;
21636         ASSERT(un != NULL);
21637         ASSERT(!mutex_owned(SD_MUTEX(un)));
21638         ASSERT(bufaddr != NULL);
21639         ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
21640             (cdbsize == CDB_GROUP2));
21641 
21642         SD_TRACE(SD_LOG_IO, un,
21643             "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
21644 
21645         bzero(&cdb, sizeof (cdb));
21646         bzero(&ucmd_buf, sizeof (ucmd_buf));
21647         bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21648         bzero(bufaddr, buflen);
21649 
21650         if (cdbsize == CDB_GROUP0) {
21651                 cdb.scc_cmd = SCMD_MODE_SENSE;
21652                 cdb.cdb_opaque[2] = page_code;
21653                 FORMG0COUNT(&cdb, buflen);
21654                 headlen = MODE_HEADER_LENGTH;
21655         } else {
21656                 cdb.scc_cmd = SCMD_MODE_SENSE_G1;
21657                 cdb.cdb_opaque[2] = page_code;
21658                 FORMG1COUNT(&cdb, buflen);
21659                 headlen = MODE_HEADER_LENGTH_GRP2;
21660         }
21661 
21662         ASSERT(headlen <= buflen);
21663         SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21664 
21665         ucmd_buf.uscsi_cdb      = (char *)&cdb;
21666         ucmd_buf.uscsi_cdblen   = (uchar_t)cdbsize;
21667         ucmd_buf.uscsi_bufaddr  = (caddr_t)bufaddr;
21668         ucmd_buf.uscsi_buflen   = buflen;
21669         ucmd_buf.uscsi_rqbuf    = (caddr_t)&sense_buf;
21670         ucmd_buf.uscsi_rqlen    = sizeof (struct scsi_extended_sense);
21671         ucmd_buf.uscsi_flags    = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21672         ucmd_buf.uscsi_timeout  = 60;
21673 
21674         status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21675             UIO_SYSSPACE, path_flag);
21676 
21677         switch (status) {
21678         case 0:
21679                 /*
21680                  * sr_check_wp() uses 0x3f page code and check the header of
21681                  * mode page to determine if target device is write-protected.
21682                  * But some USB devices return 0 bytes for 0x3f page code. For
21683                  * this case, make sure that mode page header is returned at
21684                  * least.
21685                  */
21686                 if (buflen - ucmd_buf.uscsi_resid <  headlen) {
21687                         status = EIO;
21688                         sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
21689                             "mode page header is not returned");
21690                 }
21691                 break;  /* Success! */
21692         case EIO:
21693                 switch (ucmd_buf.uscsi_status) {
21694                 case STATUS_RESERVATION_CONFLICT:
21695                         status = EACCES;
21696                         break;
21697                 default:
21698                         break;
21699                 }
21700                 break;
21701         default:
21702                 break;
21703         }
21704 
21705         if (status == 0) {
21706                 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
21707                     (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21708         }
21709         SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
21710 
21711         return (status);
21712 }
21713 
21714 
21715 /*
21716  *    Function: sd_send_scsi_MODE_SELECT
21717  *
21718  * Description: Utility function for issuing a scsi MODE SELECT command.
21719  *              Note: This routine uses a consistent implementation for Group0,
21720  *              Group1, and Group2 commands across all platforms. ATAPI devices
21721  *              use Group 1 Read/Write commands and Group 2 Mode Sense/Select
21722  *
21723  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21724  *                      structure for this target.
21725  *              cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
21726  *                        CDB_GROUP[1|2] (10 byte).
21727  *              bufaddr - buffer for page data retrieved from the target.
21728  *              buflen - size of page to be retrieved.
21729  *              save_page - boolean to determin if SP bit should be set.
21730  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21731  *                      the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21732  *                      to use the USCSI "direct" chain and bypass the normal
21733  *                      command waitq.
21734  *
21735  * Return Code: 0   - Success
21736  *              errno return code from sd_ssc_send()
21737  *
21738  *     Context: Can sleep. Does not return until command is completed.
21739  */
21740 
21741 static int
21742 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
21743         size_t buflen,  uchar_t save_page, int path_flag)
21744 {
21745         struct  scsi_extended_sense     sense_buf;
21746         union scsi_cdb          cdb;
21747         struct uscsi_cmd        ucmd_buf;
21748         int                     status;
21749         struct sd_lun           *un;
21750 
21751         ASSERT(ssc != NULL);
21752         un = ssc->ssc_un;
21753         ASSERT(un != NULL);
21754         ASSERT(!mutex_owned(SD_MUTEX(un)));
21755         ASSERT(bufaddr != NULL);
21756         ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
21757             (cdbsize == CDB_GROUP2));
21758 
21759         SD_TRACE(SD_LOG_IO, un,
21760             "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
21761 
21762         bzero(&cdb, sizeof (cdb));
21763         bzero(&ucmd_buf, sizeof (ucmd_buf));
21764         bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21765 
21766         /* Set the PF bit for many third party drives */
21767         cdb.cdb_opaque[1] = 0x10;
21768 
21769         /* Set the savepage(SP) bit if given */
21770         if (save_page == SD_SAVE_PAGE) {
21771                 cdb.cdb_opaque[1] |= 0x01;
21772         }
21773 
21774         if (cdbsize == CDB_GROUP0) {
21775                 cdb.scc_cmd = SCMD_MODE_SELECT;
21776                 FORMG0COUNT(&cdb, buflen);
21777         } else {
21778                 cdb.scc_cmd = SCMD_MODE_SELECT_G1;
21779                 FORMG1COUNT(&cdb, buflen);
21780         }
21781 
21782         SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21783 
21784         ucmd_buf.uscsi_cdb      = (char *)&cdb;
21785         ucmd_buf.uscsi_cdblen   = (uchar_t)cdbsize;
21786         ucmd_buf.uscsi_bufaddr  = (caddr_t)bufaddr;
21787         ucmd_buf.uscsi_buflen   = buflen;
21788         ucmd_buf.uscsi_rqbuf    = (caddr_t)&sense_buf;
21789         ucmd_buf.uscsi_rqlen    = sizeof (struct scsi_extended_sense);
21790         ucmd_buf.uscsi_flags    = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
21791         ucmd_buf.uscsi_timeout  = 60;
21792 
21793         status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21794             UIO_SYSSPACE, path_flag);
21795 
21796         switch (status) {
21797         case 0:
21798                 sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21799                 break;  /* Success! */
21800         case EIO:
21801                 switch (ucmd_buf.uscsi_status) {
21802                 case STATUS_RESERVATION_CONFLICT:
21803                         status = EACCES;
21804                         break;
21805                 default:
21806                         break;
21807                 }
21808                 break;
21809         default:
21810                 break;
21811         }
21812 
21813         if (status == 0) {
21814                 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
21815                     (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21816         }
21817         SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
21818 
21819         return (status);
21820 }
21821 
21822 
21823 /*
21824  *    Function: sd_send_scsi_RDWR
21825  *
21826  * Description: Issue a scsi READ or WRITE command with the given parameters.
21827  *
21828  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21829  *                      structure for this target.
21830  *              cmd:     SCMD_READ or SCMD_WRITE
21831  *              bufaddr: Address of caller's buffer to receive the RDWR data
21832  *              buflen:  Length of caller's buffer receive the RDWR data.
21833  *              start_block: Block number for the start of the RDWR operation.
21834  *                       (Assumes target-native block size.)
21835  *              residp:  Pointer to variable to receive the redisual of the
21836  *                       RDWR operation (may be NULL of no residual requested).
21837  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21838  *                      the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21839  *                      to use the USCSI "direct" chain and bypass the normal
21840  *                      command waitq.
21841  *
21842  * Return Code: 0   - Success
21843  *              errno return code from sd_ssc_send()
21844  *
21845  *     Context: Can sleep. Does not return until command is completed.
21846  */
21847 
21848 static int
21849 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
21850         size_t buflen, daddr_t start_block, int path_flag)
21851 {
21852         struct  scsi_extended_sense     sense_buf;
21853         union scsi_cdb          cdb;
21854         struct uscsi_cmd        ucmd_buf;
21855         uint32_t                block_count;
21856         int                     status;
21857         int                     cdbsize;
21858         uchar_t                 flag;
21859         struct sd_lun           *un;
21860 
21861         ASSERT(ssc != NULL);
21862         un = ssc->ssc_un;
21863         ASSERT(un != NULL);
21864         ASSERT(!mutex_owned(SD_MUTEX(un)));
21865         ASSERT(bufaddr != NULL);
21866         ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
21867 
21868         SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
21869 
21870         if (un->un_f_tgt_blocksize_is_valid != TRUE) {
21871                 return (EINVAL);
21872         }
21873 
21874         mutex_enter(SD_MUTEX(un));
21875         block_count = SD_BYTES2TGTBLOCKS(un, buflen);
21876         mutex_exit(SD_MUTEX(un));
21877 
21878         flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
21879 
21880         SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
21881             "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
21882             bufaddr, buflen, start_block, block_count);
21883 
21884         bzero(&cdb, sizeof (cdb));
21885         bzero(&ucmd_buf, sizeof (ucmd_buf));
21886         bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21887 
21888         /* Compute CDB size to use */
21889         if (start_block > 0xffffffff)
21890                 cdbsize = CDB_GROUP4;
21891         else if ((start_block & 0xFFE00000) ||
21892             (un->un_f_cfg_is_atapi == TRUE))
21893                 cdbsize = CDB_GROUP1;
21894         else
21895                 cdbsize = CDB_GROUP0;
21896 
21897         switch (cdbsize) {
21898         case CDB_GROUP0:        /* 6-byte CDBs */
21899                 cdb.scc_cmd = cmd;
21900                 FORMG0ADDR(&cdb, start_block);
21901                 FORMG0COUNT(&cdb, block_count);
21902                 break;
21903         case CDB_GROUP1:        /* 10-byte CDBs */
21904                 cdb.scc_cmd = cmd | SCMD_GROUP1;
21905                 FORMG1ADDR(&cdb, start_block);
21906                 FORMG1COUNT(&cdb, block_count);
21907                 break;
21908         case CDB_GROUP4:        /* 16-byte CDBs */
21909                 cdb.scc_cmd = cmd | SCMD_GROUP4;
21910                 FORMG4LONGADDR(&cdb, (uint64_t)start_block);
21911                 FORMG4COUNT(&cdb, block_count);
21912                 break;
21913         case CDB_GROUP5:        /* 12-byte CDBs (currently unsupported) */
21914         default:
21915                 /* All others reserved */
21916                 return (EINVAL);
21917         }
21918 
21919         /* Set LUN bit(s) in CDB if this is a SCSI-1 device */
21920         SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21921 
21922         ucmd_buf.uscsi_cdb      = (char *)&cdb;
21923         ucmd_buf.uscsi_cdblen   = (uchar_t)cdbsize;
21924         ucmd_buf.uscsi_bufaddr  = bufaddr;
21925         ucmd_buf.uscsi_buflen   = buflen;
21926         ucmd_buf.uscsi_rqbuf    = (caddr_t)&sense_buf;
21927         ucmd_buf.uscsi_rqlen    = sizeof (struct scsi_extended_sense);
21928         ucmd_buf.uscsi_flags    = flag | USCSI_RQENABLE | USCSI_SILENT;
21929         ucmd_buf.uscsi_timeout  = 60;
21930         status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21931             UIO_SYSSPACE, path_flag);
21932 
21933         switch (status) {
21934         case 0:
21935                 sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21936                 break;  /* Success! */
21937         case EIO:
21938                 switch (ucmd_buf.uscsi_status) {
21939                 case STATUS_RESERVATION_CONFLICT:
21940                         status = EACCES;
21941                         break;
21942                 default:
21943                         break;
21944                 }
21945                 break;
21946         default:
21947                 break;
21948         }
21949 
21950         if (status == 0) {
21951                 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
21952                     (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21953         }
21954 
21955         SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
21956 
21957         return (status);
21958 }
21959 
21960 
21961 /*
21962  *    Function: sd_send_scsi_LOG_SENSE
21963  *
21964  * Description: Issue a scsi LOG_SENSE command with the given parameters.
21965  *
21966  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21967  *                      structure for this target.
21968  *
21969  * Return Code: 0   - Success
21970  *              errno return code from sd_ssc_send()
21971  *
21972  *     Context: Can sleep. Does not return until command is completed.
21973  */
21974 
21975 static int
21976 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen,
21977         uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
21978         int path_flag)
21979 
21980 {
21981         struct scsi_extended_sense      sense_buf;
21982         union scsi_cdb          cdb;
21983         struct uscsi_cmd        ucmd_buf;
21984         int                     status;
21985         struct sd_lun           *un;
21986 
21987         ASSERT(ssc != NULL);
21988         un = ssc->ssc_un;
21989         ASSERT(un != NULL);
21990         ASSERT(!mutex_owned(SD_MUTEX(un)));
21991 
21992         SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
21993 
21994         bzero(&cdb, sizeof (cdb));
21995         bzero(&ucmd_buf, sizeof (ucmd_buf));
21996         bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21997 
21998         cdb.scc_cmd = SCMD_LOG_SENSE_G1;
21999         cdb.cdb_opaque[2] = (page_control << 6) | page_code;
22000         cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
22001         cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
22002         FORMG1COUNT(&cdb, buflen);
22003 
22004         ucmd_buf.uscsi_cdb      = (char *)&cdb;
22005         ucmd_buf.uscsi_cdblen   = CDB_GROUP1;
22006         ucmd_buf.uscsi_bufaddr  = (caddr_t)bufaddr;
22007         ucmd_buf.uscsi_buflen   = buflen;
22008         ucmd_buf.uscsi_rqbuf    = (caddr_t)&sense_buf;
22009         ucmd_buf.uscsi_rqlen    = sizeof (struct scsi_extended_sense);
22010         ucmd_buf.uscsi_flags    = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
22011         ucmd_buf.uscsi_timeout  = 60;
22012 
22013         status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
22014             UIO_SYSSPACE, path_flag);
22015 
22016         switch (status) {
22017         case 0:
22018                 break;
22019         case EIO:
22020                 switch (ucmd_buf.uscsi_status) {
22021                 case STATUS_RESERVATION_CONFLICT:
22022                         status = EACCES;
22023                         break;
22024                 case STATUS_CHECK:
22025                         if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
22026                             (scsi_sense_key((uint8_t *)&sense_buf) ==
22027                                 KEY_ILLEGAL_REQUEST) &&
22028                             (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
22029                                 /*
22030                                  * ASC 0x24: INVALID FIELD IN CDB
22031                                  */
22032                                 switch (page_code) {
22033                                 case START_STOP_CYCLE_PAGE:
22034                                         /*
22035                                          * The start stop cycle counter is
22036                                          * implemented as page 0x31 in earlier
22037                                          * generation disks. In new generation
22038                                          * disks the start stop cycle counter is
22039                                          * implemented as page 0xE. To properly
22040                                          * handle this case if an attempt for
22041                                          * log page 0xE is made and fails we
22042                                          * will try again using page 0x31.
22043                                          *
22044                                          * Network storage BU committed to
22045                                          * maintain the page 0x31 for this
22046                                          * purpose and will not have any other
22047                                          * page implemented with page code 0x31
22048                                          * until all disks transition to the
22049                                          * standard page.
22050                                          */
22051                                         mutex_enter(SD_MUTEX(un));
22052                                         un->un_start_stop_cycle_page =
22053                                             START_STOP_CYCLE_VU_PAGE;
22054                                         cdb.cdb_opaque[2] =
22055                                             (char)(page_control << 6) |
22056                                             un->un_start_stop_cycle_page;
22057                                         mutex_exit(SD_MUTEX(un));
22058                                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22059                                         status = sd_ssc_send(
22060                                             ssc, &ucmd_buf, FKIOCTL,
22061                                             UIO_SYSSPACE, path_flag);
22062 
22063                                         break;
22064                                 case TEMPERATURE_PAGE:
22065                                         status = ENOTTY;
22066                                         break;
22067                                 default:
22068                                         break;
22069                                 }
22070                         }
22071                         break;
22072                 default:
22073                         break;
22074                 }
22075                 break;
22076         default:
22077                 break;
22078         }
22079 
22080         if (status == 0) {
22081                 sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22082                 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
22083                     (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
22084         }
22085 
22086         SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
22087 
22088         return (status);
22089 }
22090 
22091 
22092 /*
22093  *    Function: sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION
22094  *
22095  * Description: Issue the scsi GET EVENT STATUS NOTIFICATION command.
22096  *
22097  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
22098  *                      structure for this target.
22099  *              bufaddr
22100  *              buflen
22101  *              class_req
22102  *
22103  * Return Code: 0   - Success
22104  *              errno return code from sd_ssc_send()
22105  *
22106  *     Context: Can sleep. Does not return until command is completed.
22107  */
22108 
22109 static int
22110 sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc, uchar_t *bufaddr,
22111         size_t buflen, uchar_t class_req)
22112 {
22113         union scsi_cdb          cdb;
22114         struct uscsi_cmd        ucmd_buf;
22115         int                     status;
22116         struct sd_lun           *un;
22117 
22118         ASSERT(ssc != NULL);
22119         un = ssc->ssc_un;
22120         ASSERT(un != NULL);
22121         ASSERT(!mutex_owned(SD_MUTEX(un)));
22122         ASSERT(bufaddr != NULL);
22123 
22124         SD_TRACE(SD_LOG_IO, un,
22125             "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: entry: un:0x%p\n", un);
22126 
22127         bzero(&cdb, sizeof (cdb));
22128         bzero(&ucmd_buf, sizeof (ucmd_buf));
22129         bzero(bufaddr, buflen);
22130 
22131         cdb.scc_cmd = SCMD_GET_EVENT_STATUS_NOTIFICATION;
22132         cdb.cdb_opaque[1] = 1; /* polled */
22133         cdb.cdb_opaque[4] = class_req;
22134         FORMG1COUNT(&cdb, buflen);
22135 
22136         ucmd_buf.uscsi_cdb      = (char *)&cdb;
22137         ucmd_buf.uscsi_cdblen   = CDB_GROUP1;
22138         ucmd_buf.uscsi_bufaddr  = (caddr_t)bufaddr;
22139         ucmd_buf.uscsi_buflen   = buflen;
22140         ucmd_buf.uscsi_rqbuf    = NULL;
22141         ucmd_buf.uscsi_rqlen    = 0;
22142         ucmd_buf.uscsi_flags    = USCSI_READ | USCSI_SILENT;
22143         ucmd_buf.uscsi_timeout  = 60;
22144 
22145         status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
22146             UIO_SYSSPACE, SD_PATH_DIRECT);
22147 
22148         /*
22149          * Only handle status == 0, the upper-level caller
22150          * will put different assessment based on the context.
22151          */
22152         if (status == 0) {
22153                 sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22154 
22155                 if (ucmd_buf.uscsi_resid != 0) {
22156                         status = EIO;
22157                 }
22158         }
22159 
22160         SD_TRACE(SD_LOG_IO, un,
22161             "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: exit\n");
22162 
22163         return (status);
22164 }
22165 
22166 
22167 static boolean_t
22168 sd_gesn_media_data_valid(uchar_t *data)
22169 {
22170         uint16_t                        len;
22171 
22172         len = (data[1] << 8) | data[0];
22173         return ((len >= 6) &&
22174             ((data[2] & SD_GESN_HEADER_NEA) == 0) &&
22175             ((data[2] & SD_GESN_HEADER_CLASS) == SD_GESN_MEDIA_CLASS) &&
22176             ((data[3] & (1 << SD_GESN_MEDIA_CLASS)) != 0));
22177 }
22178 
22179 
22180 /*
22181  *    Function: sdioctl
22182  *
22183  * Description: Driver's ioctl(9e) entry point function.
22184  *
22185  *   Arguments: dev     - device number
22186  *              cmd     - ioctl operation to be performed
22187  *              arg     - user argument, contains data to be set or reference
22188  *                        parameter for get
22189  *              flag    - bit flag, indicating open settings, 32/64 bit type
22190  *              cred_p  - user credential pointer
22191  *              rval_p  - calling process return value (OPT)
22192  *
22193  * Return Code: EINVAL
22194  *              ENOTTY
22195  *              ENXIO
22196  *              EIO
22197  *              EFAULT
22198  *              ENOTSUP
22199  *              EPERM
22200  *
22201  *     Context: Called from the device switch at normal priority.
22202  */
22203 
22204 static int
22205 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
22206 {
22207         struct sd_lun   *un = NULL;
22208         int             err = 0;
22209         int             i = 0;
22210         cred_t          *cr;
22211         int             tmprval = EINVAL;
22212         boolean_t       is_valid;
22213         sd_ssc_t        *ssc;
22214 
22215         /*
22216          * All device accesses go thru sdstrategy where we check on suspend
22217          * status
22218          */
22219         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22220                 return (ENXIO);
22221         }
22222 
22223         ASSERT(!mutex_owned(SD_MUTEX(un)));
22224 
22225         /* Initialize sd_ssc_t for internal uscsi commands */
22226         ssc = sd_ssc_init(un);
22227 
22228         is_valid = SD_IS_VALID_LABEL(un);
22229 
22230         /*
22231          * Moved this wait from sd_uscsi_strategy to here for
22232          * reasons of deadlock prevention. Internal driver commands,
22233          * specifically those to change a devices power level, result
22234          * in a call to sd_uscsi_strategy.
22235          */
22236         mutex_enter(SD_MUTEX(un));
22237         while ((un->un_state == SD_STATE_SUSPENDED) ||
22238             (un->un_state == SD_STATE_PM_CHANGING)) {
22239                 cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
22240         }
22241         /*
22242          * Twiddling the counter here protects commands from now
22243          * through to the top of sd_uscsi_strategy. Without the
22244          * counter inc. a power down, for example, could get in
22245          * after the above check for state is made and before
22246          * execution gets to the top of sd_uscsi_strategy.
22247          * That would cause problems.
22248          */
22249         un->un_ncmds_in_driver++;
22250 
22251         if (!is_valid &&
22252             (flag & (FNDELAY | FNONBLOCK))) {
22253                 switch (cmd) {
22254                 case DKIOCGGEOM:        /* SD_PATH_DIRECT */
22255                 case DKIOCGVTOC:
22256                 case DKIOCGEXTVTOC:
22257                 case DKIOCGAPART:
22258                 case DKIOCPARTINFO:
22259                 case DKIOCEXTPARTINFO:
22260                 case DKIOCSGEOM:
22261                 case DKIOCSAPART:
22262                 case DKIOCGETEFI:
22263                 case DKIOCPARTITION:
22264                 case DKIOCSVTOC:
22265                 case DKIOCSEXTVTOC:
22266                 case DKIOCSETEFI:
22267                 case DKIOCGMBOOT:
22268                 case DKIOCSMBOOT:
22269                 case DKIOCG_PHYGEOM:
22270                 case DKIOCG_VIRTGEOM:
22271 #if defined(__i386) || defined(__amd64)
22272                 case DKIOCSETEXTPART:
22273 #endif
22274                         /* let cmlb handle it */
22275                         goto skip_ready_valid;
22276 
22277                 case CDROMPAUSE:
22278                 case CDROMRESUME:
22279                 case CDROMPLAYMSF:
22280                 case CDROMPLAYTRKIND:
22281                 case CDROMREADTOCHDR:
22282                 case CDROMREADTOCENTRY:
22283                 case CDROMSTOP:
22284                 case CDROMSTART:
22285                 case CDROMVOLCTRL:
22286                 case CDROMSUBCHNL:
22287                 case CDROMREADMODE2:
22288                 case CDROMREADMODE1:
22289                 case CDROMREADOFFSET:
22290                 case CDROMSBLKMODE:
22291                 case CDROMGBLKMODE:
22292                 case CDROMGDRVSPEED:
22293                 case CDROMSDRVSPEED:
22294                 case CDROMCDDA:
22295                 case CDROMCDXA:
22296                 case CDROMSUBCODE:
22297                         if (!ISCD(un)) {
22298                                 un->un_ncmds_in_driver--;
22299                                 ASSERT(un->un_ncmds_in_driver >= 0);
22300                                 mutex_exit(SD_MUTEX(un));
22301                                 err = ENOTTY;
22302                                 goto done_without_assess;
22303                         }
22304                         break;
22305                 case FDEJECT:
22306                 case DKIOCEJECT:
22307                 case CDROMEJECT:
22308                         if (!un->un_f_eject_media_supported) {
22309                                 un->un_ncmds_in_driver--;
22310                                 ASSERT(un->un_ncmds_in_driver >= 0);
22311                                 mutex_exit(SD_MUTEX(un));
22312                                 err = ENOTTY;
22313                                 goto done_without_assess;
22314                         }
22315                         break;
22316                 case DKIOCFLUSHWRITECACHE:
22317                         mutex_exit(SD_MUTEX(un));
22318                         err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
22319                         if (err != 0) {
22320                                 mutex_enter(SD_MUTEX(un));
22321                                 un->un_ncmds_in_driver--;
22322                                 ASSERT(un->un_ncmds_in_driver >= 0);
22323                                 mutex_exit(SD_MUTEX(un));
22324                                 err = EIO;
22325                                 goto done_quick_assess;
22326                         }
22327                         mutex_enter(SD_MUTEX(un));
22328                         /* FALLTHROUGH */
22329                 case DKIOCREMOVABLE:
22330                 case DKIOCHOTPLUGGABLE:
22331                 case DKIOCINFO:
22332                 case DKIOCGMEDIAINFO:
22333                 case DKIOCGMEDIAINFOEXT:
22334                 case DKIOCSOLIDSTATE:
22335                 case MHIOCENFAILFAST:
22336                 case MHIOCSTATUS:
22337                 case MHIOCTKOWN:
22338                 case MHIOCRELEASE:
22339                 case MHIOCGRP_INKEYS:
22340                 case MHIOCGRP_INRESV:
22341                 case MHIOCGRP_REGISTER:
22342                 case MHIOCGRP_CLEAR:
22343                 case MHIOCGRP_RESERVE:
22344                 case MHIOCGRP_PREEMPTANDABORT:
22345                 case MHIOCGRP_REGISTERANDIGNOREKEY:
22346                 case CDROMCLOSETRAY:
22347                 case USCSICMD:
22348                         goto skip_ready_valid;
22349                 default:
22350                         break;
22351                 }
22352 
22353                 mutex_exit(SD_MUTEX(un));
22354                 err = sd_ready_and_valid(ssc, SDPART(dev));
22355                 mutex_enter(SD_MUTEX(un));
22356 
22357                 if (err != SD_READY_VALID) {
22358                         switch (cmd) {
22359                         case DKIOCSTATE:
22360                         case CDROMGDRVSPEED:
22361                         case CDROMSDRVSPEED:
22362                         case FDEJECT:   /* for eject command */
22363                         case DKIOCEJECT:
22364                         case CDROMEJECT:
22365                         case DKIOCREMOVABLE:
22366                         case DKIOCHOTPLUGGABLE:
22367                                 break;
22368                         default:
22369                                 if (un->un_f_has_removable_media) {
22370                                         err = ENXIO;
22371                                 } else {
22372                                 /* Do not map SD_RESERVED_BY_OTHERS to EIO */
22373                                         if (err == SD_RESERVED_BY_OTHERS) {
22374                                                 err = EACCES;
22375                                         } else {
22376                                                 err = EIO;
22377                                         }
22378                                 }
22379                                 un->un_ncmds_in_driver--;
22380                                 ASSERT(un->un_ncmds_in_driver >= 0);
22381                                 mutex_exit(SD_MUTEX(un));
22382 
22383                                 goto done_without_assess;
22384                         }
22385                 }
22386         }
22387 
22388 skip_ready_valid:
22389         mutex_exit(SD_MUTEX(un));
22390 
22391         switch (cmd) {
22392         case DKIOCINFO:
22393                 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
22394                 err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
22395                 break;
22396 
22397         case DKIOCGMEDIAINFO:
22398                 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
22399                 err = sd_get_media_info(dev, (caddr_t)arg, flag);
22400                 break;
22401 
22402         case DKIOCGMEDIAINFOEXT:
22403                 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFOEXT\n");
22404                 err = sd_get_media_info_ext(dev, (caddr_t)arg, flag);
22405                 break;
22406 
22407         case DKIOCGGEOM:
22408         case DKIOCGVTOC:
22409         case DKIOCGEXTVTOC:
22410         case DKIOCGAPART:
22411         case DKIOCPARTINFO:
22412         case DKIOCEXTPARTINFO:
22413         case DKIOCSGEOM:
22414         case DKIOCSAPART:
22415         case DKIOCGETEFI:
22416         case DKIOCPARTITION:
22417         case DKIOCSVTOC:
22418         case DKIOCSEXTVTOC:
22419         case DKIOCSETEFI:
22420         case DKIOCGMBOOT:
22421         case DKIOCSMBOOT:
22422         case DKIOCG_PHYGEOM:
22423         case DKIOCG_VIRTGEOM:
22424 #if defined(__i386) || defined(__amd64)
22425         case DKIOCSETEXTPART:
22426 #endif
22427                 SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
22428 
22429                 /* TUR should spin up */
22430 
22431                 if (un->un_f_has_removable_media)
22432                         err = sd_send_scsi_TEST_UNIT_READY(ssc,
22433                             SD_CHECK_FOR_MEDIA);
22434 
22435                 else
22436                         err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
22437 
22438                 if (err != 0)
22439                         goto done_with_assess;
22440 
22441                 err = cmlb_ioctl(un->un_cmlbhandle, dev,
22442                     cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
22443 
22444                 if ((err == 0) &&
22445                     ((cmd == DKIOCSETEFI) ||
22446                     (un->un_f_pkstats_enabled) &&
22447                     (cmd == DKIOCSAPART || cmd == DKIOCSVTOC ||
22448                     cmd == DKIOCSEXTVTOC))) {
22449 
22450                         tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
22451                             (void *)SD_PATH_DIRECT);
22452                         if ((tmprval == 0) && un->un_f_pkstats_enabled) {
22453                                 sd_set_pstats(un);
22454                                 SD_TRACE(SD_LOG_IO_PARTITION, un,
22455                                     "sd_ioctl: un:0x%p pstats created and "
22456                                     "set\n", un);
22457                         }
22458                 }
22459 
22460                 if ((cmd == DKIOCSVTOC || cmd == DKIOCSEXTVTOC) ||
22461                     ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
22462 
22463                         mutex_enter(SD_MUTEX(un));
22464                         if (un->un_f_devid_supported &&
22465                             (un->un_f_opt_fab_devid == TRUE)) {
22466                                 if (un->un_devid == NULL) {
22467                                         sd_register_devid(ssc, SD_DEVINFO(un),
22468                                             SD_TARGET_IS_UNRESERVED);
22469                                 } else {
22470                                         /*
22471                                          * The device id for this disk
22472                                          * has been fabricated. The
22473                                          * device id must be preserved
22474                                          * by writing it back out to
22475                                          * disk.
22476                                          */
22477                                         if (sd_write_deviceid(ssc) != 0) {
22478                                                 ddi_devid_free(un->un_devid);
22479                                                 un->un_devid = NULL;
22480                                         }
22481                                 }
22482                         }
22483                         mutex_exit(SD_MUTEX(un));
22484                 }
22485 
22486                 break;
22487 
22488         case DKIOCLOCK:
22489                 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
22490                 err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
22491                     SD_PATH_STANDARD);
22492                 goto done_with_assess;
22493 
22494         case DKIOCUNLOCK:
22495                 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
22496                 err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
22497                     SD_PATH_STANDARD);
22498                 goto done_with_assess;
22499 
22500         case DKIOCSTATE: {
22501                 enum dkio_state         state;
22502                 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
22503 
22504                 if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
22505                         err = EFAULT;
22506                 } else {
22507                         err = sd_check_media(dev, state);
22508                         if (err == 0) {
22509                                 if (ddi_copyout(&un->un_mediastate, (void *)arg,
22510                                     sizeof (int), flag) != 0)
22511                                         err = EFAULT;
22512                         }
22513                 }
22514                 break;
22515         }
22516 
22517         case DKIOCREMOVABLE:
22518                 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
22519                 i = un->un_f_has_removable_media ? 1 : 0;
22520                 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22521                         err = EFAULT;
22522                 } else {
22523                         err = 0;
22524                 }
22525                 break;
22526 
22527         case DKIOCSOLIDSTATE:
22528                 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSOLIDSTATE\n");
22529                 i = un->un_f_is_solid_state ? 1 : 0;
22530                 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22531                         err = EFAULT;
22532                 } else {
22533                         err = 0;
22534                 }
22535                 break;
22536 
22537         case DKIOCHOTPLUGGABLE:
22538                 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
22539                 i = un->un_f_is_hotpluggable ? 1 : 0;
22540                 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22541                         err = EFAULT;
22542                 } else {
22543                         err = 0;
22544                 }
22545                 break;
22546 
22547         case DKIOCREADONLY:
22548                 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREADONLY\n");
22549                 i = 0;
22550                 if ((ISCD(un) && !un->un_f_mmc_writable_media) ||
22551                     (sr_check_wp(dev) != 0)) {
22552                         i = 1;
22553                 }
22554                 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22555                         err = EFAULT;
22556                 } else {
22557                         err = 0;
22558                 }
22559                 break;
22560 
22561         case DKIOCGTEMPERATURE:
22562                 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
22563                 err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
22564                 break;
22565 
22566         case MHIOCENFAILFAST:
22567                 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
22568                 if ((err = drv_priv(cred_p)) == 0) {
22569                         err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
22570                 }
22571                 break;
22572 
22573         case MHIOCTKOWN:
22574                 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
22575                 if ((err = drv_priv(cred_p)) == 0) {
22576                         err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
22577                 }
22578                 break;
22579 
22580         case MHIOCRELEASE:
22581                 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
22582                 if ((err = drv_priv(cred_p)) == 0) {
22583                         err = sd_mhdioc_release(dev);
22584                 }
22585                 break;
22586 
22587         case MHIOCSTATUS:
22588                 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
22589                 if ((err = drv_priv(cred_p)) == 0) {
22590                         switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) {
22591                         case 0:
22592                                 err = 0;
22593                                 break;
22594                         case EACCES:
22595                                 *rval_p = 1;
22596                                 err = 0;
22597                                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22598                                 break;
22599                         default:
22600                                 err = EIO;
22601                                 goto done_with_assess;
22602                         }
22603                 }
22604                 break;
22605 
22606         case MHIOCQRESERVE:
22607                 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
22608                 if ((err = drv_priv(cred_p)) == 0) {
22609                         err = sd_reserve_release(dev, SD_RESERVE);
22610                 }
22611                 break;
22612 
22613         case MHIOCREREGISTERDEVID:
22614                 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
22615                 if (drv_priv(cred_p) == EPERM) {
22616                         err = EPERM;
22617                 } else if (!un->un_f_devid_supported) {
22618                         err = ENOTTY;
22619                 } else {
22620                         err = sd_mhdioc_register_devid(dev);
22621                 }
22622                 break;
22623 
22624         case MHIOCGRP_INKEYS:
22625                 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
22626                 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
22627                         if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22628                                 err = ENOTSUP;
22629                         } else {
22630                                 err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
22631                                     flag);
22632                         }
22633                 }
22634                 break;
22635 
22636         case MHIOCGRP_INRESV:
22637                 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
22638                 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
22639                         if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22640                                 err = ENOTSUP;
22641                         } else {
22642                                 err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
22643                         }
22644                 }
22645                 break;
22646 
22647         case MHIOCGRP_REGISTER:
22648                 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
22649                 if ((err = drv_priv(cred_p)) != EPERM) {
22650                         if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22651                                 err = ENOTSUP;
22652                         } else if (arg != NULL) {
22653                                 mhioc_register_t reg;
22654                                 if (ddi_copyin((void *)arg, &reg,
22655                                     sizeof (mhioc_register_t), flag) != 0) {
22656                                         err = EFAULT;
22657                                 } else {
22658                                         err =
22659                                             sd_send_scsi_PERSISTENT_RESERVE_OUT(
22660                                             ssc, SD_SCSI3_REGISTER,
22661                                             (uchar_t *)&reg);
22662                                         if (err != 0)
22663                                                 goto done_with_assess;
22664                                 }
22665                         }
22666                 }
22667                 break;
22668 
22669         case MHIOCGRP_CLEAR:
22670                 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_CLEAR\n");
22671                 if ((err = drv_priv(cred_p)) != EPERM) {
22672                         if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22673                                 err = ENOTSUP;
22674                         } else if (arg != NULL) {
22675                                 mhioc_register_t reg;
22676                                 if (ddi_copyin((void *)arg, &reg,
22677                                     sizeof (mhioc_register_t), flag) != 0) {
22678                                         err = EFAULT;
22679                                 } else {
22680                                         err =
22681                                             sd_send_scsi_PERSISTENT_RESERVE_OUT(
22682                                             ssc, SD_SCSI3_CLEAR,
22683                                             (uchar_t *)&reg);
22684                                         if (err != 0)
22685                                                 goto done_with_assess;
22686                                 }
22687                         }
22688                 }
22689                 break;
22690 
22691         case MHIOCGRP_RESERVE:
22692                 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
22693                 if ((err = drv_priv(cred_p)) != EPERM) {
22694                         if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22695                                 err = ENOTSUP;
22696                         } else if (arg != NULL) {
22697                                 mhioc_resv_desc_t resv_desc;
22698                                 if (ddi_copyin((void *)arg, &resv_desc,
22699                                     sizeof (mhioc_resv_desc_t), flag) != 0) {
22700                                         err = EFAULT;
22701                                 } else {
22702                                         err =
22703                                             sd_send_scsi_PERSISTENT_RESERVE_OUT(
22704                                             ssc, SD_SCSI3_RESERVE,
22705                                             (uchar_t *)&resv_desc);
22706                                         if (err != 0)
22707                                                 goto done_with_assess;
22708                                 }
22709                         }
22710                 }
22711                 break;
22712 
22713         case MHIOCGRP_PREEMPTANDABORT:
22714                 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
22715                 if ((err = drv_priv(cred_p)) != EPERM) {
22716                         if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22717                                 err = ENOTSUP;
22718                         } else if (arg != NULL) {
22719                                 mhioc_preemptandabort_t preempt_abort;
22720                                 if (ddi_copyin((void *)arg, &preempt_abort,
22721                                     sizeof (mhioc_preemptandabort_t),
22722                                     flag) != 0) {
22723                                         err = EFAULT;
22724                                 } else {
22725                                         err =
22726                                             sd_send_scsi_PERSISTENT_RESERVE_OUT(
22727                                             ssc, SD_SCSI3_PREEMPTANDABORT,
22728                                             (uchar_t *)&preempt_abort);
22729                                         if (err != 0)
22730                                                 goto done_with_assess;
22731                                 }
22732                         }
22733                 }
22734                 break;
22735 
22736         case MHIOCGRP_REGISTERANDIGNOREKEY:
22737                 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
22738                 if ((err = drv_priv(cred_p)) != EPERM) {
22739                         if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22740                                 err = ENOTSUP;
22741                         } else if (arg != NULL) {
22742                                 mhioc_registerandignorekey_t r_and_i;
22743                                 if (ddi_copyin((void *)arg, (void *)&r_and_i,
22744                                     sizeof (mhioc_registerandignorekey_t),
22745                                     flag) != 0) {
22746                                         err = EFAULT;
22747                                 } else {
22748                                         err =
22749                                             sd_send_scsi_PERSISTENT_RESERVE_OUT(
22750                                             ssc, SD_SCSI3_REGISTERANDIGNOREKEY,
22751                                             (uchar_t *)&r_and_i);
22752                                         if (err != 0)
22753                                                 goto done_with_assess;
22754                                 }
22755                         }
22756                 }
22757                 break;
22758 
22759         case USCSICMD:
22760                 SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
22761                 cr = ddi_get_cred();
22762                 if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
22763                         err = EPERM;
22764                 } else {
22765                         enum uio_seg    uioseg;
22766 
22767                         uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
22768                             UIO_USERSPACE;
22769                         if (un->un_f_format_in_progress == TRUE) {
22770                                 err = EAGAIN;
22771                                 break;
22772                         }
22773 
22774                         err = sd_ssc_send(ssc,
22775                             (struct uscsi_cmd *)arg,
22776                             flag, uioseg, SD_PATH_STANDARD);
22777                         if (err != 0)
22778                                 goto done_with_assess;
22779                         else
22780                                 sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22781                 }
22782                 break;
22783 
22784         case CDROMPAUSE:
22785         case CDROMRESUME:
22786                 SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
22787                 if (!ISCD(un)) {
22788                         err = ENOTTY;
22789                 } else {
22790                         err = sr_pause_resume(dev, cmd);
22791                 }
22792                 break;
22793 
22794         case CDROMPLAYMSF:
22795                 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
22796                 if (!ISCD(un)) {
22797                         err = ENOTTY;
22798                 } else {
22799                         err = sr_play_msf(dev, (caddr_t)arg, flag);
22800                 }
22801                 break;
22802 
22803         case CDROMPLAYTRKIND:
22804                 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
22805 #if defined(__i386) || defined(__amd64)
22806                 /*
22807                  * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
22808                  */
22809                 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
22810 #else
22811                 if (!ISCD(un)) {
22812 #endif
22813                         err = ENOTTY;
22814                 } else {
22815                         err = sr_play_trkind(dev, (caddr_t)arg, flag);
22816                 }
22817                 break;
22818 
22819         case CDROMREADTOCHDR:
22820                 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
22821                 if (!ISCD(un)) {
22822                         err = ENOTTY;
22823                 } else {
22824                         err = sr_read_tochdr(dev, (caddr_t)arg, flag);
22825                 }
22826                 break;
22827 
22828         case CDROMREADTOCENTRY:
22829                 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
22830                 if (!ISCD(un)) {
22831                         err = ENOTTY;
22832                 } else {
22833                         err = sr_read_tocentry(dev, (caddr_t)arg, flag);
22834                 }
22835                 break;
22836 
22837         case CDROMSTOP:
22838                 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
22839                 if (!ISCD(un)) {
22840                         err = ENOTTY;
22841                 } else {
22842                         err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22843                             SD_TARGET_STOP, SD_PATH_STANDARD);
22844                         goto done_with_assess;
22845                 }
22846                 break;
22847 
22848         case CDROMSTART:
22849                 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
22850                 if (!ISCD(un)) {
22851                         err = ENOTTY;
22852                 } else {
22853                         err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22854                             SD_TARGET_START, SD_PATH_STANDARD);
22855                         goto done_with_assess;
22856                 }
22857                 break;
22858 
22859         case CDROMCLOSETRAY:
22860                 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
22861                 if (!ISCD(un)) {
22862                         err = ENOTTY;
22863                 } else {
22864                         err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22865                             SD_TARGET_CLOSE, SD_PATH_STANDARD);
22866                         goto done_with_assess;
22867                 }
22868                 break;
22869 
22870         case FDEJECT:   /* for eject command */
22871         case DKIOCEJECT:
22872         case CDROMEJECT:
22873                 SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
22874                 if (!un->un_f_eject_media_supported) {
22875                         err = ENOTTY;
22876                 } else {
22877                         err = sr_eject(dev);
22878                 }
22879                 break;
22880 
22881         case CDROMVOLCTRL:
22882                 SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
22883                 if (!ISCD(un)) {
22884                         err = ENOTTY;
22885                 } else {
22886                         err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
22887                 }
22888                 break;
22889 
22890         case CDROMSUBCHNL:
22891                 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
22892                 if (!ISCD(un)) {
22893                         err = ENOTTY;
22894                 } else {
22895                         err = sr_read_subchannel(dev, (caddr_t)arg, flag);
22896                 }
22897                 break;
22898 
22899         case CDROMREADMODE2:
22900                 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
22901                 if (!ISCD(un)) {
22902                         err = ENOTTY;
22903                 } else if (un->un_f_cfg_is_atapi == TRUE) {
22904                         /*
22905                          * If the drive supports READ CD, use that instead of
22906                          * switching the LBA size via a MODE SELECT
22907                          * Block Descriptor
22908                          */
22909                         err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
22910                 } else {
22911                         err = sr_read_mode2(dev, (caddr_t)arg, flag);
22912                 }
22913                 break;
22914 
22915         case CDROMREADMODE1:
22916                 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
22917                 if (!ISCD(un)) {
22918                         err = ENOTTY;
22919                 } else {
22920                         err = sr_read_mode1(dev, (caddr_t)arg, flag);
22921                 }
22922                 break;
22923 
22924         case CDROMREADOFFSET:
22925                 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
22926                 if (!ISCD(un)) {
22927                         err = ENOTTY;
22928                 } else {
22929                         err = sr_read_sony_session_offset(dev, (caddr_t)arg,
22930                             flag);
22931                 }
22932                 break;
22933 
22934         case CDROMSBLKMODE:
22935                 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
22936                 /*
22937                  * There is no means of changing block size in case of atapi
22938                  * drives, thus return ENOTTY if drive type is atapi
22939                  */
22940                 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
22941                         err = ENOTTY;
22942                 } else if (un->un_f_mmc_cap == TRUE) {
22943 
22944                         /*
22945                          * MMC Devices do not support changing the
22946                          * logical block size
22947                          *
22948                          * Note: EINVAL is being returned instead of ENOTTY to
22949                          * maintain consistancy with the original mmc
22950                          * driver update.
22951                          */
22952                         err = EINVAL;
22953                 } else {
22954                         mutex_enter(SD_MUTEX(un));
22955                         if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
22956                             (un->un_ncmds_in_transport > 0)) {
22957                                 mutex_exit(SD_MUTEX(un));
22958                                 err = EINVAL;
22959                         } else {
22960                                 mutex_exit(SD_MUTEX(un));
22961                                 err = sr_change_blkmode(dev, cmd, arg, flag);
22962                         }
22963                 }
22964                 break;
22965 
22966         case CDROMGBLKMODE:
22967                 SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
22968                 if (!ISCD(un)) {
22969                         err = ENOTTY;
22970                 } else if ((un->un_f_cfg_is_atapi != FALSE) &&
22971                     (un->un_f_blockcount_is_valid != FALSE)) {
22972                         /*
22973                          * Drive is an ATAPI drive so return target block
22974                          * size for ATAPI drives since we cannot change the
22975                          * blocksize on ATAPI drives. Used primarily to detect
22976                          * if an ATAPI cdrom is present.
22977                          */
22978                         if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
22979                             sizeof (int), flag) != 0) {
22980                                 err = EFAULT;
22981                         } else {
22982                                 err = 0;
22983                         }
22984 
22985                 } else {
22986                         /*
22987                          * Drive supports changing block sizes via a Mode
22988                          * Select.
22989                          */
22990                         err = sr_change_blkmode(dev, cmd, arg, flag);
22991                 }
22992                 break;
22993 
22994         case CDROMGDRVSPEED:
22995         case CDROMSDRVSPEED:
22996                 SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
22997                 if (!ISCD(un)) {
22998                         err = ENOTTY;
22999                 } else if (un->un_f_mmc_cap == TRUE) {
23000                         /*
23001                          * Note: In the future the driver implementation
23002                          * for getting and
23003                          * setting cd speed should entail:
23004                          * 1) If non-mmc try the Toshiba mode page
23005                          *    (sr_change_speed)
23006                          * 2) If mmc but no support for Real Time Streaming try
23007                          *    the SET CD SPEED (0xBB) command
23008                          *   (sr_atapi_change_speed)
23009                          * 3) If mmc and support for Real Time Streaming
23010                          *    try the GET PERFORMANCE and SET STREAMING
23011                          *    commands (not yet implemented, 4380808)
23012                          */
23013                         /*
23014                          * As per recent MMC spec, CD-ROM speed is variable
23015                          * and changes with LBA. Since there is no such
23016                          * things as drive speed now, fail this ioctl.
23017                          *
23018                          * Note: EINVAL is returned for consistancy of original
23019                          * implementation which included support for getting
23020                          * the drive speed of mmc devices but not setting
23021                          * the drive speed. Thus EINVAL would be returned
23022                          * if a set request was made for an mmc device.
23023                          * We no longer support get or set speed for
23024                          * mmc but need to remain consistent with regard
23025                          * to the error code returned.
23026                          */
23027                         err = EINVAL;
23028                 } else if (un->un_f_cfg_is_atapi == TRUE) {
23029                         err = sr_atapi_change_speed(dev, cmd, arg, flag);
23030                 } else {
23031                         err = sr_change_speed(dev, cmd, arg, flag);
23032                 }
23033                 break;
23034 
23035         case CDROMCDDA:
23036                 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
23037                 if (!ISCD(un)) {
23038                         err = ENOTTY;
23039                 } else {
23040                         err = sr_read_cdda(dev, (void *)arg, flag);
23041                 }
23042                 break;
23043 
23044         case CDROMCDXA:
23045                 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
23046                 if (!ISCD(un)) {
23047                         err = ENOTTY;
23048                 } else {
23049                         err = sr_read_cdxa(dev, (caddr_t)arg, flag);
23050                 }
23051                 break;
23052 
23053         case CDROMSUBCODE:
23054                 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
23055                 if (!ISCD(un)) {
23056                         err = ENOTTY;
23057                 } else {
23058                         err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
23059                 }
23060                 break;
23061 
23062 
23063 #ifdef SDDEBUG
23064 /* RESET/ABORTS testing ioctls */
23065         case DKIOCRESET: {
23066                 int     reset_level;
23067 
23068                 if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
23069                         err = EFAULT;
23070                 } else {
23071                         SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
23072                             "reset_level = 0x%lx\n", reset_level);
23073                         if (scsi_reset(SD_ADDRESS(un), reset_level)) {
23074                                 err = 0;
23075                         } else {
23076                                 err = EIO;
23077                         }
23078                 }
23079                 break;
23080         }
23081 
23082         case DKIOCABORT:
23083                 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
23084                 if (scsi_abort(SD_ADDRESS(un), NULL)) {
23085                         err = 0;
23086                 } else {
23087                         err = EIO;
23088                 }
23089                 break;
23090 #endif
23091 
23092 #ifdef SD_FAULT_INJECTION
23093 /* SDIOC FaultInjection testing ioctls */
23094         case SDIOCSTART:
23095         case SDIOCSTOP:
23096         case SDIOCINSERTPKT:
23097         case SDIOCINSERTXB:
23098         case SDIOCINSERTUN:
23099         case SDIOCINSERTARQ:
23100         case SDIOCPUSH:
23101         case SDIOCRETRIEVE:
23102         case SDIOCRUN:
23103                 SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
23104                     "SDIOC detected cmd:0x%X:\n", cmd);
23105                 /* call error generator */
23106                 sd_faultinjection_ioctl(cmd, arg, un);
23107                 err = 0;
23108                 break;
23109 
23110 #endif /* SD_FAULT_INJECTION */
23111 
23112         case DKIOCFLUSHWRITECACHE:
23113                 {
23114                         struct dk_callback *dkc = (struct dk_callback *)arg;
23115 
23116                         mutex_enter(SD_MUTEX(un));
23117                         if (!un->un_f_sync_cache_supported ||
23118                             !un->un_f_write_cache_enabled) {
23119                                 err = un->un_f_sync_cache_supported ?
23120                                     0 : ENOTSUP;
23121                                 mutex_exit(SD_MUTEX(un));
23122                                 if ((flag & FKIOCTL) && dkc != NULL &&
23123                                     dkc->dkc_callback != NULL) {
23124                                         (*dkc->dkc_callback)(dkc->dkc_cookie,
23125                                             err);
23126                                         /*
23127                                          * Did callback and reported error.
23128                                          * Since we did a callback, ioctl
23129                                          * should return 0.
23130                                          */
23131                                         err = 0;
23132                                 }
23133                                 break;
23134                         }
23135                         mutex_exit(SD_MUTEX(un));
23136 
23137                         if ((flag & FKIOCTL) && dkc != NULL &&
23138                             dkc->dkc_callback != NULL) {
23139                                 /* async SYNC CACHE request */
23140                                 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
23141                         } else {
23142                                 /* synchronous SYNC CACHE request */
23143                                 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
23144                         }
23145                 }
23146                 break;
23147 
23148         case DKIOCGETWCE: {
23149 
23150                 int wce;
23151 
23152                 if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) {
23153                         break;
23154                 }
23155 
23156                 if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
23157                         err = EFAULT;
23158                 }
23159                 break;
23160         }
23161 
23162         case DKIOCSETWCE: {
23163 
23164                 int wce, sync_supported;
23165                 int cur_wce = 0;
23166 
23167                 if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
23168                         err = EFAULT;
23169                         break;
23170                 }
23171 
23172                 /*
23173                  * Synchronize multiple threads trying to enable
23174                  * or disable the cache via the un_f_wcc_cv
23175                  * condition variable.
23176                  */
23177                 mutex_enter(SD_MUTEX(un));
23178 
23179                 /*
23180                  * Don't allow the cache to be enabled if the
23181                  * config file has it disabled.
23182                  */
23183                 if (un->un_f_opt_disable_cache && wce) {
23184                         mutex_exit(SD_MUTEX(un));
23185                         err = EINVAL;
23186                         break;
23187                 }
23188 
23189                 /*
23190                  * Wait for write cache change in progress
23191                  * bit to be clear before proceeding.
23192                  */
23193                 while (un->un_f_wcc_inprog)
23194                         cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
23195 
23196                 un->un_f_wcc_inprog = 1;
23197 
23198                 mutex_exit(SD_MUTEX(un));
23199 
23200                 /*
23201                  * Get the current write cache state
23202                  */
23203                 if ((err = sd_get_write_cache_enabled(ssc, &cur_wce)) != 0) {
23204                         mutex_enter(SD_MUTEX(un));
23205                         un->un_f_wcc_inprog = 0;
23206                         cv_broadcast(&un->un_wcc_cv);
23207                         mutex_exit(SD_MUTEX(un));
23208                         break;
23209                 }
23210 
23211                 mutex_enter(SD_MUTEX(un));
23212                 un->un_f_write_cache_enabled = (cur_wce != 0);
23213 
23214                 if (un->un_f_write_cache_enabled && wce == 0) {
23215                         /*
23216                          * Disable the write cache.  Don't clear
23217                          * un_f_write_cache_enabled until after
23218                          * the mode select and flush are complete.
23219                          */
23220                         sync_supported = un->un_f_sync_cache_supported;
23221 
23222                         /*
23223                          * If cache flush is suppressed, we assume that the
23224                          * controller firmware will take care of managing the
23225                          * write cache for us: no need to explicitly
23226                          * disable it.
23227                          */
23228                         if (!un->un_f_suppress_cache_flush) {
23229                                 mutex_exit(SD_MUTEX(un));
23230                                 if ((err = sd_cache_control(ssc,
23231                                     SD_CACHE_NOCHANGE,
23232                                     SD_CACHE_DISABLE)) == 0 &&
23233                                     sync_supported) {
23234                                         err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
23235                                             NULL);
23236                                 }
23237                         } else {
23238                                 mutex_exit(SD_MUTEX(un));
23239                         }
23240 
23241                         mutex_enter(SD_MUTEX(un));
23242                         if (err == 0) {
23243                                 un->un_f_write_cache_enabled = 0;
23244                         }
23245 
23246                 } else if (!un->un_f_write_cache_enabled && wce != 0) {
23247                         /*
23248                          * Set un_f_write_cache_enabled first, so there is
23249                          * no window where the cache is enabled, but the
23250                          * bit says it isn't.
23251                          */
23252                         un->un_f_write_cache_enabled = 1;
23253 
23254                         /*
23255                          * If cache flush is suppressed, we assume that the
23256                          * controller firmware will take care of managing the
23257                          * write cache for us: no need to explicitly
23258                          * enable it.
23259                          */
23260                         if (!un->un_f_suppress_cache_flush) {
23261                                 mutex_exit(SD_MUTEX(un));
23262                                 err = sd_cache_control(ssc, SD_CACHE_NOCHANGE,
23263                                     SD_CACHE_ENABLE);
23264                         } else {
23265                                 mutex_exit(SD_MUTEX(un));
23266                         }
23267 
23268                         mutex_enter(SD_MUTEX(un));
23269 
23270                         if (err) {
23271                                 un->un_f_write_cache_enabled = 0;
23272                         }
23273                 }
23274 
23275                 un->un_f_wcc_inprog = 0;
23276                 cv_broadcast(&un->un_wcc_cv);
23277                 mutex_exit(SD_MUTEX(un));
23278                 break;
23279         }
23280 
23281         default:
23282                 err = ENOTTY;
23283                 break;
23284         }
23285         mutex_enter(SD_MUTEX(un));
23286         un->un_ncmds_in_driver--;
23287         ASSERT(un->un_ncmds_in_driver >= 0);
23288         mutex_exit(SD_MUTEX(un));
23289 
23290 
23291 done_without_assess:
23292         sd_ssc_fini(ssc);
23293 
23294         SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
23295         return (err);
23296 
23297 done_with_assess:
23298         mutex_enter(SD_MUTEX(un));
23299         un->un_ncmds_in_driver--;
23300         ASSERT(un->un_ncmds_in_driver >= 0);
23301         mutex_exit(SD_MUTEX(un));
23302 
23303 done_quick_assess:
23304         if (err != 0)
23305                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23306         /* Uninitialize sd_ssc_t pointer */
23307         sd_ssc_fini(ssc);
23308 
23309         SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
23310         return (err);
23311 }
23312 
23313 
23314 /*
23315  *    Function: sd_dkio_ctrl_info
23316  *
23317  * Description: This routine is the driver entry point for handling controller
23318  *              information ioctl requests (DKIOCINFO).
23319  *
23320  *   Arguments: dev  - the device number
23321  *              arg  - pointer to user provided dk_cinfo structure
23322  *                     specifying the controller type and attributes.
23323  *              flag - this argument is a pass through to ddi_copyxxx()
23324  *                     directly from the mode argument of ioctl().
23325  *
23326  * Return Code: 0
23327  *              EFAULT
23328  *              ENXIO
23329  */
23330 
23331 static int
23332 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
23333 {
23334         struct sd_lun   *un = NULL;
23335         struct dk_cinfo *info;
23336         dev_info_t      *pdip;
23337         int             lun, tgt;
23338 
23339         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23340                 return (ENXIO);
23341         }
23342 
23343         info = (struct dk_cinfo *)
23344             kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
23345 
23346         switch (un->un_ctype) {
23347         case CTYPE_CDROM:
23348                 info->dki_ctype = DKC_CDROM;
23349                 break;
23350         default:
23351                 info->dki_ctype = DKC_SCSI_CCS;
23352                 break;
23353         }
23354         pdip = ddi_get_parent(SD_DEVINFO(un));
23355         info->dki_cnum = ddi_get_instance(pdip);
23356         if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
23357                 (void) strcpy(info->dki_cname, ddi_get_name(pdip));
23358         } else {
23359                 (void) strncpy(info->dki_cname, ddi_node_name(pdip),
23360                     DK_DEVLEN - 1);
23361         }
23362 
23363         lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
23364             DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
23365         tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
23366             DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
23367 
23368         /* Unit Information */
23369         info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
23370         info->dki_slave = ((tgt << 3) | lun);
23371         (void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
23372             DK_DEVLEN - 1);
23373         info->dki_flags = DKI_FMTVOL;
23374         info->dki_partition = SDPART(dev);
23375 
23376         /* Max Transfer size of this device in blocks */
23377         info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
23378         info->dki_addr = 0;
23379         info->dki_space = 0;
23380         info->dki_prio = 0;
23381         info->dki_vec = 0;
23382 
23383         if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
23384                 kmem_free(info, sizeof (struct dk_cinfo));
23385                 return (EFAULT);
23386         } else {
23387                 kmem_free(info, sizeof (struct dk_cinfo));
23388                 return (0);
23389         }
23390 }
23391 
23392 /*
23393  *    Function: sd_get_media_info_com
23394  *
23395  * Description: This routine returns the information required to populate
23396  *              the fields for the dk_minfo/dk_minfo_ext structures.
23397  *
23398  *   Arguments: dev             - the device number
23399  *              dki_media_type  - media_type
23400  *              dki_lbsize      - logical block size
23401  *              dki_capacity    - capacity in blocks
23402  *              dki_pbsize      - physical block size (if requested)
23403  *
23404  * Return Code: 0
23405  *              EACCESS
23406  *              EFAULT
23407  *              ENXIO
23408  *              EIO
23409  */
23410 static int
23411 sd_get_media_info_com(dev_t dev, uint_t *dki_media_type, uint_t *dki_lbsize,
23412         diskaddr_t *dki_capacity, uint_t *dki_pbsize)
23413 {
23414         struct sd_lun           *un = NULL;
23415         struct uscsi_cmd        com;
23416         struct scsi_inquiry     *sinq;
23417         u_longlong_t            media_capacity;
23418         uint64_t                capacity;
23419         uint_t                  lbasize;
23420         uint_t                  pbsize;
23421         uchar_t                 *out_data;
23422         uchar_t                 *rqbuf;
23423         int                     rval = 0;
23424         int                     rtn;
23425         sd_ssc_t                *ssc;
23426 
23427         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
23428             (un->un_state == SD_STATE_OFFLINE)) {
23429                 return (ENXIO);
23430         }
23431 
23432         SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info_com: entry\n");
23433 
23434         out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
23435         rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
23436         ssc = sd_ssc_init(un);
23437 
23438         /* Issue a TUR to determine if the drive is ready with media present */
23439         rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA);
23440         if (rval == ENXIO) {
23441                 goto done;
23442         } else if (rval != 0) {
23443                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23444         }
23445 
23446         /* Now get configuration data */
23447         if (ISCD(un)) {
23448                 *dki_media_type = DK_CDROM;
23449 
23450                 /* Allow SCMD_GET_CONFIGURATION to MMC devices only */
23451                 if (un->un_f_mmc_cap == TRUE) {
23452                         rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf,
23453                             SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
23454                             SD_PATH_STANDARD);
23455 
23456                         if (rtn) {
23457                                 /*
23458                                  * We ignore all failures for CD and need to
23459                                  * put the assessment before processing code
23460                                  * to avoid missing assessment for FMA.
23461                                  */
23462                                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23463                                 /*
23464                                  * Failed for other than an illegal request
23465                                  * or command not supported
23466                                  */
23467                                 if ((com.uscsi_status == STATUS_CHECK) &&
23468                                     (com.uscsi_rqstatus == STATUS_GOOD)) {
23469                                         if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
23470                                             (rqbuf[12] != 0x20)) {
23471                                                 rval = EIO;
23472                                                 goto no_assessment;
23473                                         }
23474                                 }
23475                         } else {
23476                                 /*
23477                                  * The GET CONFIGURATION command succeeded
23478                                  * so set the media type according to the
23479                                  * returned data
23480                                  */
23481                                 *dki_media_type = out_data[6];
23482                                 *dki_media_type <<= 8;
23483                                 *dki_media_type |= out_data[7];
23484                         }
23485                 }
23486         } else {
23487                 /*
23488                  * The profile list is not available, so we attempt to identify
23489                  * the media type based on the inquiry data
23490                  */
23491                 sinq = un->un_sd->sd_inq;
23492                 if ((sinq->inq_dtype == DTYPE_DIRECT) ||
23493                     (sinq->inq_dtype == DTYPE_OPTICAL)) {
23494                         /* This is a direct access device  or optical disk */
23495                         *dki_media_type = DK_FIXED_DISK;
23496 
23497                         if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
23498                             (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
23499                                 if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
23500                                         *dki_media_type = DK_ZIP;
23501                                 } else if (
23502                                     (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
23503                                         *dki_media_type = DK_JAZ;
23504                                 }
23505                         }
23506                 } else {
23507                         /*
23508                          * Not a CD, direct access or optical disk so return
23509                          * unknown media
23510                          */
23511                         *dki_media_type = DK_UNKNOWN;
23512                 }
23513         }
23514 
23515         /*
23516          * Now read the capacity so we can provide the lbasize,
23517          * pbsize and capacity.
23518          */
23519         if (dki_pbsize && un->un_f_descr_format_supported) {
23520                 rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize,
23521                     &pbsize, SD_PATH_DIRECT);
23522 
23523                 /*
23524                  * Override the physical blocksize if the instance already
23525                  * has a larger value.
23526                  */
23527                 pbsize = MAX(pbsize, un->un_phy_blocksize);
23528         }
23529 
23530         if (dki_pbsize == NULL || rval != 0 ||
23531             !un->un_f_descr_format_supported) {
23532                 rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
23533                     SD_PATH_DIRECT);
23534 
23535                 switch (rval) {
23536                 case 0:
23537                         if (un->un_f_enable_rmw &&
23538                             un->un_phy_blocksize != 0) {
23539                                 pbsize = un->un_phy_blocksize;
23540                         } else {
23541                                 pbsize = lbasize;
23542                         }
23543                         media_capacity = capacity;
23544 
23545                         /*
23546                          * sd_send_scsi_READ_CAPACITY() reports capacity in
23547                          * un->un_sys_blocksize chunks. So we need to convert
23548                          * it into cap.lbsize chunks.
23549                          */
23550                         if (un->un_f_has_removable_media) {
23551                                 media_capacity *= un->un_sys_blocksize;
23552                                 media_capacity /= lbasize;
23553                         }
23554                         break;
23555                 case EACCES:
23556                         rval = EACCES;
23557                         goto done;
23558                 default:
23559                         rval = EIO;
23560                         goto done;
23561                 }
23562         } else {
23563                 if (un->un_f_enable_rmw &&
23564                     !ISP2(pbsize % DEV_BSIZE)) {
23565                         pbsize = SSD_SECSIZE;
23566                 } else if (!ISP2(lbasize % DEV_BSIZE) ||
23567                     !ISP2(pbsize % DEV_BSIZE)) {
23568                         pbsize = lbasize = DEV_BSIZE;
23569                 }
23570                 media_capacity = capacity;
23571         }
23572 
23573         /*
23574          * If lun is expanded dynamically, update the un structure.
23575          */
23576         mutex_enter(SD_MUTEX(un));
23577         if ((un->un_f_blockcount_is_valid == TRUE) &&
23578             (un->un_f_tgt_blocksize_is_valid == TRUE) &&
23579             (capacity > un->un_blockcount)) {
23580                 un->un_f_expnevent = B_FALSE;
23581                 sd_update_block_info(un, lbasize, capacity);
23582         }
23583         mutex_exit(SD_MUTEX(un));
23584 
23585         *dki_lbsize = lbasize;
23586         *dki_capacity = media_capacity;
23587         if (dki_pbsize)
23588                 *dki_pbsize = pbsize;
23589 
23590 done:
23591         if (rval != 0) {
23592                 if (rval == EIO)
23593                         sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23594                 else
23595                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23596         }
23597 no_assessment:
23598         sd_ssc_fini(ssc);
23599         kmem_free(out_data, SD_PROFILE_HEADER_LEN);
23600         kmem_free(rqbuf, SENSE_LENGTH);
23601         return (rval);
23602 }
23603 
23604 /*
23605  *    Function: sd_get_media_info
23606  *
23607  * Description: This routine is the driver entry point for handling ioctl
23608  *              requests for the media type or command set profile used by the
23609  *              drive to operate on the media (DKIOCGMEDIAINFO).
23610  *
23611  *   Arguments: dev     - the device number
23612  *              arg     - pointer to user provided dk_minfo structure
23613  *                        specifying the media type, logical block size and
23614  *                        drive capacity.
23615  *              flag    - this argument is a pass through to ddi_copyxxx()
23616  *                        directly from the mode argument of ioctl().
23617  *
23618  * Return Code: returns the value from sd_get_media_info_com
23619  */
23620 static int
23621 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
23622 {
23623         struct dk_minfo         mi;
23624         int                     rval;
23625 
23626         rval = sd_get_media_info_com(dev, &mi.dki_media_type,
23627             &mi.dki_lbsize, &mi.dki_capacity, NULL);
23628 
23629         if (rval)
23630                 return (rval);
23631         if (ddi_copyout(&mi, arg, sizeof (struct dk_minfo), flag))
23632                 rval = EFAULT;
23633         return (rval);
23634 }
23635 
23636 /*
23637  *    Function: sd_get_media_info_ext
23638  *
23639  * Description: This routine is the driver entry point for handling ioctl
23640  *              requests for the media type or command set profile used by the
23641  *              drive to operate on the media (DKIOCGMEDIAINFOEXT). The
23642  *              difference this ioctl and DKIOCGMEDIAINFO is the return value
23643  *              of this ioctl contains both logical block size and physical
23644  *              block size.
23645  *
23646  *
23647  *   Arguments: dev     - the device number
23648  *              arg     - pointer to user provided dk_minfo_ext structure
23649  *                        specifying the media type, logical block size,
23650  *                        physical block size and disk capacity.
23651  *              flag    - this argument is a pass through to ddi_copyxxx()
23652  *                        directly from the mode argument of ioctl().
23653  *
23654  * Return Code: returns the value from sd_get_media_info_com
23655  */
23656 static int
23657 sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag)
23658 {
23659         struct dk_minfo_ext     mie;
23660         int                     rval = 0;
23661 
23662         rval = sd_get_media_info_com(dev, &mie.dki_media_type,
23663             &mie.dki_lbsize, &mie.dki_capacity, &mie.dki_pbsize);
23664 
23665         if (rval)
23666                 return (rval);
23667         if (ddi_copyout(&mie, arg, sizeof (struct dk_minfo_ext), flag))
23668                 rval = EFAULT;
23669         return (rval);
23670 
23671 }
23672 
23673 /*
23674  *    Function: sd_watch_request_submit
23675  *
23676  * Description: Call scsi_watch_request_submit or scsi_mmc_watch_request_submit
23677  *              depending on which is supported by device.
23678  */
23679 static opaque_t
23680 sd_watch_request_submit(struct sd_lun *un)
23681 {
23682         dev_t                   dev;
23683 
23684         /* All submissions are unified to use same device number */
23685         dev = sd_make_device(SD_DEVINFO(un));
23686 
23687         if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) {
23688                 return (scsi_mmc_watch_request_submit(SD_SCSI_DEVP(un),
23689                     sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23690                     (caddr_t)dev));
23691         } else {
23692                 return (scsi_watch_request_submit(SD_SCSI_DEVP(un),
23693                     sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23694                     (caddr_t)dev));
23695         }
23696 }
23697 
23698 
23699 /*
23700  *    Function: sd_check_media
23701  *
23702  * Description: This utility routine implements the functionality for the
23703  *              DKIOCSTATE ioctl. This ioctl blocks the user thread until the
23704  *              driver state changes from that specified by the user
23705  *              (inserted or ejected). For example, if the user specifies
23706  *              DKIO_EJECTED and the current media state is inserted this
23707  *              routine will immediately return DKIO_INSERTED. However, if the
23708  *              current media state is not inserted the user thread will be
23709  *              blocked until the drive state changes. If DKIO_NONE is specified
23710  *              the user thread will block until a drive state change occurs.
23711  *
23712  *   Arguments: dev  - the device number
23713  *              state  - user pointer to a dkio_state, updated with the current
23714  *                      drive state at return.
23715  *
23716  * Return Code: ENXIO
23717  *              EIO
23718  *              EAGAIN
23719  *              EINTR
23720  */
23721 
23722 static int
23723 sd_check_media(dev_t dev, enum dkio_state state)
23724 {
23725         struct sd_lun           *un = NULL;
23726         enum dkio_state         prev_state;
23727         opaque_t                token = NULL;
23728         int                     rval = 0;
23729         sd_ssc_t                *ssc;
23730 
23731         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23732                 return (ENXIO);
23733         }
23734 
23735         SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
23736 
23737         ssc = sd_ssc_init(un);
23738 
23739         mutex_enter(SD_MUTEX(un));
23740 
23741         SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
23742             "state=%x, mediastate=%x\n", state, un->un_mediastate);
23743 
23744         prev_state = un->un_mediastate;
23745 
23746         /* is there anything to do? */
23747         if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
23748                 /*
23749                  * submit the request to the scsi_watch service;
23750                  * scsi_media_watch_cb() does the real work
23751                  */
23752                 mutex_exit(SD_MUTEX(un));
23753 
23754                 /*
23755                  * This change handles the case where a scsi watch request is
23756                  * added to a device that is powered down. To accomplish this
23757                  * we power up the device before adding the scsi watch request,
23758                  * since the scsi watch sends a TUR directly to the device
23759                  * which the device cannot handle if it is powered down.
23760                  */
23761                 if (sd_pm_entry(un) != DDI_SUCCESS) {
23762                         mutex_enter(SD_MUTEX(un));
23763                         goto done;
23764                 }
23765 
23766                 token = sd_watch_request_submit(un);
23767 
23768                 sd_pm_exit(un);
23769 
23770                 mutex_enter(SD_MUTEX(un));
23771                 if (token == NULL) {
23772                         rval = EAGAIN;
23773                         goto done;
23774                 }
23775 
23776                 /*
23777                  * This is a special case IOCTL that doesn't return
23778                  * until the media state changes. Routine sdpower
23779                  * knows about and handles this so don't count it
23780                  * as an active cmd in the driver, which would
23781                  * keep the device busy to the pm framework.
23782                  * If the count isn't decremented the device can't
23783                  * be powered down.
23784                  */
23785                 un->un_ncmds_in_driver--;
23786                 ASSERT(un->un_ncmds_in_driver >= 0);
23787 
23788                 /*
23789                  * if a prior request had been made, this will be the same
23790                  * token, as scsi_watch was designed that way.
23791                  */
23792                 un->un_swr_token = token;
23793                 un->un_specified_mediastate = state;
23794 
23795                 /*
23796                  * now wait for media change
23797                  * we will not be signalled unless mediastate == state but it is
23798                  * still better to test for this condition, since there is a
23799                  * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
23800                  */
23801                 SD_TRACE(SD_LOG_COMMON, un,
23802                     "sd_check_media: waiting for media state change\n");
23803                 while (un->un_mediastate == state) {
23804                         if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
23805                                 SD_TRACE(SD_LOG_COMMON, un,
23806                                     "sd_check_media: waiting for media state "
23807                                     "was interrupted\n");
23808                                 un->un_ncmds_in_driver++;
23809                                 rval = EINTR;
23810                                 goto done;
23811                         }
23812                         SD_TRACE(SD_LOG_COMMON, un,
23813                             "sd_check_media: received signal, state=%x\n",
23814                             un->un_mediastate);
23815                 }
23816                 /*
23817                  * Inc the counter to indicate the device once again
23818                  * has an active outstanding cmd.
23819                  */
23820                 un->un_ncmds_in_driver++;
23821         }
23822 
23823         /* invalidate geometry */
23824         if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
23825                 sr_ejected(un);
23826         }
23827 
23828         if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
23829                 uint64_t        capacity;
23830                 uint_t          lbasize;
23831 
23832                 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
23833                 mutex_exit(SD_MUTEX(un));
23834                 /*
23835                  * Since the following routines use SD_PATH_DIRECT, we must
23836                  * call PM directly before the upcoming disk accesses. This
23837                  * may cause the disk to be power/spin up.
23838                  */
23839 
23840                 if (sd_pm_entry(un) == DDI_SUCCESS) {
23841                         rval = sd_send_scsi_READ_CAPACITY(ssc,
23842                             &capacity, &lbasize, SD_PATH_DIRECT);
23843                         if (rval != 0) {
23844                                 sd_pm_exit(un);
23845                                 if (rval == EIO)
23846                                         sd_ssc_assessment(ssc,
23847                                             SD_FMT_STATUS_CHECK);
23848                                 else
23849                                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23850                                 mutex_enter(SD_MUTEX(un));
23851                                 goto done;
23852                         }
23853                 } else {
23854                         rval = EIO;
23855                         mutex_enter(SD_MUTEX(un));
23856                         goto done;
23857                 }
23858                 mutex_enter(SD_MUTEX(un));
23859 
23860                 sd_update_block_info(un, lbasize, capacity);
23861 
23862                 /*
23863                  *  Check if the media in the device is writable or not
23864                  */
23865                 if (ISCD(un)) {
23866                         sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
23867                 }
23868 
23869                 mutex_exit(SD_MUTEX(un));
23870                 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
23871                 if ((cmlb_validate(un->un_cmlbhandle, 0,
23872                     (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
23873                         sd_set_pstats(un);
23874                         SD_TRACE(SD_LOG_IO_PARTITION, un,
23875                             "sd_check_media: un:0x%p pstats created and "
23876                             "set\n", un);
23877                 }
23878 
23879                 rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
23880                     SD_PATH_DIRECT);
23881 
23882                 sd_pm_exit(un);
23883 
23884                 if (rval != 0) {
23885                         if (rval == EIO)
23886                                 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23887                         else
23888                                 sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23889                 }
23890 
23891                 mutex_enter(SD_MUTEX(un));
23892         }
23893 done:
23894         sd_ssc_fini(ssc);
23895         un->un_f_watcht_stopped = FALSE;
23896         if (token != NULL && un->un_swr_token != NULL) {
23897                 /*
23898                  * Use of this local token and the mutex ensures that we avoid
23899                  * some race conditions associated with terminating the
23900                  * scsi watch.
23901                  */
23902                 token = un->un_swr_token;
23903                 mutex_exit(SD_MUTEX(un));
23904                 (void) scsi_watch_request_terminate(token,
23905                     SCSI_WATCH_TERMINATE_WAIT);
23906                 if (scsi_watch_get_ref_count(token) == 0) {
23907                         mutex_enter(SD_MUTEX(un));
23908                         un->un_swr_token = (opaque_t)NULL;
23909                 } else {
23910                         mutex_enter(SD_MUTEX(un));
23911                 }
23912         }
23913 
23914         /*
23915          * Update the capacity kstat value, if no media previously
23916          * (capacity kstat is 0) and a media has been inserted
23917          * (un_f_blockcount_is_valid == TRUE)
23918          */
23919         if (un->un_errstats) {
23920                 struct sd_errstats      *stp = NULL;
23921 
23922                 stp = (struct sd_errstats *)un->un_errstats->ks_data;
23923                 if ((stp->sd_capacity.value.ui64 == 0) &&
23924                     (un->un_f_blockcount_is_valid == TRUE)) {
23925                         stp->sd_capacity.value.ui64 =
23926                             (uint64_t)((uint64_t)un->un_blockcount *
23927                             un->un_sys_blocksize);
23928                 }
23929         }
23930         mutex_exit(SD_MUTEX(un));
23931         SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
23932         return (rval);
23933 }
23934 
23935 
23936 /*
23937  *    Function: sd_delayed_cv_broadcast
23938  *
23939  * Description: Delayed cv_broadcast to allow for target to recover from media
23940  *              insertion.
23941  *
23942  *   Arguments: arg - driver soft state (unit) structure
23943  */
23944 
23945 static void
23946 sd_delayed_cv_broadcast(void *arg)
23947 {
23948         struct sd_lun *un = arg;
23949 
23950         SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
23951 
23952         mutex_enter(SD_MUTEX(un));
23953         un->un_dcvb_timeid = NULL;
23954         cv_broadcast(&un->un_state_cv);
23955         mutex_exit(SD_MUTEX(un));
23956 }
23957 
23958 
23959 /*
23960  *    Function: sd_media_watch_cb
23961  *
23962  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
23963  *              routine processes the TUR sense data and updates the driver
23964  *              state if a transition has occurred. The user thread
23965  *              (sd_check_media) is then signalled.
23966  *
23967  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23968  *                      among multiple watches that share this callback function
23969  *              resultp - scsi watch facility result packet containing scsi
23970  *                        packet, status byte and sense data
23971  *
23972  * Return Code: 0 for success, -1 for failure
23973  */
23974 
23975 static int
23976 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
23977 {
23978         struct sd_lun                   *un;
23979         struct scsi_status              *statusp = resultp->statusp;
23980         uint8_t                         *sensep = (uint8_t *)resultp->sensep;
23981         enum dkio_state                 state = DKIO_NONE;
23982         dev_t                           dev = (dev_t)arg;
23983         uchar_t                         actual_sense_length;
23984         uint8_t                         skey, asc, ascq;
23985 
23986         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23987                 return (-1);
23988         }
23989         actual_sense_length = resultp->actual_sense_length;
23990 
23991         mutex_enter(SD_MUTEX(un));
23992         SD_TRACE(SD_LOG_COMMON, un,
23993             "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
23994             *((char *)statusp), (void *)sensep, actual_sense_length);
23995 
23996         if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
23997                 un->un_mediastate = DKIO_DEV_GONE;
23998                 cv_broadcast(&un->un_state_cv);
23999                 mutex_exit(SD_MUTEX(un));
24000 
24001                 return (0);
24002         }
24003 
24004         if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) {
24005                 if (sd_gesn_media_data_valid(resultp->mmc_data)) {
24006                         if ((resultp->mmc_data[5] &
24007                             SD_GESN_MEDIA_EVENT_STATUS_PRESENT) != 0) {
24008                                 state = DKIO_INSERTED;
24009                         } else {
24010                                 state = DKIO_EJECTED;
24011                         }
24012                         if ((resultp->mmc_data[4] & SD_GESN_MEDIA_EVENT_CODE) ==
24013                             SD_GESN_MEDIA_EVENT_EJECTREQUEST) {
24014                                 sd_log_eject_request_event(un, KM_NOSLEEP);
24015                         }
24016                 }
24017         } else if (sensep != NULL) {
24018                 /*
24019                  * If there was a check condition then sensep points to valid
24020                  * sense data. If status was not a check condition but a
24021                  * reservation or busy status then the new state is DKIO_NONE.
24022                  */
24023                 skey = scsi_sense_key(sensep);
24024                 asc = scsi_sense_asc(sensep);
24025                 ascq = scsi_sense_ascq(sensep);
24026 
24027                 SD_INFO(SD_LOG_COMMON, un,
24028                     "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
24029                     skey, asc, ascq);
24030                 /* This routine only uses up to 13 bytes of sense data. */
24031                 if (actual_sense_length >= 13) {
24032                         if (skey == KEY_UNIT_ATTENTION) {
24033                                 if (asc == 0x28) {
24034                                         state = DKIO_INSERTED;
24035                                 }
24036                         } else if (skey == KEY_NOT_READY) {
24037                                 /*
24038                                  * Sense data of 02/06/00 means that the
24039                                  * drive could not read the media (No
24040                                  * reference position found). In this case
24041                                  * to prevent a hang on the DKIOCSTATE IOCTL
24042                                  * we set the media state to DKIO_INSERTED.
24043                                  */
24044                                 if (asc == 0x06 && ascq == 0x00)
24045                                         state = DKIO_INSERTED;
24046 
24047                                 /*
24048                                  * if 02/04/02  means that the host
24049                                  * should send start command. Explicitly
24050                                  * leave the media state as is
24051                                  * (inserted) as the media is inserted
24052                                  * and host has stopped device for PM
24053                                  * reasons. Upon next true read/write
24054                                  * to this media will bring the
24055                                  * device to the right state good for
24056                                  * media access.
24057                                  */
24058                                 if (asc == 0x3a) {
24059                                         state = DKIO_EJECTED;
24060                                 } else {
24061                                         /*
24062                                          * If the drive is busy with an
24063                                          * operation or long write, keep the
24064                                          * media in an inserted state.
24065                                          */
24066 
24067                                         if ((asc == 0x04) &&
24068                                             ((ascq == 0x02) ||
24069                                             (ascq == 0x07) ||
24070                                             (ascq == 0x08))) {
24071                                                 state = DKIO_INSERTED;
24072                                         }
24073                                 }
24074                         } else if (skey == KEY_NO_SENSE) {
24075                                 if ((asc == 0x00) && (ascq == 0x00)) {
24076                                         /*
24077                                          * Sense Data 00/00/00 does not provide
24078                                          * any information about the state of
24079                                          * the media. Ignore it.
24080                                          */
24081                                         mutex_exit(SD_MUTEX(un));
24082                                         return (0);
24083                                 }
24084                         }
24085                 }
24086         } else if ((*((char *)statusp) == STATUS_GOOD) &&
24087             (resultp->pkt->pkt_reason == CMD_CMPLT)) {
24088                 state = DKIO_INSERTED;
24089         }
24090 
24091         SD_TRACE(SD_LOG_COMMON, un,
24092             "sd_media_watch_cb: state=%x, specified=%x\n",
24093             state, un->un_specified_mediastate);
24094 
24095         /*
24096          * now signal the waiting thread if this is *not* the specified state;
24097          * delay the signal if the state is DKIO_INSERTED to allow the target
24098          * to recover
24099          */
24100         if (state != un->un_specified_mediastate) {
24101                 un->un_mediastate = state;
24102                 if (state == DKIO_INSERTED) {
24103                         /*
24104                          * delay the signal to give the drive a chance
24105                          * to do what it apparently needs to do
24106                          */
24107                         SD_TRACE(SD_LOG_COMMON, un,
24108                             "sd_media_watch_cb: delayed cv_broadcast\n");
24109                         if (un->un_dcvb_timeid == NULL) {
24110                                 un->un_dcvb_timeid =
24111                                     timeout(sd_delayed_cv_broadcast, un,
24112                                     drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
24113                         }
24114                 } else {
24115                         SD_TRACE(SD_LOG_COMMON, un,
24116                             "sd_media_watch_cb: immediate cv_broadcast\n");
24117                         cv_broadcast(&un->un_state_cv);
24118                 }
24119         }
24120         mutex_exit(SD_MUTEX(un));
24121         return (0);
24122 }
24123 
24124 
24125 /*
24126  *    Function: sd_dkio_get_temp
24127  *
24128  * Description: This routine is the driver entry point for handling ioctl
24129  *              requests to get the disk temperature.
24130  *
24131  *   Arguments: dev  - the device number
24132  *              arg  - pointer to user provided dk_temperature structure.
24133  *              flag - this argument is a pass through to ddi_copyxxx()
24134  *                     directly from the mode argument of ioctl().
24135  *
24136  * Return Code: 0
24137  *              EFAULT
24138  *              ENXIO
24139  *              EAGAIN
24140  */
24141 
24142 static int
24143 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
24144 {
24145         struct sd_lun           *un = NULL;
24146         struct dk_temperature   *dktemp = NULL;
24147         uchar_t                 *temperature_page;
24148         int                     rval = 0;
24149         int                     path_flag = SD_PATH_STANDARD;
24150         sd_ssc_t                *ssc;
24151 
24152         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24153                 return (ENXIO);
24154         }
24155 
24156         ssc = sd_ssc_init(un);
24157         dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
24158 
24159         /* copyin the disk temp argument to get the user flags */
24160         if (ddi_copyin((void *)arg, dktemp,
24161             sizeof (struct dk_temperature), flag) != 0) {
24162                 rval = EFAULT;
24163                 goto done;
24164         }
24165 
24166         /* Initialize the temperature to invalid. */
24167         dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24168         dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24169 
24170         /*
24171          * Note: Investigate removing the "bypass pm" semantic.
24172          * Can we just bypass PM always?
24173          */
24174         if (dktemp->dkt_flags & DKT_BYPASS_PM) {
24175                 path_flag = SD_PATH_DIRECT;
24176                 ASSERT(!mutex_owned(&un->un_pm_mutex));
24177                 mutex_enter(&un->un_pm_mutex);
24178                 if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24179                         /*
24180                          * If DKT_BYPASS_PM is set, and the drive happens to be
24181                          * in low power mode, we can not wake it up, Need to
24182                          * return EAGAIN.
24183                          */
24184                         mutex_exit(&un->un_pm_mutex);
24185                         rval = EAGAIN;
24186                         goto done;
24187                 } else {
24188                         /*
24189                          * Indicate to PM the device is busy. This is required
24190                          * to avoid a race - i.e. the ioctl is issuing a
24191                          * command and the pm framework brings down the device
24192                          * to low power mode (possible power cut-off on some
24193                          * platforms).
24194                          */
24195                         mutex_exit(&un->un_pm_mutex);
24196                         if (sd_pm_entry(un) != DDI_SUCCESS) {
24197                                 rval = EAGAIN;
24198                                 goto done;
24199                         }
24200                 }
24201         }
24202 
24203         temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
24204 
24205         rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page,
24206             TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag);
24207         if (rval != 0)
24208                 goto done2;
24209 
24210         /*
24211          * For the current temperature verify that the parameter length is 0x02
24212          * and the parameter code is 0x00
24213          */
24214         if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
24215             (temperature_page[5] == 0x00)) {
24216                 if (temperature_page[9] == 0xFF) {
24217                         dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24218                 } else {
24219                         dktemp->dkt_cur_temp = (short)(temperature_page[9]);
24220                 }
24221         }
24222 
24223         /*
24224          * For the reference temperature verify that the parameter
24225          * length is 0x02 and the parameter code is 0x01
24226          */
24227         if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
24228             (temperature_page[11] == 0x01)) {
24229                 if (temperature_page[15] == 0xFF) {
24230                         dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24231                 } else {
24232                         dktemp->dkt_ref_temp = (short)(temperature_page[15]);
24233                 }
24234         }
24235 
24236         /* Do the copyout regardless of the temperature commands status. */
24237         if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
24238             flag) != 0) {
24239                 rval = EFAULT;
24240                 goto done1;
24241         }
24242 
24243 done2:
24244         if (rval != 0) {
24245                 if (rval == EIO)
24246                         sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24247                 else
24248                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24249         }
24250 done1:
24251         if (path_flag == SD_PATH_DIRECT) {
24252                 sd_pm_exit(un);
24253         }
24254 
24255         kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
24256 done:
24257         sd_ssc_fini(ssc);
24258         if (dktemp != NULL) {
24259                 kmem_free(dktemp, sizeof (struct dk_temperature));
24260         }
24261 
24262         return (rval);
24263 }
24264 
24265 
24266 /*
24267  *    Function: sd_log_page_supported
24268  *
24269  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
24270  *              supported log pages.
24271  *
24272  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
24273  *                      structure for this target.
24274  *              log_page -
24275  *
24276  * Return Code: -1 - on error (log sense is optional and may not be supported).
24277  *              0  - log page not found.
24278  *              1  - log page found.
24279  */
24280 
24281 static int
24282 sd_log_page_supported(sd_ssc_t *ssc, int log_page)
24283 {
24284         uchar_t *log_page_data;
24285         int     i;
24286         int     match = 0;
24287         int     log_size;
24288         int     status = 0;
24289         struct sd_lun   *un;
24290 
24291         ASSERT(ssc != NULL);
24292         un = ssc->ssc_un;
24293         ASSERT(un != NULL);
24294 
24295         log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
24296 
24297         status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0,
24298             SD_PATH_DIRECT);
24299 
24300         if (status != 0) {
24301                 if (status == EIO) {
24302                         /*
24303                          * Some disks do not support log sense, we
24304                          * should ignore this kind of error(sense key is
24305                          * 0x5 - illegal request).
24306                          */
24307                         uint8_t *sensep;
24308                         int senlen;
24309 
24310                         sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
24311                         senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
24312                             ssc->ssc_uscsi_cmd->uscsi_rqresid);
24313 
24314                         if (senlen > 0 &&
24315                             scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
24316                                 sd_ssc_assessment(ssc,
24317                                     SD_FMT_IGNORE_COMPROMISE);
24318                         } else {
24319                                 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24320                         }
24321                 } else {
24322                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24323                 }
24324 
24325                 SD_ERROR(SD_LOG_COMMON, un,
24326                     "sd_log_page_supported: failed log page retrieval\n");
24327                 kmem_free(log_page_data, 0xFF);
24328                 return (-1);
24329         }
24330 
24331         log_size = log_page_data[3];
24332 
24333         /*
24334          * The list of supported log pages start from the fourth byte. Check
24335          * until we run out of log pages or a match is found.
24336          */
24337         for (i = 4; (i < (log_size + 4)) && !match; i++) {
24338                 if (log_page_data[i] == log_page) {
24339                         match++;
24340                 }
24341         }
24342         kmem_free(log_page_data, 0xFF);
24343         return (match);
24344 }
24345 
24346 
24347 /*
24348  *    Function: sd_mhdioc_failfast
24349  *
24350  * Description: This routine is the driver entry point for handling ioctl
24351  *              requests to enable/disable the multihost failfast option.
24352  *              (MHIOCENFAILFAST)
24353  *
24354  *   Arguments: dev     - the device number
24355  *              arg     - user specified probing interval.
24356  *              flag    - this argument is a pass through to ddi_copyxxx()
24357  *                        directly from the mode argument of ioctl().
24358  *
24359  * Return Code: 0
24360  *              EFAULT
24361  *              ENXIO
24362  */
24363 
24364 static int
24365 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
24366 {
24367         struct sd_lun   *un = NULL;
24368         int             mh_time;
24369         int             rval = 0;
24370 
24371         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24372                 return (ENXIO);
24373         }
24374 
24375         if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
24376                 return (EFAULT);
24377 
24378         if (mh_time) {
24379                 mutex_enter(SD_MUTEX(un));
24380                 un->un_resvd_status |= SD_FAILFAST;
24381                 mutex_exit(SD_MUTEX(un));
24382                 /*
24383                  * If mh_time is INT_MAX, then this ioctl is being used for
24384                  * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
24385                  */
24386                 if (mh_time != INT_MAX) {
24387                         rval = sd_check_mhd(dev, mh_time);
24388                 }
24389         } else {
24390                 (void) sd_check_mhd(dev, 0);
24391                 mutex_enter(SD_MUTEX(un));
24392                 un->un_resvd_status &= ~SD_FAILFAST;
24393                 mutex_exit(SD_MUTEX(un));
24394         }
24395         return (rval);
24396 }
24397 
24398 
24399 /*
24400  *    Function: sd_mhdioc_takeown
24401  *
24402  * Description: This routine is the driver entry point for handling ioctl
24403  *              requests to forcefully acquire exclusive access rights to the
24404  *              multihost disk (MHIOCTKOWN).
24405  *
24406  *   Arguments: dev     - the device number
24407  *              arg     - user provided structure specifying the delay
24408  *                        parameters in milliseconds
24409  *              flag    - this argument is a pass through to ddi_copyxxx()
24410  *                        directly from the mode argument of ioctl().
24411  *
24412  * Return Code: 0
24413  *              EFAULT
24414  *              ENXIO
24415  */
24416 
24417 static int
24418 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
24419 {
24420         struct sd_lun           *un = NULL;
24421         struct mhioctkown       *tkown = NULL;
24422         int                     rval = 0;
24423 
24424         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24425                 return (ENXIO);
24426         }
24427 
24428         if (arg != NULL) {
24429                 tkown = (struct mhioctkown *)
24430                     kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
24431                 rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
24432                 if (rval != 0) {
24433                         rval = EFAULT;
24434                         goto error;
24435                 }
24436         }
24437 
24438         rval = sd_take_ownership(dev, tkown);
24439         mutex_enter(SD_MUTEX(un));
24440         if (rval == 0) {
24441                 un->un_resvd_status |= SD_RESERVE;
24442                 if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
24443                         sd_reinstate_resv_delay =
24444                             tkown->reinstate_resv_delay * 1000;
24445                 } else {
24446                         sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
24447                 }
24448                 /*
24449                  * Give the scsi_watch routine interval set by
24450                  * the MHIOCENFAILFAST ioctl precedence here.
24451                  */
24452                 if ((un->un_resvd_status & SD_FAILFAST) == 0) {
24453                         mutex_exit(SD_MUTEX(un));
24454                         (void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
24455                         SD_TRACE(SD_LOG_IOCTL_MHD, un,
24456                             "sd_mhdioc_takeown : %d\n",
24457                             sd_reinstate_resv_delay);
24458                 } else {
24459                         mutex_exit(SD_MUTEX(un));
24460                 }
24461                 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
24462                     sd_mhd_reset_notify_cb, (caddr_t)un);
24463         } else {
24464                 un->un_resvd_status &= ~SD_RESERVE;
24465                 mutex_exit(SD_MUTEX(un));
24466         }
24467 
24468 error:
24469         if (tkown != NULL) {
24470                 kmem_free(tkown, sizeof (struct mhioctkown));
24471         }
24472         return (rval);
24473 }
24474 
24475 
24476 /*
24477  *    Function: sd_mhdioc_release
24478  *
24479  * Description: This routine is the driver entry point for handling ioctl
24480  *              requests to release exclusive access rights to the multihost
24481  *              disk (MHIOCRELEASE).
24482  *
24483  *   Arguments: dev     - the device number
24484  *
24485  * Return Code: 0
24486  *              ENXIO
24487  */
24488 
24489 static int
24490 sd_mhdioc_release(dev_t dev)
24491 {
24492         struct sd_lun           *un = NULL;
24493         timeout_id_t            resvd_timeid_save;
24494         int                     resvd_status_save;
24495         int                     rval = 0;
24496 
24497         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24498                 return (ENXIO);
24499         }
24500 
24501         mutex_enter(SD_MUTEX(un));
24502         resvd_status_save = un->un_resvd_status;
24503         un->un_resvd_status &=
24504             ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
24505         if (un->un_resvd_timeid) {
24506                 resvd_timeid_save = un->un_resvd_timeid;
24507                 un->un_resvd_timeid = NULL;
24508                 mutex_exit(SD_MUTEX(un));
24509                 (void) untimeout(resvd_timeid_save);
24510         } else {
24511                 mutex_exit(SD_MUTEX(un));
24512         }
24513 
24514         /*
24515          * destroy any pending timeout thread that may be attempting to
24516          * reinstate reservation on this device.
24517          */
24518         sd_rmv_resv_reclaim_req(dev);
24519 
24520         if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
24521                 mutex_enter(SD_MUTEX(un));
24522                 if ((un->un_mhd_token) &&
24523                     ((un->un_resvd_status & SD_FAILFAST) == 0)) {
24524                         mutex_exit(SD_MUTEX(un));
24525                         (void) sd_check_mhd(dev, 0);
24526                 } else {
24527                         mutex_exit(SD_MUTEX(un));
24528                 }
24529                 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
24530                     sd_mhd_reset_notify_cb, (caddr_t)un);
24531         } else {
24532                 /*
24533                  * sd_mhd_watch_cb will restart the resvd recover timeout thread
24534                  */
24535                 mutex_enter(SD_MUTEX(un));
24536                 un->un_resvd_status = resvd_status_save;
24537                 mutex_exit(SD_MUTEX(un));
24538         }
24539         return (rval);
24540 }
24541 
24542 
24543 /*
24544  *    Function: sd_mhdioc_register_devid
24545  *
24546  * Description: This routine is the driver entry point for handling ioctl
24547  *              requests to register the device id (MHIOCREREGISTERDEVID).
24548  *
24549  *              Note: The implementation for this ioctl has been updated to
24550  *              be consistent with the original PSARC case (1999/357)
24551  *              (4375899, 4241671, 4220005)
24552  *
24553  *   Arguments: dev     - the device number
24554  *
24555  * Return Code: 0
24556  *              ENXIO
24557  */
24558 
24559 static int
24560 sd_mhdioc_register_devid(dev_t dev)
24561 {
24562         struct sd_lun   *un = NULL;
24563         int             rval = 0;
24564         sd_ssc_t        *ssc;
24565 
24566         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24567                 return (ENXIO);
24568         }
24569 
24570         ASSERT(!mutex_owned(SD_MUTEX(un)));
24571 
24572         mutex_enter(SD_MUTEX(un));
24573 
24574         /* If a devid already exists, de-register it */
24575         if (un->un_devid != NULL) {
24576                 ddi_devid_unregister(SD_DEVINFO(un));
24577                 /*
24578                  * After unregister devid, needs to free devid memory
24579                  */
24580                 ddi_devid_free(un->un_devid);
24581                 un->un_devid = NULL;
24582         }
24583 
24584         /* Check for reservation conflict */
24585         mutex_exit(SD_MUTEX(un));
24586         ssc = sd_ssc_init(un);
24587         rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
24588         mutex_enter(SD_MUTEX(un));
24589 
24590         switch (rval) {
24591         case 0:
24592                 sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
24593                 break;
24594         case EACCES:
24595                 break;
24596         default:
24597                 rval = EIO;
24598         }
24599 
24600         mutex_exit(SD_MUTEX(un));
24601         if (rval != 0) {
24602                 if (rval == EIO)
24603                         sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24604                 else
24605                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24606         }
24607         sd_ssc_fini(ssc);
24608         return (rval);
24609 }
24610 
24611 
24612 /*
24613  *    Function: sd_mhdioc_inkeys
24614  *
24615  * Description: This routine is the driver entry point for handling ioctl
24616  *              requests to issue the SCSI-3 Persistent In Read Keys command
24617  *              to the device (MHIOCGRP_INKEYS).
24618  *
24619  *   Arguments: dev     - the device number
24620  *              arg     - user provided in_keys structure
24621  *              flag    - this argument is a pass through to ddi_copyxxx()
24622  *                        directly from the mode argument of ioctl().
24623  *
24624  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
24625  *              ENXIO
24626  *              EFAULT
24627  */
24628 
24629 static int
24630 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
24631 {
24632         struct sd_lun           *un;
24633         mhioc_inkeys_t          inkeys;
24634         int                     rval = 0;
24635 
24636         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24637                 return (ENXIO);
24638         }
24639 
24640 #ifdef _MULTI_DATAMODEL
24641         switch (ddi_model_convert_from(flag & FMODELS)) {
24642         case DDI_MODEL_ILP32: {
24643                 struct mhioc_inkeys32   inkeys32;
24644 
24645                 if (ddi_copyin(arg, &inkeys32,
24646                     sizeof (struct mhioc_inkeys32), flag) != 0) {
24647                         return (EFAULT);
24648                 }
24649                 inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
24650                 if ((rval = sd_persistent_reservation_in_read_keys(un,
24651                     &inkeys, flag)) != 0) {
24652                         return (rval);
24653                 }
24654                 inkeys32.generation = inkeys.generation;
24655                 if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
24656                     flag) != 0) {
24657                         return (EFAULT);
24658                 }
24659                 break;
24660         }
24661         case DDI_MODEL_NONE:
24662                 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
24663                     flag) != 0) {
24664                         return (EFAULT);
24665                 }
24666                 if ((rval = sd_persistent_reservation_in_read_keys(un,
24667                     &inkeys, flag)) != 0) {
24668                         return (rval);
24669                 }
24670                 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
24671                     flag) != 0) {
24672                         return (EFAULT);
24673                 }
24674                 break;
24675         }
24676 
24677 #else /* ! _MULTI_DATAMODEL */
24678 
24679         if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
24680                 return (EFAULT);
24681         }
24682         rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
24683         if (rval != 0) {
24684                 return (rval);
24685         }
24686         if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
24687                 return (EFAULT);
24688         }
24689 
24690 #endif /* _MULTI_DATAMODEL */
24691 
24692         return (rval);
24693 }
24694 
24695 
24696 /*
24697  *    Function: sd_mhdioc_inresv
24698  *
24699  * Description: This routine is the driver entry point for handling ioctl
24700  *              requests to issue the SCSI-3 Persistent In Read Reservations
24701  *              command to the device (MHIOCGRP_INKEYS).
24702  *
24703  *   Arguments: dev     - the device number
24704  *              arg     - user provided in_resv structure
24705  *              flag    - this argument is a pass through to ddi_copyxxx()
24706  *                        directly from the mode argument of ioctl().
24707  *
24708  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
24709  *              ENXIO
24710  *              EFAULT
24711  */
24712 
24713 static int
24714 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
24715 {
24716         struct sd_lun           *un;
24717         mhioc_inresvs_t         inresvs;
24718         int                     rval = 0;
24719 
24720         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24721                 return (ENXIO);
24722         }
24723 
24724 #ifdef _MULTI_DATAMODEL
24725 
24726         switch (ddi_model_convert_from(flag & FMODELS)) {
24727         case DDI_MODEL_ILP32: {
24728                 struct mhioc_inresvs32  inresvs32;
24729 
24730                 if (ddi_copyin(arg, &inresvs32,
24731                     sizeof (struct mhioc_inresvs32), flag) != 0) {
24732                         return (EFAULT);
24733                 }
24734                 inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
24735                 if ((rval = sd_persistent_reservation_in_read_resv(un,
24736                     &inresvs, flag)) != 0) {
24737                         return (rval);
24738                 }
24739                 inresvs32.generation = inresvs.generation;
24740                 if (ddi_copyout(&inresvs32, arg,
24741                     sizeof (struct mhioc_inresvs32), flag) != 0) {
24742                         return (EFAULT);
24743                 }
24744                 break;
24745         }
24746         case DDI_MODEL_NONE:
24747                 if (ddi_copyin(arg, &inresvs,
24748                     sizeof (mhioc_inresvs_t), flag) != 0) {
24749                         return (EFAULT);
24750                 }
24751                 if ((rval = sd_persistent_reservation_in_read_resv(un,
24752                     &inresvs, flag)) != 0) {
24753                         return (rval);
24754                 }
24755                 if (ddi_copyout(&inresvs, arg,
24756                     sizeof (mhioc_inresvs_t), flag) != 0) {
24757                         return (EFAULT);
24758                 }
24759                 break;
24760         }
24761 
24762 #else /* ! _MULTI_DATAMODEL */
24763 
24764         if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
24765                 return (EFAULT);
24766         }
24767         rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
24768         if (rval != 0) {
24769                 return (rval);
24770         }
24771         if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
24772                 return (EFAULT);
24773         }
24774 
24775 #endif /* ! _MULTI_DATAMODEL */
24776 
24777         return (rval);
24778 }
24779 
24780 
24781 /*
24782  * The following routines support the clustering functionality described below
24783  * and implement lost reservation reclaim functionality.
24784  *
24785  * Clustering
24786  * ----------
24787  * The clustering code uses two different, independent forms of SCSI
24788  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
24789  * Persistent Group Reservations. For any particular disk, it will use either
24790  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
24791  *
24792  * SCSI-2
24793  * The cluster software takes ownership of a multi-hosted disk by issuing the
24794  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
24795  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
24796  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
24797  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
24798  * driver. The meaning of failfast is that if the driver (on this host) ever
24799  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
24800  * it should immediately panic the host. The motivation for this ioctl is that
24801  * if this host does encounter reservation conflict, the underlying cause is
24802  * that some other host of the cluster has decided that this host is no longer
24803  * in the cluster and has seized control of the disks for itself. Since this
24804  * host is no longer in the cluster, it ought to panic itself. The
24805  * MHIOCENFAILFAST ioctl does two things:
24806  *      (a) it sets a flag that will cause any returned RESERVATION_CONFLICT
24807  *      error to panic the host
24808  *      (b) it sets up a periodic timer to test whether this host still has
24809  *      "access" (in that no other host has reserved the device):  if the
24810  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
24811  *      purpose of that periodic timer is to handle scenarios where the host is
24812  *      otherwise temporarily quiescent, temporarily doing no real i/o.
24813  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
24814  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
24815  * the device itself.
24816  *
24817  * SCSI-3 PGR
24818  * A direct semantic implementation of the SCSI-3 Persistent Reservation
24819  * facility is supported through the shared multihost disk ioctls
24820  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
24821  * MHIOCGRP_PREEMPTANDABORT, MHIOCGRP_CLEAR)
24822  *
24823  * Reservation Reclaim:
24824  * --------------------
24825  * To support the lost reservation reclaim operations this driver creates a
24826  * single thread to handle reinstating reservations on all devices that have
24827  * lost reservations sd_resv_reclaim_requests are logged for all devices that
24828  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
24829  * and the reservation reclaim thread loops through the requests to regain the
24830  * lost reservations.
24831  */
24832 
24833 /*
24834  *    Function: sd_check_mhd()
24835  *
24836  * Description: This function sets up and submits a scsi watch request or
24837  *              terminates an existing watch request. This routine is used in
24838  *              support of reservation reclaim.
24839  *
24840  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
24841  *                       among multiple watches that share the callback function
24842  *              interval - the number of microseconds specifying the watch
24843  *                         interval for issuing TEST UNIT READY commands. If
24844  *                         set to 0 the watch should be terminated. If the
24845  *                         interval is set to 0 and if the device is required
24846  *                         to hold reservation while disabling failfast, the
24847  *                         watch is restarted with an interval of
24848  *                         reinstate_resv_delay.
24849  *
24850  * Return Code: 0          - Successful submit/terminate of scsi watch request
24851  *              ENXIO      - Indicates an invalid device was specified
24852  *              EAGAIN     - Unable to submit the scsi watch request
24853  */
24854 
24855 static int
24856 sd_check_mhd(dev_t dev, int interval)
24857 {
24858         struct sd_lun   *un;
24859         opaque_t        token;
24860 
24861         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24862                 return (ENXIO);
24863         }
24864 
24865         /* is this a watch termination request? */
24866         if (interval == 0) {
24867                 mutex_enter(SD_MUTEX(un));
24868                 /* if there is an existing watch task then terminate it */
24869                 if (un->un_mhd_token) {
24870                         token = un->un_mhd_token;
24871                         un->un_mhd_token = NULL;
24872                         mutex_exit(SD_MUTEX(un));
24873                         (void) scsi_watch_request_terminate(token,
24874                             SCSI_WATCH_TERMINATE_ALL_WAIT);
24875                         mutex_enter(SD_MUTEX(un));
24876                 } else {
24877                         mutex_exit(SD_MUTEX(un));
24878                         /*
24879                          * Note: If we return here we don't check for the
24880                          * failfast case. This is the original legacy
24881                          * implementation but perhaps we should be checking
24882                          * the failfast case.
24883                          */
24884                         return (0);
24885                 }
24886                 /*
24887                  * If the device is required to hold reservation while
24888                  * disabling failfast, we need to restart the scsi_watch
24889                  * routine with an interval of reinstate_resv_delay.
24890                  */
24891                 if (un->un_resvd_status & SD_RESERVE) {
24892                         interval = sd_reinstate_resv_delay/1000;
24893                 } else {
24894                         /* no failfast so bail */
24895                         mutex_exit(SD_MUTEX(un));
24896                         return (0);
24897                 }
24898                 mutex_exit(SD_MUTEX(un));
24899         }
24900 
24901         /*
24902          * adjust minimum time interval to 1 second,
24903          * and convert from msecs to usecs
24904          */
24905         if (interval > 0 && interval < 1000) {
24906                 interval = 1000;
24907         }
24908         interval *= 1000;
24909 
24910         /*
24911          * submit the request to the scsi_watch service
24912          */
24913         token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
24914             SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
24915         if (token == NULL) {
24916                 return (EAGAIN);
24917         }
24918 
24919         /*
24920          * save token for termination later on
24921          */
24922         mutex_enter(SD_MUTEX(un));
24923         un->un_mhd_token = token;
24924         mutex_exit(SD_MUTEX(un));
24925         return (0);
24926 }
24927 
24928 
24929 /*
24930  *    Function: sd_mhd_watch_cb()
24931  *
24932  * Description: This function is the call back function used by the scsi watch
24933  *              facility. The scsi watch facility sends the "Test Unit Ready"
24934  *              and processes the status. If applicable (i.e. a "Unit Attention"
24935  *              status and automatic "Request Sense" not used) the scsi watch
24936  *              facility will send a "Request Sense" and retrieve the sense data
24937  *              to be passed to this callback function. In either case the
24938  *              automatic "Request Sense" or the facility submitting one, this
24939  *              callback is passed the status and sense data.
24940  *
24941  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24942  *                      among multiple watches that share this callback function
24943  *              resultp - scsi watch facility result packet containing scsi
24944  *                        packet, status byte and sense data
24945  *
24946  * Return Code: 0 - continue the watch task
24947  *              non-zero - terminate the watch task
24948  */
24949 
24950 static int
24951 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24952 {
24953         struct sd_lun                   *un;
24954         struct scsi_status              *statusp;
24955         uint8_t                         *sensep;
24956         struct scsi_pkt                 *pkt;
24957         uchar_t                         actual_sense_length;
24958         dev_t                           dev = (dev_t)arg;
24959 
24960         ASSERT(resultp != NULL);
24961         statusp                 = resultp->statusp;
24962         sensep                  = (uint8_t *)resultp->sensep;
24963         pkt                     = resultp->pkt;
24964         actual_sense_length     = resultp->actual_sense_length;
24965 
24966         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24967                 return (ENXIO);
24968         }
24969 
24970         SD_TRACE(SD_LOG_IOCTL_MHD, un,
24971             "sd_mhd_watch_cb: reason '%s', status '%s'\n",
24972             scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
24973 
24974         /* Begin processing of the status and/or sense data */
24975         if (pkt->pkt_reason != CMD_CMPLT) {
24976                 /* Handle the incomplete packet */
24977                 sd_mhd_watch_incomplete(un, pkt);
24978                 return (0);
24979         } else if (*((unsigned char *)statusp) != STATUS_GOOD) {
24980                 if (*((unsigned char *)statusp)
24981                     == STATUS_RESERVATION_CONFLICT) {
24982                         /*
24983                          * Handle a reservation conflict by panicking if
24984                          * configured for failfast or by logging the conflict
24985                          * and updating the reservation status
24986                          */
24987                         mutex_enter(SD_MUTEX(un));
24988                         if ((un->un_resvd_status & SD_FAILFAST) &&
24989                             (sd_failfast_enable)) {
24990                                 sd_panic_for_res_conflict(un);
24991                                 /*NOTREACHED*/
24992                         }
24993                         SD_INFO(SD_LOG_IOCTL_MHD, un,
24994                             "sd_mhd_watch_cb: Reservation Conflict\n");
24995                         un->un_resvd_status |= SD_RESERVATION_CONFLICT;
24996                         mutex_exit(SD_MUTEX(un));
24997                 }
24998         }
24999 
25000         if (sensep != NULL) {
25001                 if (actual_sense_length >= (SENSE_LENGTH - 2)) {
25002                         mutex_enter(SD_MUTEX(un));
25003                         if ((scsi_sense_asc(sensep) ==
25004                             SD_SCSI_RESET_SENSE_CODE) &&
25005                             (un->un_resvd_status & SD_RESERVE)) {
25006                                 /*
25007                                  * The additional sense code indicates a power
25008                                  * on or bus device reset has occurred; update
25009                                  * the reservation status.
25010                                  */
25011                                 un->un_resvd_status |=
25012                                     (SD_LOST_RESERVE | SD_WANT_RESERVE);
25013                                 SD_INFO(SD_LOG_IOCTL_MHD, un,
25014                                     "sd_mhd_watch_cb: Lost Reservation\n");
25015                         }
25016                 } else {
25017                         return (0);
25018                 }
25019         } else {
25020                 mutex_enter(SD_MUTEX(un));
25021         }
25022 
25023         if ((un->un_resvd_status & SD_RESERVE) &&
25024             (un->un_resvd_status & SD_LOST_RESERVE)) {
25025                 if (un->un_resvd_status & SD_WANT_RESERVE) {
25026                         /*
25027                          * A reset occurred in between the last probe and this
25028                          * one so if a timeout is pending cancel it.
25029                          */
25030                         if (un->un_resvd_timeid) {
25031                                 timeout_id_t temp_id = un->un_resvd_timeid;
25032                                 un->un_resvd_timeid = NULL;
25033                                 mutex_exit(SD_MUTEX(un));
25034                                 (void) untimeout(temp_id);
25035                                 mutex_enter(SD_MUTEX(un));
25036                         }
25037                         un->un_resvd_status &= ~SD_WANT_RESERVE;
25038                 }
25039                 if (un->un_resvd_timeid == 0) {
25040                         /* Schedule a timeout to handle the lost reservation */
25041                         un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
25042                             (void *)dev,
25043                             drv_usectohz(sd_reinstate_resv_delay));
25044                 }
25045         }
25046         mutex_exit(SD_MUTEX(un));
25047         return (0);
25048 }
25049 
25050 
25051 /*
25052  *    Function: sd_mhd_watch_incomplete()
25053  *
25054  * Description: This function is used to find out why a scsi pkt sent by the
25055  *              scsi watch facility was not completed. Under some scenarios this
25056  *              routine will return. Otherwise it will send a bus reset to see
25057  *              if the drive is still online.
25058  *
25059  *   Arguments: un  - driver soft state (unit) structure
25060  *              pkt - incomplete scsi pkt
25061  */
25062 
25063 static void
25064 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
25065 {
25066         int     be_chatty;
25067         int     perr;
25068 
25069         ASSERT(pkt != NULL);
25070         ASSERT(un != NULL);
25071         be_chatty       = (!(pkt->pkt_flags & FLAG_SILENT));
25072         perr            = (pkt->pkt_statistics & STAT_PERR);
25073 
25074         mutex_enter(SD_MUTEX(un));
25075         if (un->un_state == SD_STATE_DUMPING) {
25076                 mutex_exit(SD_MUTEX(un));
25077                 return;
25078         }
25079 
25080         switch (pkt->pkt_reason) {
25081         case CMD_UNX_BUS_FREE:
25082                 /*
25083                  * If we had a parity error that caused the target to drop BSY*,
25084                  * don't be chatty about it.
25085                  */
25086                 if (perr && be_chatty) {
25087                         be_chatty = 0;
25088                 }
25089                 break;
25090         case CMD_TAG_REJECT:
25091                 /*
25092                  * The SCSI-2 spec states that a tag reject will be sent by the
25093                  * target if tagged queuing is not supported. A tag reject may
25094                  * also be sent during certain initialization periods or to
25095                  * control internal resources. For the latter case the target
25096                  * may also return Queue Full.
25097                  *
25098                  * If this driver receives a tag reject from a target that is
25099                  * going through an init period or controlling internal
25100                  * resources tagged queuing will be disabled. This is a less
25101                  * than optimal behavior but the driver is unable to determine
25102                  * the target state and assumes tagged queueing is not supported
25103                  */
25104                 pkt->pkt_flags = 0;
25105                 un->un_tagflags = 0;
25106 
25107                 if (un->un_f_opt_queueing == TRUE) {
25108                         un->un_throttle = min(un->un_throttle, 3);
25109                 } else {
25110                         un->un_throttle = 1;
25111                 }
25112                 mutex_exit(SD_MUTEX(un));
25113                 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
25114                 mutex_enter(SD_MUTEX(un));
25115                 break;
25116         case CMD_INCOMPLETE:
25117                 /*
25118                  * The transport stopped with an abnormal state, fallthrough and
25119                  * reset the target and/or bus unless selection did not complete
25120                  * (indicated by STATE_GOT_BUS) in which case we don't want to
25121                  * go through a target/bus reset
25122                  */
25123                 if (pkt->pkt_state == STATE_GOT_BUS) {
25124                         break;
25125                 }
25126                 /*FALLTHROUGH*/
25127 
25128         case CMD_TIMEOUT:
25129         default:
25130                 /*
25131                  * The lun may still be running the command, so a lun reset
25132                  * should be attempted. If the lun reset fails or cannot be
25133                  * issued, than try a target reset. Lastly try a bus reset.
25134                  */
25135                 if ((pkt->pkt_statistics &
25136                     (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
25137                         int reset_retval = 0;
25138                         mutex_exit(SD_MUTEX(un));
25139                         if (un->un_f_allow_bus_device_reset == TRUE) {
25140                                 if (un->un_f_lun_reset_enabled == TRUE) {
25141                                         reset_retval =
25142                                             scsi_reset(SD_ADDRESS(un),
25143                                             RESET_LUN);
25144                                 }
25145                                 if (reset_retval == 0) {
25146                                         reset_retval =
25147                                             scsi_reset(SD_ADDRESS(un),
25148                                             RESET_TARGET);
25149                                 }
25150                         }
25151                         if (reset_retval == 0) {
25152                                 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25153                         }
25154                         mutex_enter(SD_MUTEX(un));
25155                 }
25156                 break;
25157         }
25158 
25159         /* A device/bus reset has occurred; update the reservation status. */
25160         if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
25161             (STAT_BUS_RESET | STAT_DEV_RESET))) {
25162                 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25163                         un->un_resvd_status |=
25164                             (SD_LOST_RESERVE | SD_WANT_RESERVE);
25165                         SD_INFO(SD_LOG_IOCTL_MHD, un,
25166                             "sd_mhd_watch_incomplete: Lost Reservation\n");
25167                 }
25168         }
25169 
25170         /*
25171          * The disk has been turned off; Update the device state.
25172          *
25173          * Note: Should we be offlining the disk here?
25174          */
25175         if (pkt->pkt_state == STATE_GOT_BUS) {
25176                 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
25177                     "Disk not responding to selection\n");
25178                 if (un->un_state != SD_STATE_OFFLINE) {
25179                         New_state(un, SD_STATE_OFFLINE);
25180                 }
25181         } else if (be_chatty) {
25182                 /*
25183                  * suppress messages if they are all the same pkt reason;
25184                  * with TQ, many (up to 256) are returned with the same
25185                  * pkt_reason
25186                  */
25187                 if (pkt->pkt_reason != un->un_last_pkt_reason) {
25188                         SD_ERROR(SD_LOG_IOCTL_MHD, un,
25189                             "sd_mhd_watch_incomplete: "
25190                             "SCSI transport failed: reason '%s'\n",
25191                             scsi_rname(pkt->pkt_reason));
25192                 }
25193         }
25194         un->un_last_pkt_reason = pkt->pkt_reason;
25195         mutex_exit(SD_MUTEX(un));
25196 }
25197 
25198 
25199 /*
25200  *    Function: sd_sname()
25201  *
25202  * Description: This is a simple little routine to return a string containing
25203  *              a printable description of command status byte for use in
25204  *              logging.
25205  *
25206  *   Arguments: status - pointer to a status byte
25207  *
25208  * Return Code: char * - string containing status description.
25209  */
25210 
25211 static char *
25212 sd_sname(uchar_t status)
25213 {
25214         switch (status & STATUS_MASK) {
25215         case STATUS_GOOD:
25216                 return ("good status");
25217         case STATUS_CHECK:
25218                 return ("check condition");
25219         case STATUS_MET:
25220                 return ("condition met");
25221         case STATUS_BUSY:
25222                 return ("busy");
25223         case STATUS_INTERMEDIATE:
25224                 return ("intermediate");
25225         case STATUS_INTERMEDIATE_MET:
25226                 return ("intermediate - condition met");
25227         case STATUS_RESERVATION_CONFLICT:
25228                 return ("reservation_conflict");
25229         case STATUS_TERMINATED:
25230                 return ("command terminated");
25231         case STATUS_QFULL:
25232                 return ("queue full");
25233         default:
25234                 return ("<unknown status>");
25235         }
25236 }
25237 
25238 
25239 /*
25240  *    Function: sd_mhd_resvd_recover()
25241  *
25242  * Description: This function adds a reservation entry to the
25243  *              sd_resv_reclaim_request list and signals the reservation
25244  *              reclaim thread that there is work pending. If the reservation
25245  *              reclaim thread has not been previously created this function
25246  *              will kick it off.
25247  *
25248  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25249  *                      among multiple watches that share this callback function
25250  *
25251  *     Context: This routine is called by timeout() and is run in interrupt
25252  *              context. It must not sleep or call other functions which may
25253  *              sleep.
25254  */
25255 
25256 static void
25257 sd_mhd_resvd_recover(void *arg)
25258 {
25259         dev_t                   dev = (dev_t)arg;
25260         struct sd_lun           *un;
25261         struct sd_thr_request   *sd_treq = NULL;
25262         struct sd_thr_request   *sd_cur = NULL;
25263         struct sd_thr_request   *sd_prev = NULL;
25264         int                     already_there = 0;
25265 
25266         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25267                 return;
25268         }
25269 
25270         mutex_enter(SD_MUTEX(un));
25271         un->un_resvd_timeid = NULL;
25272         if (un->un_resvd_status & SD_WANT_RESERVE) {
25273                 /*
25274                  * There was a reset so don't issue the reserve, allow the
25275                  * sd_mhd_watch_cb callback function to notice this and
25276                  * reschedule the timeout for reservation.
25277                  */
25278                 mutex_exit(SD_MUTEX(un));
25279                 return;
25280         }
25281         mutex_exit(SD_MUTEX(un));
25282 
25283         /*
25284          * Add this device to the sd_resv_reclaim_request list and the
25285          * sd_resv_reclaim_thread should take care of the rest.
25286          *
25287          * Note: We can't sleep in this context so if the memory allocation
25288          * fails allow the sd_mhd_watch_cb callback function to notice this and
25289          * reschedule the timeout for reservation.  (4378460)
25290          */
25291         sd_treq = (struct sd_thr_request *)
25292             kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
25293         if (sd_treq == NULL) {
25294                 return;
25295         }
25296 
25297         sd_treq->sd_thr_req_next = NULL;
25298         sd_treq->dev = dev;
25299         mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25300         if (sd_tr.srq_thr_req_head == NULL) {
25301                 sd_tr.srq_thr_req_head = sd_treq;
25302         } else {
25303                 sd_cur = sd_prev = sd_tr.srq_thr_req_head;
25304                 for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
25305                         if (sd_cur->dev == dev) {
25306                                 /*
25307                                  * already in Queue so don't log
25308                                  * another request for the device
25309                                  */
25310                                 already_there = 1;
25311                                 break;
25312                         }
25313                         sd_prev = sd_cur;
25314                 }
25315                 if (!already_there) {
25316                         SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
25317                             "logging request for %lx\n", dev);
25318                         sd_prev->sd_thr_req_next = sd_treq;
25319                 } else {
25320                         kmem_free(sd_treq, sizeof (struct sd_thr_request));
25321                 }
25322         }
25323 
25324         /*
25325          * Create a kernel thread to do the reservation reclaim and free up this
25326          * thread. We cannot block this thread while we go away to do the
25327          * reservation reclaim
25328          */
25329         if (sd_tr.srq_resv_reclaim_thread == NULL)
25330                 sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
25331                     sd_resv_reclaim_thread, NULL,
25332                     0, &p0, TS_RUN, v.v_maxsyspri - 2);
25333 
25334         /* Tell the reservation reclaim thread that it has work to do */
25335         cv_signal(&sd_tr.srq_resv_reclaim_cv);
25336         mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25337 }
25338 
25339 /*
25340  *    Function: sd_resv_reclaim_thread()
25341  *
25342  * Description: This function implements the reservation reclaim operations
25343  *
25344  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
25345  *                    among multiple watches that share this callback function
25346  */
25347 
25348 static void
25349 sd_resv_reclaim_thread()
25350 {
25351         struct sd_lun           *un;
25352         struct sd_thr_request   *sd_mhreq;
25353 
25354         /* Wait for work */
25355         mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25356         if (sd_tr.srq_thr_req_head == NULL) {
25357                 cv_wait(&sd_tr.srq_resv_reclaim_cv,
25358                     &sd_tr.srq_resv_reclaim_mutex);
25359         }
25360 
25361         /* Loop while we have work */
25362         while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
25363                 un = ddi_get_soft_state(sd_state,
25364                     SDUNIT(sd_tr.srq_thr_cur_req->dev));
25365                 if (un == NULL) {
25366                         /*
25367                          * softstate structure is NULL so just
25368                          * dequeue the request and continue
25369                          */
25370                         sd_tr.srq_thr_req_head =
25371                             sd_tr.srq_thr_cur_req->sd_thr_req_next;
25372                         kmem_free(sd_tr.srq_thr_cur_req,
25373                             sizeof (struct sd_thr_request));
25374                         continue;
25375                 }
25376 
25377                 /* dequeue the request */
25378                 sd_mhreq = sd_tr.srq_thr_cur_req;
25379                 sd_tr.srq_thr_req_head =
25380                     sd_tr.srq_thr_cur_req->sd_thr_req_next;
25381                 mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25382 
25383                 /*
25384                  * Reclaim reservation only if SD_RESERVE is still set. There
25385                  * may have been a call to MHIOCRELEASE before we got here.
25386                  */
25387                 mutex_enter(SD_MUTEX(un));
25388                 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25389                         /*
25390                          * Note: The SD_LOST_RESERVE flag is cleared before
25391                          * reclaiming the reservation. If this is done after the
25392                          * call to sd_reserve_release a reservation loss in the
25393                          * window between pkt completion of reserve cmd and
25394                          * mutex_enter below may not be recognized
25395                          */
25396                         un->un_resvd_status &= ~SD_LOST_RESERVE;
25397                         mutex_exit(SD_MUTEX(un));
25398 
25399                         if (sd_reserve_release(sd_mhreq->dev,
25400                             SD_RESERVE) == 0) {
25401                                 mutex_enter(SD_MUTEX(un));
25402                                 un->un_resvd_status |= SD_RESERVE;
25403                                 mutex_exit(SD_MUTEX(un));
25404                                 SD_INFO(SD_LOG_IOCTL_MHD, un,
25405                                     "sd_resv_reclaim_thread: "
25406                                     "Reservation Recovered\n");
25407                         } else {
25408                                 mutex_enter(SD_MUTEX(un));
25409                                 un->un_resvd_status |= SD_LOST_RESERVE;
25410                                 mutex_exit(SD_MUTEX(un));
25411                                 SD_INFO(SD_LOG_IOCTL_MHD, un,
25412                                     "sd_resv_reclaim_thread: Failed "
25413                                     "Reservation Recovery\n");
25414                         }
25415                 } else {
25416                         mutex_exit(SD_MUTEX(un));
25417                 }
25418                 mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25419                 ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
25420                 kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25421                 sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
25422                 /*
25423                  * wakeup the destroy thread if anyone is waiting on
25424                  * us to complete.
25425                  */
25426                 cv_signal(&sd_tr.srq_inprocess_cv);
25427                 SD_TRACE(SD_LOG_IOCTL_MHD, un,
25428                     "sd_resv_reclaim_thread: cv_signalling current request \n");
25429         }
25430 
25431         /*
25432          * cleanup the sd_tr structure now that this thread will not exist
25433          */
25434         ASSERT(sd_tr.srq_thr_req_head == NULL);
25435         ASSERT(sd_tr.srq_thr_cur_req == NULL);
25436         sd_tr.srq_resv_reclaim_thread = NULL;
25437         mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25438         thread_exit();
25439 }
25440 
25441 
25442 /*
25443  *    Function: sd_rmv_resv_reclaim_req()
25444  *
25445  * Description: This function removes any pending reservation reclaim requests
25446  *              for the specified device.
25447  *
25448  *   Arguments: dev - the device 'dev_t'
25449  */
25450 
25451 static void
25452 sd_rmv_resv_reclaim_req(dev_t dev)
25453 {
25454         struct sd_thr_request *sd_mhreq;
25455         struct sd_thr_request *sd_prev;
25456 
25457         /* Remove a reservation reclaim request from the list */
25458         mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25459         if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
25460                 /*
25461                  * We are attempting to reinstate reservation for
25462                  * this device. We wait for sd_reserve_release()
25463                  * to return before we return.
25464                  */
25465                 cv_wait(&sd_tr.srq_inprocess_cv,
25466                     &sd_tr.srq_resv_reclaim_mutex);
25467         } else {
25468                 sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
25469                 if (sd_mhreq && sd_mhreq->dev == dev) {
25470                         sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
25471                         kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25472                         mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25473                         return;
25474                 }
25475                 for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
25476                         if (sd_mhreq && sd_mhreq->dev == dev) {
25477                                 break;
25478                         }
25479                         sd_prev = sd_mhreq;
25480                 }
25481                 if (sd_mhreq != NULL) {
25482                         sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
25483                         kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25484                 }
25485         }
25486         mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25487 }
25488 
25489 
25490 /*
25491  *    Function: sd_mhd_reset_notify_cb()
25492  *
25493  * Description: This is a call back function for scsi_reset_notify. This
25494  *              function updates the softstate reserved status and logs the
25495  *              reset. The driver scsi watch facility callback function
25496  *              (sd_mhd_watch_cb) and reservation reclaim thread functionality
25497  *              will reclaim the reservation.
25498  *
25499  *   Arguments: arg  - driver soft state (unit) structure
25500  */
25501 
25502 static void
25503 sd_mhd_reset_notify_cb(caddr_t arg)
25504 {
25505         struct sd_lun *un = (struct sd_lun *)arg;
25506 
25507         mutex_enter(SD_MUTEX(un));
25508         if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25509                 un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
25510                 SD_INFO(SD_LOG_IOCTL_MHD, un,
25511                     "sd_mhd_reset_notify_cb: Lost Reservation\n");
25512         }
25513         mutex_exit(SD_MUTEX(un));
25514 }
25515 
25516 
25517 /*
25518  *    Function: sd_take_ownership()
25519  *
25520  * Description: This routine implements an algorithm to achieve a stable
25521  *              reservation on disks which don't implement priority reserve,
25522  *              and makes sure that other host lose re-reservation attempts.
25523  *              This algorithm contains of a loop that keeps issuing the RESERVE
25524  *              for some period of time (min_ownership_delay, default 6 seconds)
25525  *              During that loop, it looks to see if there has been a bus device
25526  *              reset or bus reset (both of which cause an existing reservation
25527  *              to be lost). If the reservation is lost issue RESERVE until a
25528  *              period of min_ownership_delay with no resets has gone by, or
25529  *              until max_ownership_delay has expired. This loop ensures that
25530  *              the host really did manage to reserve the device, in spite of
25531  *              resets. The looping for min_ownership_delay (default six
25532  *              seconds) is important to early generation clustering products,
25533  *              Solstice HA 1.x and Sun Cluster 2.x. Those products use an
25534  *              MHIOCENFAILFAST periodic timer of two seconds. By having
25535  *              MHIOCTKOWN issue Reserves in a loop for six seconds, and having
25536  *              MHIOCENFAILFAST poll every two seconds, the idea is that by the
25537  *              time the MHIOCTKOWN ioctl returns, the other host (if any) will
25538  *              have already noticed, via the MHIOCENFAILFAST polling, that it
25539  *              no longer "owns" the disk and will have panicked itself.  Thus,
25540  *              the host issuing the MHIOCTKOWN is assured (with timing
25541  *              dependencies) that by the time it actually starts to use the
25542  *              disk for real work, the old owner is no longer accessing it.
25543  *
25544  *              min_ownership_delay is the minimum amount of time for which the
25545  *              disk must be reserved continuously devoid of resets before the
25546  *              MHIOCTKOWN ioctl will return success.
25547  *
25548  *              max_ownership_delay indicates the amount of time by which the
25549  *              take ownership should succeed or timeout with an error.
25550  *
25551  *   Arguments: dev - the device 'dev_t'
25552  *              *p  - struct containing timing info.
25553  *
25554  * Return Code: 0 for success or error code
25555  */
25556 
25557 static int
25558 sd_take_ownership(dev_t dev, struct mhioctkown *p)
25559 {
25560         struct sd_lun   *un;
25561         int             rval;
25562         int             err;
25563         int             reservation_count   = 0;
25564         int             min_ownership_delay =  6000000; /* in usec */
25565         int             max_ownership_delay = 30000000; /* in usec */
25566         clock_t         start_time;     /* starting time of this algorithm */
25567         clock_t         end_time;       /* time limit for giving up */
25568         clock_t         ownership_time; /* time limit for stable ownership */
25569         clock_t         current_time;
25570         clock_t         previous_current_time;
25571 
25572         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25573                 return (ENXIO);
25574         }
25575 
25576         /*
25577          * Attempt a device reservation. A priority reservation is requested.
25578          */
25579         if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
25580             != SD_SUCCESS) {
25581                 SD_ERROR(SD_LOG_IOCTL_MHD, un,
25582                     "sd_take_ownership: return(1)=%d\n", rval);
25583                 return (rval);
25584         }
25585 
25586         /* Update the softstate reserved status to indicate the reservation */
25587         mutex_enter(SD_MUTEX(un));
25588         un->un_resvd_status |= SD_RESERVE;
25589         un->un_resvd_status &=
25590             ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
25591         mutex_exit(SD_MUTEX(un));
25592 
25593         if (p != NULL) {
25594                 if (p->min_ownership_delay != 0) {
25595                         min_ownership_delay = p->min_ownership_delay * 1000;
25596                 }
25597                 if (p->max_ownership_delay != 0) {
25598                         max_ownership_delay = p->max_ownership_delay * 1000;
25599                 }
25600         }
25601         SD_INFO(SD_LOG_IOCTL_MHD, un,
25602             "sd_take_ownership: min, max delays: %d, %d\n",
25603             min_ownership_delay, max_ownership_delay);
25604 
25605         start_time = ddi_get_lbolt();
25606         current_time    = start_time;
25607         ownership_time  = current_time + drv_usectohz(min_ownership_delay);
25608         end_time        = start_time + drv_usectohz(max_ownership_delay);
25609 
25610         while (current_time - end_time < 0) {
25611                 delay(drv_usectohz(500000));
25612 
25613                 if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
25614                         if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
25615                                 mutex_enter(SD_MUTEX(un));
25616                                 rval = (un->un_resvd_status &
25617                                     SD_RESERVATION_CONFLICT) ? EACCES : EIO;
25618                                 mutex_exit(SD_MUTEX(un));
25619                                 break;
25620                         }
25621                 }
25622                 previous_current_time = current_time;
25623                 current_time = ddi_get_lbolt();
25624                 mutex_enter(SD_MUTEX(un));
25625                 if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
25626                         ownership_time = ddi_get_lbolt() +
25627                             drv_usectohz(min_ownership_delay);
25628                         reservation_count = 0;
25629                 } else {
25630                         reservation_count++;
25631                 }
25632                 un->un_resvd_status |= SD_RESERVE;
25633                 un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
25634                 mutex_exit(SD_MUTEX(un));
25635 
25636                 SD_INFO(SD_LOG_IOCTL_MHD, un,
25637                     "sd_take_ownership: ticks for loop iteration=%ld, "
25638                     "reservation=%s\n", (current_time - previous_current_time),
25639                     reservation_count ? "ok" : "reclaimed");
25640 
25641                 if (current_time - ownership_time >= 0 &&
25642                     reservation_count >= 4) {
25643                         rval = 0; /* Achieved a stable ownership */
25644                         break;
25645                 }
25646                 if (current_time - end_time >= 0) {
25647                         rval = EACCES; /* No ownership in max possible time */
25648                         break;
25649                 }
25650         }
25651         SD_TRACE(SD_LOG_IOCTL_MHD, un,
25652             "sd_take_ownership: return(2)=%d\n", rval);
25653         return (rval);
25654 }
25655 
25656 
25657 /*
25658  *    Function: sd_reserve_release()
25659  *
25660  * Description: This function builds and sends scsi RESERVE, RELEASE, and
25661  *              PRIORITY RESERVE commands based on a user specified command type
25662  *
25663  *   Arguments: dev - the device 'dev_t'
25664  *              cmd - user specified command type; one of SD_PRIORITY_RESERVE,
25665  *                    SD_RESERVE, SD_RELEASE
25666  *
25667  * Return Code: 0 or Error Code
25668  */
25669 
25670 static int
25671 sd_reserve_release(dev_t dev, int cmd)
25672 {
25673         struct uscsi_cmd        *com = NULL;
25674         struct sd_lun           *un = NULL;
25675         char                    cdb[CDB_GROUP0];
25676         int                     rval;
25677 
25678         ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
25679             (cmd == SD_PRIORITY_RESERVE));
25680 
25681         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25682                 return (ENXIO);
25683         }
25684 
25685         /* instantiate and initialize the command and cdb */
25686         com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25687         bzero(cdb, CDB_GROUP0);
25688         com->uscsi_flags   = USCSI_SILENT;
25689         com->uscsi_timeout = un->un_reserve_release_time;
25690         com->uscsi_cdblen  = CDB_GROUP0;
25691         com->uscsi_cdb          = cdb;
25692         if (cmd == SD_RELEASE) {
25693                 cdb[0] = SCMD_RELEASE;
25694         } else {
25695                 cdb[0] = SCMD_RESERVE;
25696         }
25697 
25698         /* Send the command. */
25699         rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25700             SD_PATH_STANDARD);
25701 
25702         /*
25703          * "break" a reservation that is held by another host, by issuing a
25704          * reset if priority reserve is desired, and we could not get the
25705          * device.
25706          */
25707         if ((cmd == SD_PRIORITY_RESERVE) &&
25708             (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25709                 /*
25710                  * First try to reset the LUN. If we cannot, then try a target
25711                  * reset, followed by a bus reset if the target reset fails.
25712                  */
25713                 int reset_retval = 0;
25714                 if (un->un_f_lun_reset_enabled == TRUE) {
25715                         reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
25716                 }
25717                 if (reset_retval == 0) {
25718                         /* The LUN reset either failed or was not issued */
25719                         reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25720                 }
25721                 if ((reset_retval == 0) &&
25722                     (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
25723                         rval = EIO;
25724                         kmem_free(com, sizeof (*com));
25725                         return (rval);
25726                 }
25727 
25728                 bzero(com, sizeof (struct uscsi_cmd));
25729                 com->uscsi_flags   = USCSI_SILENT;
25730                 com->uscsi_cdb          = cdb;
25731                 com->uscsi_cdblen  = CDB_GROUP0;
25732                 com->uscsi_timeout = 5;
25733 
25734                 /*
25735                  * Reissue the last reserve command, this time without request
25736                  * sense.  Assume that it is just a regular reserve command.
25737                  */
25738                 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25739                     SD_PATH_STANDARD);
25740         }
25741 
25742         /* Return an error if still getting a reservation conflict. */
25743         if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25744                 rval = EACCES;
25745         }
25746 
25747         kmem_free(com, sizeof (*com));
25748         return (rval);
25749 }
25750 
25751 
25752 #define SD_NDUMP_RETRIES        12
25753 /*
25754  *      System Crash Dump routine
25755  */
25756 
25757 static int
25758 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
25759 {
25760         int             instance;
25761         int             partition;
25762         int             i;
25763         int             err;
25764         struct sd_lun   *un;
25765         struct scsi_pkt *wr_pktp;
25766         struct buf      *wr_bp;
25767         struct buf      wr_buf;
25768         daddr_t         tgt_byte_offset; /* rmw - byte offset for target */
25769         daddr_t         tgt_blkno;      /* rmw - blkno for target */
25770         size_t          tgt_byte_count; /* rmw -  # of bytes to xfer */
25771         size_t          tgt_nblk; /* rmw -  # of tgt blks to xfer */
25772         size_t          io_start_offset;
25773         int             doing_rmw = FALSE;
25774         int             rval;
25775         ssize_t         dma_resid;
25776         daddr_t         oblkno;
25777         diskaddr_t      nblks = 0;
25778         diskaddr_t      start_block;
25779 
25780         instance = SDUNIT(dev);
25781         if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
25782             !SD_IS_VALID_LABEL(un) || ISCD(un)) {
25783                 return (ENXIO);
25784         }
25785 
25786         _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
25787 
25788         SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
25789 
25790         partition = SDPART(dev);
25791         SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
25792 
25793         if (!(NOT_DEVBSIZE(un))) {
25794                 int secmask = 0;
25795                 int blknomask = 0;
25796 
25797                 blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1;
25798                 secmask = un->un_tgt_blocksize - 1;
25799 
25800                 if (blkno & blknomask) {
25801                         SD_TRACE(SD_LOG_DUMP, un,
25802                             "sddump: dump start block not modulo %d\n",
25803                             un->un_tgt_blocksize);
25804                         return (EINVAL);
25805                 }
25806 
25807                 if ((nblk * DEV_BSIZE) & secmask) {
25808                         SD_TRACE(SD_LOG_DUMP, un,
25809                             "sddump: dump length not modulo %d\n",
25810                             un->un_tgt_blocksize);
25811                         return (EINVAL);
25812                 }
25813 
25814         }
25815 
25816         /* Validate blocks to dump at against partition size. */
25817 
25818         (void) cmlb_partinfo(un->un_cmlbhandle, partition,
25819             &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
25820 
25821         if (NOT_DEVBSIZE(un)) {
25822                 if ((blkno + nblk) > nblks) {
25823                         SD_TRACE(SD_LOG_DUMP, un,
25824                             "sddump: dump range larger than partition: "
25825                             "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25826                             blkno, nblk, nblks);
25827                         return (EINVAL);
25828                 }
25829         } else {
25830                 if (((blkno / (un->un_tgt_blocksize / DEV_BSIZE)) +
25831                     (nblk / (un->un_tgt_blocksize / DEV_BSIZE))) > nblks) {
25832                         SD_TRACE(SD_LOG_DUMP, un,
25833                             "sddump: dump range larger than partition: "
25834                             "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25835                             blkno, nblk, nblks);
25836                         return (EINVAL);
25837                 }
25838         }
25839 
25840         mutex_enter(&un->un_pm_mutex);
25841         if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
25842                 struct scsi_pkt *start_pktp;
25843 
25844                 mutex_exit(&un->un_pm_mutex);
25845 
25846                 /*
25847                  * use pm framework to power on HBA 1st
25848                  */
25849                 (void) pm_raise_power(SD_DEVINFO(un), 0,
25850                     SD_PM_STATE_ACTIVE(un));
25851 
25852                 /*
25853                  * Dump no long uses sdpower to power on a device, it's
25854                  * in-line here so it can be done in polled mode.
25855                  */
25856 
25857                 SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
25858 
25859                 start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
25860                     CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
25861 
25862                 if (start_pktp == NULL) {
25863                         /* We were not given a SCSI packet, fail. */
25864                         return (EIO);
25865                 }
25866                 bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
25867                 start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
25868                 start_pktp->pkt_cdbp[4] = SD_TARGET_START;
25869                 start_pktp->pkt_flags = FLAG_NOINTR;
25870 
25871                 mutex_enter(SD_MUTEX(un));
25872                 SD_FILL_SCSI1_LUN(un, start_pktp);
25873                 mutex_exit(SD_MUTEX(un));
25874                 /*
25875                  * Scsi_poll returns 0 (success) if the command completes and
25876                  * the status block is STATUS_GOOD.
25877                  */
25878                 if (sd_scsi_poll(un, start_pktp) != 0) {
25879                         scsi_destroy_pkt(start_pktp);
25880                         return (EIO);
25881                 }
25882                 scsi_destroy_pkt(start_pktp);
25883                 (void) sd_pm_state_change(un, SD_PM_STATE_ACTIVE(un),
25884                     SD_PM_STATE_CHANGE);
25885         } else {
25886                 mutex_exit(&un->un_pm_mutex);
25887         }
25888 
25889         mutex_enter(SD_MUTEX(un));
25890         un->un_throttle = 0;
25891 
25892         /*
25893          * The first time through, reset the specific target device.
25894          * However, when cpr calls sddump we know that sd is in a
25895          * a good state so no bus reset is required.
25896          * Clear sense data via Request Sense cmd.
25897          * In sddump we don't care about allow_bus_device_reset anymore
25898          */
25899 
25900         if ((un->un_state != SD_STATE_SUSPENDED) &&
25901             (un->un_state != SD_STATE_DUMPING)) {
25902 
25903                 New_state(un, SD_STATE_DUMPING);
25904 
25905                 if (un->un_f_is_fibre == FALSE) {
25906                         mutex_exit(SD_MUTEX(un));
25907                         /*
25908                          * Attempt a bus reset for parallel scsi.
25909                          *
25910                          * Note: A bus reset is required because on some host
25911                          * systems (i.e. E420R) a bus device reset is
25912                          * insufficient to reset the state of the target.
25913                          *
25914                          * Note: Don't issue the reset for fibre-channel,
25915                          * because this tends to hang the bus (loop) for
25916                          * too long while everyone is logging out and in
25917                          * and the deadman timer for dumping will fire
25918                          * before the dump is complete.
25919                          */
25920                         if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
25921                                 mutex_enter(SD_MUTEX(un));
25922                                 Restore_state(un);
25923                                 mutex_exit(SD_MUTEX(un));
25924                                 return (EIO);
25925                         }
25926 
25927                         /* Delay to give the device some recovery time. */
25928                         drv_usecwait(10000);
25929 
25930                         if (sd_send_polled_RQS(un) == SD_FAILURE) {
25931                                 SD_INFO(SD_LOG_DUMP, un,
25932                                     "sddump: sd_send_polled_RQS failed\n");
25933                         }
25934                         mutex_enter(SD_MUTEX(un));
25935                 }
25936         }
25937 
25938         /*
25939          * Convert the partition-relative block number to a
25940          * disk physical block number.
25941          */
25942         if (NOT_DEVBSIZE(un)) {
25943                 blkno += start_block;
25944         } else {
25945                 blkno = blkno / (un->un_tgt_blocksize / DEV_BSIZE);
25946                 blkno += start_block;
25947         }
25948 
25949         SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
25950 
25951 
25952         /*
25953          * Check if the device has a non-512 block size.
25954          */
25955         wr_bp = NULL;
25956         if (NOT_DEVBSIZE(un)) {
25957                 tgt_byte_offset = blkno * un->un_sys_blocksize;
25958                 tgt_byte_count = nblk * un->un_sys_blocksize;
25959                 if ((tgt_byte_offset % un->un_tgt_blocksize) ||
25960                     (tgt_byte_count % un->un_tgt_blocksize)) {
25961                         doing_rmw = TRUE;
25962                         /*
25963                          * Calculate the block number and number of block
25964                          * in terms of the media block size.
25965                          */
25966                         tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25967                         tgt_nblk =
25968                             ((tgt_byte_offset + tgt_byte_count +
25969                             (un->un_tgt_blocksize - 1)) /
25970                             un->un_tgt_blocksize) - tgt_blkno;
25971 
25972                         /*
25973                          * Invoke the routine which is going to do read part
25974                          * of read-modify-write.
25975                          * Note that this routine returns a pointer to
25976                          * a valid bp in wr_bp.
25977                          */
25978                         err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
25979                             &wr_bp);
25980                         if (err) {
25981                                 mutex_exit(SD_MUTEX(un));
25982                                 return (err);
25983                         }
25984                         /*
25985                          * Offset is being calculated as -
25986                          * (original block # * system block size) -
25987                          * (new block # * target block size)
25988                          */
25989                         io_start_offset =
25990                             ((uint64_t)(blkno * un->un_sys_blocksize)) -
25991                             ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
25992 
25993                         ASSERT((io_start_offset >= 0) &&
25994                             (io_start_offset < un->un_tgt_blocksize));
25995                         /*
25996                          * Do the modify portion of read modify write.
25997                          */
25998                         bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
25999                             (size_t)nblk * un->un_sys_blocksize);
26000                 } else {
26001                         doing_rmw = FALSE;
26002                         tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
26003                         tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
26004                 }
26005 
26006                 /* Convert blkno and nblk to target blocks */
26007                 blkno = tgt_blkno;
26008                 nblk = tgt_nblk;
26009         } else {
26010                 wr_bp = &wr_buf;
26011                 bzero(wr_bp, sizeof (struct buf));
26012                 wr_bp->b_flags               = B_BUSY;
26013                 wr_bp->b_un.b_addr   = addr;
26014                 wr_bp->b_bcount              = nblk << DEV_BSHIFT;
26015                 wr_bp->b_resid               = 0;
26016         }
26017 
26018         mutex_exit(SD_MUTEX(un));
26019 
26020         /*
26021          * Obtain a SCSI packet for the write command.
26022          * It should be safe to call the allocator here without
26023          * worrying about being locked for DVMA mapping because
26024          * the address we're passed is already a DVMA mapping
26025          *
26026          * We are also not going to worry about semaphore ownership
26027          * in the dump buffer. Dumping is single threaded at present.
26028          */
26029 
26030         wr_pktp = NULL;
26031 
26032         dma_resid = wr_bp->b_bcount;
26033         oblkno = blkno;
26034 
26035         if (!(NOT_DEVBSIZE(un))) {
26036                 nblk = nblk / (un->un_tgt_blocksize / DEV_BSIZE);
26037         }
26038 
26039         while (dma_resid != 0) {
26040 
26041         for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26042                 wr_bp->b_flags &= ~B_ERROR;
26043 
26044                 if (un->un_partial_dma_supported == 1) {
26045                         blkno = oblkno +
26046                             ((wr_bp->b_bcount - dma_resid) /
26047                             un->un_tgt_blocksize);
26048                         nblk = dma_resid / un->un_tgt_blocksize;
26049 
26050                         if (wr_pktp) {
26051                                 /*
26052                                  * Partial DMA transfers after initial transfer
26053                                  */
26054                                 rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
26055                                     blkno, nblk);
26056                         } else {
26057                                 /* Initial transfer */
26058                                 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26059                                     un->un_pkt_flags, NULL_FUNC, NULL,
26060                                     blkno, nblk);
26061                         }
26062                 } else {
26063                         rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26064                             0, NULL_FUNC, NULL, blkno, nblk);
26065                 }
26066 
26067                 if (rval == 0) {
26068                         /* We were given a SCSI packet, continue. */
26069                         break;
26070                 }
26071 
26072                 if (i == 0) {
26073                         if (wr_bp->b_flags & B_ERROR) {
26074                                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26075                                     "no resources for dumping; "
26076                                     "error code: 0x%x, retrying",
26077                                     geterror(wr_bp));
26078                         } else {
26079                                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26080                                     "no resources for dumping; retrying");
26081                         }
26082                 } else if (i != (SD_NDUMP_RETRIES - 1)) {
26083                         if (wr_bp->b_flags & B_ERROR) {
26084                                 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26085                                     "no resources for dumping; error code: "
26086                                     "0x%x, retrying\n", geterror(wr_bp));
26087                         }
26088                 } else {
26089                         if (wr_bp->b_flags & B_ERROR) {
26090                                 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26091                                     "no resources for dumping; "
26092                                     "error code: 0x%x, retries failed, "
26093                                     "giving up.\n", geterror(wr_bp));
26094                         } else {
26095                                 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26096                                     "no resources for dumping; "
26097                                     "retries failed, giving up.\n");
26098                         }
26099                         mutex_enter(SD_MUTEX(un));
26100                         Restore_state(un);
26101                         if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
26102                                 mutex_exit(SD_MUTEX(un));
26103                                 scsi_free_consistent_buf(wr_bp);
26104                         } else {
26105                                 mutex_exit(SD_MUTEX(un));
26106                         }
26107                         return (EIO);
26108                 }
26109                 drv_usecwait(10000);
26110         }
26111 
26112         if (un->un_partial_dma_supported == 1) {
26113                 /*
26114                  * save the resid from PARTIAL_DMA
26115                  */
26116                 dma_resid = wr_pktp->pkt_resid;
26117                 if (dma_resid != 0)
26118                         nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
26119                 wr_pktp->pkt_resid = 0;
26120         } else {
26121                 dma_resid = 0;
26122         }
26123 
26124         /* SunBug 1222170 */
26125         wr_pktp->pkt_flags = FLAG_NOINTR;
26126 
26127         err = EIO;
26128         for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26129 
26130                 /*
26131                  * Scsi_poll returns 0 (success) if the command completes and
26132                  * the status block is STATUS_GOOD.  We should only check
26133                  * errors if this condition is not true.  Even then we should
26134                  * send our own request sense packet only if we have a check
26135                  * condition and auto request sense has not been performed by
26136                  * the hba.
26137                  */
26138                 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
26139 
26140                 if ((sd_scsi_poll(un, wr_pktp) == 0) &&
26141                     (wr_pktp->pkt_resid == 0)) {
26142                         err = SD_SUCCESS;
26143                         break;
26144                 }
26145 
26146                 /*
26147                  * Check CMD_DEV_GONE 1st, give up if device is gone.
26148                  */
26149                 if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
26150                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26151                             "Error while dumping state...Device is gone\n");
26152                         break;
26153                 }
26154 
26155                 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
26156                         SD_INFO(SD_LOG_DUMP, un,
26157                             "sddump: write failed with CHECK, try # %d\n", i);
26158                         if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
26159                                 (void) sd_send_polled_RQS(un);
26160                         }
26161 
26162                         continue;
26163                 }
26164 
26165                 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
26166                         int reset_retval = 0;
26167 
26168                         SD_INFO(SD_LOG_DUMP, un,
26169                             "sddump: write failed with BUSY, try # %d\n", i);
26170 
26171                         if (un->un_f_lun_reset_enabled == TRUE) {
26172                                 reset_retval = scsi_reset(SD_ADDRESS(un),
26173                                     RESET_LUN);
26174                         }
26175                         if (reset_retval == 0) {
26176                                 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26177                         }
26178                         (void) sd_send_polled_RQS(un);
26179 
26180                 } else {
26181                         SD_INFO(SD_LOG_DUMP, un,
26182                             "sddump: write failed with 0x%x, try # %d\n",
26183                             SD_GET_PKT_STATUS(wr_pktp), i);
26184                         mutex_enter(SD_MUTEX(un));
26185                         sd_reset_target(un, wr_pktp);
26186                         mutex_exit(SD_MUTEX(un));
26187                 }
26188 
26189                 /*
26190                  * If we are not getting anywhere with lun/target resets,
26191                  * let's reset the bus.
26192                  */
26193                 if (i == SD_NDUMP_RETRIES/2) {
26194                         (void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26195                         (void) sd_send_polled_RQS(un);
26196                 }
26197         }
26198         }
26199 
26200         scsi_destroy_pkt(wr_pktp);
26201         mutex_enter(SD_MUTEX(un));
26202         if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
26203                 mutex_exit(SD_MUTEX(un));
26204                 scsi_free_consistent_buf(wr_bp);
26205         } else {
26206                 mutex_exit(SD_MUTEX(un));
26207         }
26208         SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
26209         return (err);
26210 }
26211 
26212 /*
26213  *    Function: sd_scsi_poll()
26214  *
26215  * Description: This is a wrapper for the scsi_poll call.
26216  *
26217  *   Arguments: sd_lun - The unit structure
26218  *              scsi_pkt - The scsi packet being sent to the device.
26219  *
26220  * Return Code: 0 - Command completed successfully with good status
26221  *             -1 - Command failed.  This could indicate a check condition
26222  *                  or other status value requiring recovery action.
26223  *
26224  * NOTE: This code is only called off sddump().
26225  */
26226 
26227 static int
26228 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
26229 {
26230         int status;
26231 
26232         ASSERT(un != NULL);
26233         ASSERT(!mutex_owned(SD_MUTEX(un)));
26234         ASSERT(pktp != NULL);
26235 
26236         status = SD_SUCCESS;
26237 
26238         if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
26239                 pktp->pkt_flags |= un->un_tagflags;
26240                 pktp->pkt_flags &= ~FLAG_NODISCON;
26241         }
26242 
26243         status = sd_ddi_scsi_poll(pktp);
26244         /*
26245          * Scsi_poll returns 0 (success) if the command completes and the
26246          * status block is STATUS_GOOD.  We should only check errors if this
26247          * condition is not true.  Even then we should send our own request
26248          * sense packet only if we have a check condition and auto
26249          * request sense has not been performed by the hba.
26250          * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
26251          */
26252         if ((status != SD_SUCCESS) &&
26253             (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
26254             (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
26255             (pktp->pkt_reason != CMD_DEV_GONE))
26256                 (void) sd_send_polled_RQS(un);
26257 
26258         return (status);
26259 }
26260 
26261 /*
26262  *    Function: sd_send_polled_RQS()
26263  *
26264  * Description: This sends the request sense command to a device.
26265  *
26266  *   Arguments: sd_lun - The unit structure
26267  *
26268  * Return Code: 0 - Command completed successfully with good status
26269  *             -1 - Command failed.
26270  *
26271  */
26272 
26273 static int
26274 sd_send_polled_RQS(struct sd_lun *un)
26275 {
26276         int     ret_val;
26277         struct  scsi_pkt        *rqs_pktp;
26278         struct  buf             *rqs_bp;
26279 
26280         ASSERT(un != NULL);
26281         ASSERT(!mutex_owned(SD_MUTEX(un)));
26282 
26283         ret_val = SD_SUCCESS;
26284 
26285         rqs_pktp = un->un_rqs_pktp;
26286         rqs_bp   = un->un_rqs_bp;
26287 
26288         mutex_enter(SD_MUTEX(un));
26289 
26290         if (un->un_sense_isbusy) {
26291                 ret_val = SD_FAILURE;
26292                 mutex_exit(SD_MUTEX(un));
26293                 return (ret_val);
26294         }
26295 
26296         /*
26297          * If the request sense buffer (and packet) is not in use,
26298          * let's set the un_sense_isbusy and send our packet
26299          */
26300         un->un_sense_isbusy  = 1;
26301         rqs_pktp->pkt_resid          = 0;
26302         rqs_pktp->pkt_reason         = 0;
26303         rqs_pktp->pkt_flags |= FLAG_NOINTR;
26304         bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
26305 
26306         mutex_exit(SD_MUTEX(un));
26307 
26308         SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
26309             " 0x%p\n", rqs_bp->b_un.b_addr);
26310 
26311         /*
26312          * Can't send this to sd_scsi_poll, we wrap ourselves around the
26313          * axle - it has a call into us!
26314          */
26315         if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
26316                 SD_INFO(SD_LOG_COMMON, un,
26317                     "sd_send_polled_RQS: RQS failed\n");
26318         }
26319 
26320         SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
26321             (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
26322 
26323         mutex_enter(SD_MUTEX(un));
26324         un->un_sense_isbusy = 0;
26325         mutex_exit(SD_MUTEX(un));
26326 
26327         return (ret_val);
26328 }
26329 
26330 /*
26331  * Defines needed for localized version of the scsi_poll routine.
26332  */
26333 #define CSEC            10000                   /* usecs */
26334 #define SEC_TO_CSEC     (1000000/CSEC)
26335 
26336 /*
26337  *    Function: sd_ddi_scsi_poll()
26338  *
26339  * Description: Localized version of the scsi_poll routine.  The purpose is to
26340  *              send a scsi_pkt to a device as a polled command.  This version
26341  *              is to ensure more robust handling of transport errors.
26342  *              Specifically this routine cures not ready, coming ready
26343  *              transition for power up and reset of sonoma's.  This can take
26344  *              up to 45 seconds for power-on and 20 seconds for reset of a
26345  *              sonoma lun.
26346  *
26347  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
26348  *
26349  * Return Code: 0 - Command completed successfully with good status
26350  *             -1 - Command failed.
26351  *
26352  * NOTE: This code is almost identical to scsi_poll, however before 6668774 can
26353  * be fixed (removing this code), we need to determine how to handle the
26354  * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump().
26355  *
26356  * NOTE: This code is only called off sddump().
26357  */
26358 static int
26359 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
26360 {
26361         int                     rval = -1;
26362         int                     savef;
26363         long                    savet;
26364         void                    (*savec)();
26365         int                     timeout;
26366         int                     busy_count;
26367         int                     poll_delay;
26368         int                     rc;
26369         uint8_t                 *sensep;
26370         struct scsi_arq_status  *arqstat;
26371         extern int              do_polled_io;
26372 
26373         ASSERT(pkt->pkt_scbp);
26374 
26375         /*
26376          * save old flags..
26377          */
26378         savef = pkt->pkt_flags;
26379         savec = pkt->pkt_comp;
26380         savet = pkt->pkt_time;
26381 
26382         pkt->pkt_flags |= FLAG_NOINTR;
26383 
26384         /*
26385          * XXX there is nothing in the SCSA spec that states that we should not
26386          * do a callback for polled cmds; however, removing this will break sd
26387          * and probably other target drivers
26388          */
26389         pkt->pkt_comp = NULL;
26390 
26391         /*
26392          * we don't like a polled command without timeout.
26393          * 60 seconds seems long enough.
26394          */
26395         if (pkt->pkt_time == 0)
26396                 pkt->pkt_time = SCSI_POLL_TIMEOUT;
26397 
26398         /*
26399          * Send polled cmd.
26400          *
26401          * We do some error recovery for various errors.  Tran_busy,
26402          * queue full, and non-dispatched commands are retried every 10 msec.
26403          * as they are typically transient failures.  Busy status and Not
26404          * Ready are retried every second as this status takes a while to
26405          * change.
26406          */
26407         timeout = pkt->pkt_time * SEC_TO_CSEC;
26408 
26409         for (busy_count = 0; busy_count < timeout; busy_count++) {
26410                 /*
26411                  * Initialize pkt status variables.
26412                  */
26413                 *pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
26414 
26415                 if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
26416                         if (rc != TRAN_BUSY) {
26417                                 /* Transport failed - give up. */
26418                                 break;
26419                         } else {
26420                                 /* Transport busy - try again. */
26421                                 poll_delay = 1 * CSEC;          /* 10 msec. */
26422                         }
26423                 } else {
26424                         /*
26425                          * Transport accepted - check pkt status.
26426                          */
26427                         rc = (*pkt->pkt_scbp) & STATUS_MASK;
26428                         if ((pkt->pkt_reason == CMD_CMPLT) &&
26429                             (rc == STATUS_CHECK) &&
26430                             (pkt->pkt_state & STATE_ARQ_DONE)) {
26431                                 arqstat =
26432                                     (struct scsi_arq_status *)(pkt->pkt_scbp);
26433                                 sensep = (uint8_t *)&arqstat->sts_sensedata;
26434                         } else {
26435                                 sensep = NULL;
26436                         }
26437 
26438                         if ((pkt->pkt_reason == CMD_CMPLT) &&
26439                             (rc == STATUS_GOOD)) {
26440                                 /* No error - we're done */
26441                                 rval = 0;
26442                                 break;
26443 
26444                         } else if (pkt->pkt_reason == CMD_DEV_GONE) {
26445                                 /* Lost connection - give up */
26446                                 break;
26447 
26448                         } else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
26449                             (pkt->pkt_state == 0)) {
26450                                 /* Pkt not dispatched - try again. */
26451                                 poll_delay = 1 * CSEC;          /* 10 msec. */
26452 
26453                         } else if ((pkt->pkt_reason == CMD_CMPLT) &&
26454                             (rc == STATUS_QFULL)) {
26455                                 /* Queue full - try again. */
26456                                 poll_delay = 1 * CSEC;          /* 10 msec. */
26457 
26458                         } else if ((pkt->pkt_reason == CMD_CMPLT) &&
26459                             (rc == STATUS_BUSY)) {
26460                                 /* Busy - try again. */
26461                                 poll_delay = 100 * CSEC;        /* 1 sec. */
26462                                 busy_count += (SEC_TO_CSEC - 1);
26463 
26464                         } else if ((sensep != NULL) &&
26465                             (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) {
26466                                 /*
26467                                  * Unit Attention - try again.
26468                                  * Pretend it took 1 sec.
26469                                  * NOTE: 'continue' avoids poll_delay
26470                                  */
26471                                 busy_count += (SEC_TO_CSEC - 1);
26472                                 continue;
26473 
26474                         } else if ((sensep != NULL) &&
26475                             (scsi_sense_key(sensep) == KEY_NOT_READY) &&
26476                             (scsi_sense_asc(sensep) == 0x04) &&
26477                             (scsi_sense_ascq(sensep) == 0x01)) {
26478                                 /*
26479                                  * Not ready -> ready - try again.
26480                                  * 04h/01h: LUN IS IN PROCESS OF BECOMING READY
26481                                  * ...same as STATUS_BUSY
26482                                  */
26483                                 poll_delay = 100 * CSEC;        /* 1 sec. */
26484                                 busy_count += (SEC_TO_CSEC - 1);
26485 
26486                         } else {
26487                                 /* BAD status - give up. */
26488                                 break;
26489                         }
26490                 }
26491 
26492                 if (((curthread->t_flag & T_INTR_THREAD) == 0) &&
26493                     !do_polled_io) {
26494                         delay(drv_usectohz(poll_delay));
26495                 } else {
26496                         /* we busy wait during cpr_dump or interrupt threads */
26497                         drv_usecwait(poll_delay);
26498                 }
26499         }
26500 
26501         pkt->pkt_flags = savef;
26502         pkt->pkt_comp = savec;
26503         pkt->pkt_time = savet;
26504 
26505         /* return on error */
26506         if (rval)
26507                 return (rval);
26508 
26509         /*
26510          * This is not a performance critical code path.
26511          *
26512          * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync()
26513          * issues associated with looking at DMA memory prior to
26514          * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return.
26515          */
26516         scsi_sync_pkt(pkt);
26517         return (0);
26518 }
26519 
26520 
26521 
26522 /*
26523  *    Function: sd_persistent_reservation_in_read_keys
26524  *
26525  * Description: This routine is the driver entry point for handling CD-ROM
26526  *              multi-host persistent reservation requests (MHIOCGRP_INKEYS)
26527  *              by sending the SCSI-3 PRIN commands to the device.
26528  *              Processes the read keys command response by copying the
26529  *              reservation key information into the user provided buffer.
26530  *              Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
26531  *
26532  *   Arguments: un   -  Pointer to soft state struct for the target.
26533  *              usrp -  user provided pointer to multihost Persistent In Read
26534  *                      Keys structure (mhioc_inkeys_t)
26535  *              flag -  this argument is a pass through to ddi_copyxxx()
26536  *                      directly from the mode argument of ioctl().
26537  *
26538  * Return Code: 0   - Success
26539  *              EACCES
26540  *              ENOTSUP
26541  *              errno return code from sd_send_scsi_cmd()
26542  *
26543  *     Context: Can sleep. Does not return until command is completed.
26544  */
26545 
26546 static int
26547 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
26548     mhioc_inkeys_t *usrp, int flag)
26549 {
26550 #ifdef _MULTI_DATAMODEL
26551         struct mhioc_key_list32 li32;
26552 #endif
26553         sd_prin_readkeys_t      *in;
26554         mhioc_inkeys_t          *ptr;
26555         mhioc_key_list_t        li;
26556         uchar_t                 *data_bufp;
26557         int                     data_len;
26558         int                     rval = 0;
26559         size_t                  copysz;
26560         sd_ssc_t                *ssc;
26561 
26562         if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
26563                 return (EINVAL);
26564         }
26565         bzero(&li, sizeof (mhioc_key_list_t));
26566 
26567         ssc = sd_ssc_init(un);
26568 
26569         /*
26570          * Get the listsize from user
26571          */
26572 #ifdef _MULTI_DATAMODEL
26573 
26574         switch (ddi_model_convert_from(flag & FMODELS)) {
26575         case DDI_MODEL_ILP32:
26576                 copysz = sizeof (struct mhioc_key_list32);
26577                 if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
26578                         SD_ERROR(SD_LOG_IOCTL_MHD, un,
26579                             "sd_persistent_reservation_in_read_keys: "
26580                             "failed ddi_copyin: mhioc_key_list32_t\n");
26581                         rval = EFAULT;
26582                         goto done;
26583                 }
26584                 li.listsize = li32.listsize;
26585                 li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
26586                 break;
26587 
26588         case DDI_MODEL_NONE:
26589                 copysz = sizeof (mhioc_key_list_t);
26590                 if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26591                         SD_ERROR(SD_LOG_IOCTL_MHD, un,
26592                             "sd_persistent_reservation_in_read_keys: "
26593                             "failed ddi_copyin: mhioc_key_list_t\n");
26594                         rval = EFAULT;
26595                         goto done;
26596                 }
26597                 break;
26598         }
26599 
26600 #else /* ! _MULTI_DATAMODEL */
26601         copysz = sizeof (mhioc_key_list_t);
26602         if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26603                 SD_ERROR(SD_LOG_IOCTL_MHD, un,
26604                     "sd_persistent_reservation_in_read_keys: "
26605                     "failed ddi_copyin: mhioc_key_list_t\n");
26606                 rval = EFAULT;
26607                 goto done;
26608         }
26609 #endif
26610 
26611         data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
26612         data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
26613         data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26614 
26615         rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS,
26616             data_len, data_bufp);
26617         if (rval != 0) {
26618                 if (rval == EIO)
26619                         sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
26620                 else
26621                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
26622                 goto done;
26623         }
26624         in = (sd_prin_readkeys_t *)data_bufp;
26625         ptr->generation = BE_32(in->generation);
26626         li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
26627 
26628         /*
26629          * Return the min(listsize, listlen) keys
26630          */
26631 #ifdef _MULTI_DATAMODEL
26632 
26633         switch (ddi_model_convert_from(flag & FMODELS)) {
26634         case DDI_MODEL_ILP32:
26635                 li32.listlen = li.listlen;
26636                 if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
26637                         SD_ERROR(SD_LOG_IOCTL_MHD, un,
26638                             "sd_persistent_reservation_in_read_keys: "
26639                             "failed ddi_copyout: mhioc_key_list32_t\n");
26640                         rval = EFAULT;
26641                         goto done;
26642                 }
26643                 break;
26644 
26645         case DDI_MODEL_NONE:
26646                 if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26647                         SD_ERROR(SD_LOG_IOCTL_MHD, un,
26648                             "sd_persistent_reservation_in_read_keys: "
26649                             "failed ddi_copyout: mhioc_key_list_t\n");
26650                         rval = EFAULT;
26651                         goto done;
26652                 }
26653                 break;
26654         }
26655 
26656 #else /* ! _MULTI_DATAMODEL */
26657 
26658         if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26659                 SD_ERROR(SD_LOG_IOCTL_MHD, un,
26660                     "sd_persistent_reservation_in_read_keys: "
26661                     "failed ddi_copyout: mhioc_key_list_t\n");
26662                 rval = EFAULT;
26663                 goto done;
26664         }
26665 
26666 #endif /* _MULTI_DATAMODEL */
26667 
26668         copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
26669             li.listsize * MHIOC_RESV_KEY_SIZE);
26670         if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
26671                 SD_ERROR(SD_LOG_IOCTL_MHD, un,
26672                     "sd_persistent_reservation_in_read_keys: "
26673                     "failed ddi_copyout: keylist\n");
26674                 rval = EFAULT;
26675         }
26676 done:
26677         sd_ssc_fini(ssc);
26678         kmem_free(data_bufp, data_len);
26679         return (rval);
26680 }
26681 
26682 
26683 /*
26684  *    Function: sd_persistent_reservation_in_read_resv
26685  *
26686  * Description: This routine is the driver entry point for handling CD-ROM
26687  *              multi-host persistent reservation requests (MHIOCGRP_INRESV)
26688  *              by sending the SCSI-3 PRIN commands to the device.
26689  *              Process the read persistent reservations command response by
26690  *              copying the reservation information into the user provided
26691  *              buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
26692  *
26693  *   Arguments: un   -  Pointer to soft state struct for the target.
26694  *              usrp -  user provided pointer to multihost Persistent In Read
26695  *                      Keys structure (mhioc_inkeys_t)
26696  *              flag -  this argument is a pass through to ddi_copyxxx()
26697  *                      directly from the mode argument of ioctl().
26698  *
26699  * Return Code: 0   - Success
26700  *              EACCES
26701  *              ENOTSUP
26702  *              errno return code from sd_send_scsi_cmd()
26703  *
26704  *     Context: Can sleep. Does not return until command is completed.
26705  */
26706 
26707 static int
26708 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
26709     mhioc_inresvs_t *usrp, int flag)
26710 {
26711 #ifdef _MULTI_DATAMODEL
26712         struct mhioc_resv_desc_list32 resvlist32;
26713 #endif
26714         sd_prin_readresv_t      *in;
26715         mhioc_inresvs_t         *ptr;
26716         sd_readresv_desc_t      *readresv_ptr;
26717         mhioc_resv_desc_list_t  resvlist;
26718         mhioc_resv_desc_t       resvdesc;
26719         uchar_t                 *data_bufp = NULL;
26720         int                     data_len;
26721         int                     rval = 0;
26722         int                     i;
26723         size_t                  copysz;
26724         mhioc_resv_desc_t       *bufp;
26725         sd_ssc_t                *ssc;
26726 
26727         if ((ptr = usrp) == NULL) {
26728                 return (EINVAL);
26729         }
26730 
26731         ssc = sd_ssc_init(un);
26732 
26733         /*
26734          * Get the listsize from user
26735          */
26736 #ifdef _MULTI_DATAMODEL
26737         switch (ddi_model_convert_from(flag & FMODELS)) {
26738         case DDI_MODEL_ILP32:
26739                 copysz = sizeof (struct mhioc_resv_desc_list32);
26740                 if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
26741                         SD_ERROR(SD_LOG_IOCTL_MHD, un,
26742                             "sd_persistent_reservation_in_read_resv: "
26743                             "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26744                         rval = EFAULT;
26745                         goto done;
26746                 }
26747                 resvlist.listsize = resvlist32.listsize;
26748                 resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
26749                 break;
26750 
26751         case DDI_MODEL_NONE:
26752                 copysz = sizeof (mhioc_resv_desc_list_t);
26753                 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26754                         SD_ERROR(SD_LOG_IOCTL_MHD, un,
26755                             "sd_persistent_reservation_in_read_resv: "
26756                             "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26757                         rval = EFAULT;
26758                         goto done;
26759                 }
26760                 break;
26761         }
26762 #else /* ! _MULTI_DATAMODEL */
26763         copysz = sizeof (mhioc_resv_desc_list_t);
26764         if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26765                 SD_ERROR(SD_LOG_IOCTL_MHD, un,
26766                     "sd_persistent_reservation_in_read_resv: "
26767                     "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26768                 rval = EFAULT;
26769                 goto done;
26770         }
26771 #endif /* ! _MULTI_DATAMODEL */
26772 
26773         data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
26774         data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
26775         data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26776 
26777         rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV,
26778             data_len, data_bufp);
26779         if (rval != 0) {
26780                 if (rval == EIO)
26781                         sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
26782                 else
26783                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
26784                 goto done;
26785         }
26786         in = (sd_prin_readresv_t *)data_bufp;
26787         ptr->generation = BE_32(in->generation);
26788         resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
26789 
26790         /*
26791          * Return the min(listsize, listlen( keys
26792          */
26793 #ifdef _MULTI_DATAMODEL
26794 
26795         switch (ddi_model_convert_from(flag & FMODELS)) {
26796         case DDI_MODEL_ILP32:
26797                 resvlist32.listlen = resvlist.listlen;
26798                 if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
26799                         SD_ERROR(SD_LOG_IOCTL_MHD, un,
26800                             "sd_persistent_reservation_in_read_resv: "
26801                             "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26802                         rval = EFAULT;
26803                         goto done;
26804                 }
26805                 break;
26806 
26807         case DDI_MODEL_NONE:
26808                 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26809                         SD_ERROR(SD_LOG_IOCTL_MHD, un,
26810                             "sd_persistent_reservation_in_read_resv: "
26811                             "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26812                         rval = EFAULT;
26813                         goto done;
26814                 }
26815                 break;
26816         }
26817 
26818 #else /* ! _MULTI_DATAMODEL */
26819 
26820         if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26821                 SD_ERROR(SD_LOG_IOCTL_MHD, un,
26822                     "sd_persistent_reservation_in_read_resv: "
26823                     "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26824                 rval = EFAULT;
26825                 goto done;
26826         }
26827 
26828 #endif /* ! _MULTI_DATAMODEL */
26829 
26830         readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
26831         bufp = resvlist.list;
26832         copysz = sizeof (mhioc_resv_desc_t);
26833         for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
26834             i++, readresv_ptr++, bufp++) {
26835 
26836                 bcopy(&readresv_ptr->resvkey, &resvdesc.key,
26837                     MHIOC_RESV_KEY_SIZE);
26838                 resvdesc.type  = readresv_ptr->type;
26839                 resvdesc.scope = readresv_ptr->scope;
26840                 resvdesc.scope_specific_addr =
26841                     BE_32(readresv_ptr->scope_specific_addr);
26842 
26843                 if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
26844                         SD_ERROR(SD_LOG_IOCTL_MHD, un,
26845                             "sd_persistent_reservation_in_read_resv: "
26846                             "failed ddi_copyout: resvlist\n");
26847                         rval = EFAULT;
26848                         goto done;
26849                 }
26850         }
26851 done:
26852         sd_ssc_fini(ssc);
26853         /* only if data_bufp is allocated, we need to free it */
26854         if (data_bufp) {
26855                 kmem_free(data_bufp, data_len);
26856         }
26857         return (rval);
26858 }
26859 
26860 
26861 /*
26862  *    Function: sr_change_blkmode()
26863  *
26864  * Description: This routine is the driver entry point for handling CD-ROM
26865  *              block mode ioctl requests. Support for returning and changing
26866  *              the current block size in use by the device is implemented. The
26867  *              LBA size is changed via a MODE SELECT Block Descriptor.
26868  *
26869  *              This routine issues a mode sense with an allocation length of
26870  *              12 bytes for the mode page header and a single block descriptor.
26871  *
26872  *   Arguments: dev - the device 'dev_t'
26873  *              cmd - the request type; one of CDROMGBLKMODE (get) or
26874  *                    CDROMSBLKMODE (set)
26875  *              data - current block size or requested block size
26876  *              flag - this argument is a pass through to ddi_copyxxx() directly
26877  *                     from the mode argument of ioctl().
26878  *
26879  * Return Code: the code returned by sd_send_scsi_cmd()
26880  *              EINVAL if invalid arguments are provided
26881  *              EFAULT if ddi_copyxxx() fails
26882  *              ENXIO if fail ddi_get_soft_state
26883  *              EIO if invalid mode sense block descriptor length
26884  *
26885  */
26886 
26887 static int
26888 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
26889 {
26890         struct sd_lun                   *un = NULL;
26891         struct mode_header              *sense_mhp, *select_mhp;
26892         struct block_descriptor         *sense_desc, *select_desc;
26893         int                             current_bsize;
26894         int                             rval = EINVAL;
26895         uchar_t                         *sense = NULL;
26896         uchar_t                         *select = NULL;
26897         sd_ssc_t                        *ssc;
26898 
26899         ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
26900 
26901         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26902                 return (ENXIO);
26903         }
26904 
26905         /*
26906          * The block length is changed via the Mode Select block descriptor, the
26907          * "Read/Write Error Recovery" mode page (0x1) contents are not actually
26908          * required as part of this routine. Therefore the mode sense allocation
26909          * length is specified to be the length of a mode page header and a
26910          * block descriptor.
26911          */
26912         sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26913 
26914         ssc = sd_ssc_init(un);
26915         rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
26916             BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
26917         sd_ssc_fini(ssc);
26918         if (rval != 0) {
26919                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26920                     "sr_change_blkmode: Mode Sense Failed\n");
26921                 kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26922                 return (rval);
26923         }
26924 
26925         /* Check the block descriptor len to handle only 1 block descriptor */
26926         sense_mhp = (struct mode_header *)sense;
26927         if ((sense_mhp->bdesc_length == 0) ||
26928             (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
26929                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26930                     "sr_change_blkmode: Mode Sense returned invalid block"
26931                     " descriptor length\n");
26932                 kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26933                 return (EIO);
26934         }
26935         sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
26936         current_bsize = ((sense_desc->blksize_hi << 16) |
26937             (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
26938 
26939         /* Process command */
26940         switch (cmd) {
26941         case CDROMGBLKMODE:
26942                 /* Return the block size obtained during the mode sense */
26943                 if (ddi_copyout(&current_bsize, (void *)data,
26944                     sizeof (int), flag) != 0)
26945                         rval = EFAULT;
26946                 break;
26947         case CDROMSBLKMODE:
26948                 /* Validate the requested block size */
26949                 switch (data) {
26950                 case CDROM_BLK_512:
26951                 case CDROM_BLK_1024:
26952                 case CDROM_BLK_2048:
26953                 case CDROM_BLK_2056:
26954                 case CDROM_BLK_2336:
26955                 case CDROM_BLK_2340:
26956                 case CDROM_BLK_2352:
26957                 case CDROM_BLK_2368:
26958                 case CDROM_BLK_2448:
26959                 case CDROM_BLK_2646:
26960                 case CDROM_BLK_2647:
26961                         break;
26962                 default:
26963                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26964                             "sr_change_blkmode: "
26965                             "Block Size '%ld' Not Supported\n", data);
26966                         kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26967                         return (EINVAL);
26968                 }
26969 
26970                 /*
26971                  * The current block size matches the requested block size so
26972                  * there is no need to send the mode select to change the size
26973                  */
26974                 if (current_bsize == data) {
26975                         break;
26976                 }
26977 
26978                 /* Build the select data for the requested block size */
26979                 select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26980                 select_mhp = (struct mode_header *)select;
26981                 select_desc =
26982                     (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
26983                 /*
26984                  * The LBA size is changed via the block descriptor, so the
26985                  * descriptor is built according to the user data
26986                  */
26987                 select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
26988                 select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
26989                 select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
26990                 select_desc->blksize_lo  = (char)((data) & 0x000000ff);
26991 
26992                 /* Send the mode select for the requested block size */
26993                 ssc = sd_ssc_init(un);
26994                 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
26995                     select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26996                     SD_PATH_STANDARD);
26997                 sd_ssc_fini(ssc);
26998                 if (rval != 0) {
26999                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27000                             "sr_change_blkmode: Mode Select Failed\n");
27001                         /*
27002                          * The mode select failed for the requested block size,
27003                          * so reset the data for the original block size and
27004                          * send it to the target. The error is indicated by the
27005                          * return value for the failed mode select.
27006                          */
27007                         select_desc->blksize_hi  = sense_desc->blksize_hi;
27008                         select_desc->blksize_mid = sense_desc->blksize_mid;
27009                         select_desc->blksize_lo  = sense_desc->blksize_lo;
27010                         ssc = sd_ssc_init(un);
27011                         (void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
27012                             select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
27013                             SD_PATH_STANDARD);
27014                         sd_ssc_fini(ssc);
27015                 } else {
27016                         ASSERT(!mutex_owned(SD_MUTEX(un)));
27017                         mutex_enter(SD_MUTEX(un));
27018                         sd_update_block_info(un, (uint32_t)data, 0);
27019                         mutex_exit(SD_MUTEX(un));
27020                 }
27021                 break;
27022         default:
27023                 /* should not reach here, but check anyway */
27024                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27025                     "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
27026                 rval = EINVAL;
27027                 break;
27028         }
27029 
27030         if (select) {
27031                 kmem_free(select, BUFLEN_CHG_BLK_MODE);
27032         }
27033         if (sense) {
27034                 kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27035         }
27036         return (rval);
27037 }
27038 
27039 
27040 /*
27041  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
27042  * implement driver support for getting and setting the CD speed. The command
27043  * set used will be based on the device type. If the device has not been
27044  * identified as MMC the Toshiba vendor specific mode page will be used. If
27045  * the device is MMC but does not support the Real Time Streaming feature
27046  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
27047  * be used to read the speed.
27048  */
27049 
27050 /*
27051  *    Function: sr_change_speed()
27052  *
27053  * Description: This routine is the driver entry point for handling CD-ROM
27054  *              drive speed ioctl requests for devices supporting the Toshiba
27055  *              vendor specific drive speed mode page. Support for returning
27056  *              and changing the current drive speed in use by the device is
27057  *              implemented.
27058  *
27059  *   Arguments: dev - the device 'dev_t'
27060  *              cmd - the request type; one of CDROMGDRVSPEED (get) or
27061  *                    CDROMSDRVSPEED (set)
27062  *              data - current drive speed or requested drive speed
27063  *              flag - this argument is a pass through to ddi_copyxxx() directly
27064  *                     from the mode argument of ioctl().
27065  *
27066  * Return Code: the code returned by sd_send_scsi_cmd()
27067  *              EINVAL if invalid arguments are provided
27068  *              EFAULT if ddi_copyxxx() fails
27069  *              ENXIO if fail ddi_get_soft_state
27070  *              EIO if invalid mode sense block descriptor length
27071  */
27072 
27073 static int
27074 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27075 {
27076         struct sd_lun                   *un = NULL;
27077         struct mode_header              *sense_mhp, *select_mhp;
27078         struct mode_speed               *sense_page, *select_page;
27079         int                             current_speed;
27080         int                             rval = EINVAL;
27081         int                             bd_len;
27082         uchar_t                         *sense = NULL;
27083         uchar_t                         *select = NULL;
27084         sd_ssc_t                        *ssc;
27085 
27086         ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27087         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27088                 return (ENXIO);
27089         }
27090 
27091         /*
27092          * Note: The drive speed is being modified here according to a Toshiba
27093          * vendor specific mode page (0x31).
27094          */
27095         sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27096 
27097         ssc = sd_ssc_init(un);
27098         rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
27099             BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
27100             SD_PATH_STANDARD);
27101         sd_ssc_fini(ssc);
27102         if (rval != 0) {
27103                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27104                     "sr_change_speed: Mode Sense Failed\n");
27105                 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27106                 return (rval);
27107         }
27108         sense_mhp  = (struct mode_header *)sense;
27109 
27110         /* Check the block descriptor len to handle only 1 block descriptor */
27111         bd_len = sense_mhp->bdesc_length;
27112         if (bd_len > MODE_BLK_DESC_LENGTH) {
27113                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27114                     "sr_change_speed: Mode Sense returned invalid block "
27115                     "descriptor length\n");
27116                 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27117                 return (EIO);
27118         }
27119 
27120         sense_page = (struct mode_speed *)
27121             (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27122         current_speed = sense_page->speed;
27123 
27124         /* Process command */
27125         switch (cmd) {
27126         case CDROMGDRVSPEED:
27127                 /* Return the drive speed obtained during the mode sense */
27128                 if (current_speed == 0x2) {
27129                         current_speed = CDROM_TWELVE_SPEED;
27130                 }
27131                 if (ddi_copyout(&current_speed, (void *)data,
27132                     sizeof (int), flag) != 0) {
27133                         rval = EFAULT;
27134                 }
27135                 break;
27136         case CDROMSDRVSPEED:
27137                 /* Validate the requested drive speed */
27138                 switch ((uchar_t)data) {
27139                 case CDROM_TWELVE_SPEED:
27140                         data = 0x2;
27141                         /*FALLTHROUGH*/
27142                 case CDROM_NORMAL_SPEED:
27143                 case CDROM_DOUBLE_SPEED:
27144                 case CDROM_QUAD_SPEED:
27145                 case CDROM_MAXIMUM_SPEED:
27146                         break;
27147                 default:
27148                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27149                             "sr_change_speed: "
27150                             "Drive Speed '%d' Not Supported\n", (uchar_t)data);
27151                         kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27152                         return (EINVAL);
27153                 }
27154 
27155                 /*
27156                  * The current drive speed matches the requested drive speed so
27157                  * there is no need to send the mode select to change the speed
27158                  */
27159                 if (current_speed == data) {
27160                         break;
27161                 }
27162 
27163                 /* Build the select data for the requested drive speed */
27164                 select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27165                 select_mhp = (struct mode_header *)select;
27166                 select_mhp->bdesc_length = 0;
27167                 select_page =
27168                     (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27169                 select_page =
27170                     (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27171                 select_page->mode_page.code = CDROM_MODE_SPEED;
27172                 select_page->mode_page.length = 2;
27173                 select_page->speed = (uchar_t)data;
27174 
27175                 /* Send the mode select for the requested block size */
27176                 ssc = sd_ssc_init(un);
27177                 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27178                     MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27179                     SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27180                 sd_ssc_fini(ssc);
27181                 if (rval != 0) {
27182                         /*
27183                          * The mode select failed for the requested drive speed,
27184                          * so reset the data for the original drive speed and
27185                          * send it to the target. The error is indicated by the
27186                          * return value for the failed mode select.
27187                          */
27188                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27189                             "sr_drive_speed: Mode Select Failed\n");
27190                         select_page->speed = sense_page->speed;
27191                         ssc = sd_ssc_init(un);
27192                         (void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27193                             MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27194                             SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27195                         sd_ssc_fini(ssc);
27196                 }
27197                 break;
27198         default:
27199                 /* should not reach here, but check anyway */
27200                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27201                     "sr_change_speed: Command '%x' Not Supported\n", cmd);
27202                 rval = EINVAL;
27203                 break;
27204         }
27205 
27206         if (select) {
27207                 kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
27208         }
27209         if (sense) {
27210                 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27211         }
27212 
27213         return (rval);
27214 }
27215 
27216 
27217 /*
27218  *    Function: sr_atapi_change_speed()
27219  *
27220  * Description: This routine is the driver entry point for handling CD-ROM
27221  *              drive speed ioctl requests for MMC devices that do not support
27222  *              the Real Time Streaming feature (0x107).
27223  *
27224  *              Note: This routine will use the SET SPEED command which may not
27225  *              be supported by all devices.
27226  *
27227  *   Arguments: dev- the device 'dev_t'
27228  *              cmd- the request type; one of CDROMGDRVSPEED (get) or
27229  *                   CDROMSDRVSPEED (set)
27230  *              data- current drive speed or requested drive speed
27231  *              flag- this argument is a pass through to ddi_copyxxx() directly
27232  *                    from the mode argument of ioctl().
27233  *
27234  * Return Code: the code returned by sd_send_scsi_cmd()
27235  *              EINVAL if invalid arguments are provided
27236  *              EFAULT if ddi_copyxxx() fails
27237  *              ENXIO if fail ddi_get_soft_state
27238  *              EIO if invalid mode sense block descriptor length
27239  */
27240 
27241 static int
27242 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27243 {
27244         struct sd_lun                   *un;
27245         struct uscsi_cmd                *com = NULL;
27246         struct mode_header_grp2         *sense_mhp;
27247         uchar_t                         *sense_page;
27248         uchar_t                         *sense = NULL;
27249         char                            cdb[CDB_GROUP5];
27250         int                             bd_len;
27251         int                             current_speed = 0;
27252         int                             max_speed = 0;
27253         int                             rval;
27254         sd_ssc_t                        *ssc;
27255 
27256         ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27257 
27258         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27259                 return (ENXIO);
27260         }
27261 
27262         sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
27263 
27264         ssc = sd_ssc_init(un);
27265         rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
27266             BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
27267             SD_PATH_STANDARD);
27268         sd_ssc_fini(ssc);
27269         if (rval != 0) {
27270                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27271                     "sr_atapi_change_speed: Mode Sense Failed\n");
27272                 kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27273                 return (rval);
27274         }
27275 
27276         /* Check the block descriptor len to handle only 1 block descriptor */
27277         sense_mhp = (struct mode_header_grp2 *)sense;
27278         bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
27279         if (bd_len > MODE_BLK_DESC_LENGTH) {
27280                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27281                     "sr_atapi_change_speed: Mode Sense returned invalid "
27282                     "block descriptor length\n");
27283                 kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27284                 return (EIO);
27285         }
27286 
27287         /* Calculate the current and maximum drive speeds */
27288         sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27289         current_speed = (sense_page[14] << 8) | sense_page[15];
27290         max_speed = (sense_page[8] << 8) | sense_page[9];
27291 
27292         /* Process the command */
27293         switch (cmd) {
27294         case CDROMGDRVSPEED:
27295                 current_speed /= SD_SPEED_1X;
27296                 if (ddi_copyout(&current_speed, (void *)data,
27297                     sizeof (int), flag) != 0)
27298                         rval = EFAULT;
27299                 break;
27300         case CDROMSDRVSPEED:
27301                 /* Convert the speed code to KB/sec */
27302                 switch ((uchar_t)data) {
27303                 case CDROM_NORMAL_SPEED:
27304                         current_speed = SD_SPEED_1X;
27305                         break;
27306                 case CDROM_DOUBLE_SPEED:
27307                         current_speed = 2 * SD_SPEED_1X;
27308                         break;
27309                 case CDROM_QUAD_SPEED:
27310                         current_speed = 4 * SD_SPEED_1X;
27311                         break;
27312                 case CDROM_TWELVE_SPEED:
27313                         current_speed = 12 * SD_SPEED_1X;
27314                         break;
27315                 case CDROM_MAXIMUM_SPEED:
27316                         current_speed = 0xffff;
27317                         break;
27318                 default:
27319                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27320                             "sr_atapi_change_speed: invalid drive speed %d\n",
27321                             (uchar_t)data);
27322                         kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27323                         return (EINVAL);
27324                 }
27325 
27326                 /* Check the request against the drive's max speed. */
27327                 if (current_speed != 0xffff) {
27328                         if (current_speed > max_speed) {
27329                                 kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27330                                 return (EINVAL);
27331                         }
27332                 }
27333 
27334                 /*
27335                  * Build and send the SET SPEED command
27336                  *
27337                  * Note: The SET SPEED (0xBB) command used in this routine is
27338                  * obsolete per the SCSI MMC spec but still supported in the
27339                  * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27340                  * therefore the command is still implemented in this routine.
27341                  */
27342                 bzero(cdb, sizeof (cdb));
27343                 cdb[0] = (char)SCMD_SET_CDROM_SPEED;
27344                 cdb[2] = (uchar_t)(current_speed >> 8);
27345                 cdb[3] = (uchar_t)current_speed;
27346                 com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27347                 com->uscsi_cdb          = (caddr_t)cdb;
27348                 com->uscsi_cdblen  = CDB_GROUP5;
27349                 com->uscsi_bufaddr = NULL;
27350                 com->uscsi_buflen  = 0;
27351                 com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
27352                 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
27353                 break;
27354         default:
27355                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27356                     "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
27357                 rval = EINVAL;
27358         }
27359 
27360         if (sense) {
27361                 kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27362         }
27363         if (com) {
27364                 kmem_free(com, sizeof (*com));
27365         }
27366         return (rval);
27367 }
27368 
27369 
27370 /*
27371  *    Function: sr_pause_resume()
27372  *
27373  * Description: This routine is the driver entry point for handling CD-ROM
27374  *              pause/resume ioctl requests. This only affects the audio play
27375  *              operation.
27376  *
27377  *   Arguments: dev - the device 'dev_t'
27378  *              cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
27379  *                    for setting the resume bit of the cdb.
27380  *
27381  * Return Code: the code returned by sd_send_scsi_cmd()
27382  *              EINVAL if invalid mode specified
27383  *
27384  */
27385 
27386 static int
27387 sr_pause_resume(dev_t dev, int cmd)
27388 {
27389         struct sd_lun           *un;
27390         struct uscsi_cmd        *com;
27391         char                    cdb[CDB_GROUP1];
27392         int                     rval;
27393 
27394         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27395                 return (ENXIO);
27396         }
27397 
27398         com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27399         bzero(cdb, CDB_GROUP1);
27400         cdb[0] = SCMD_PAUSE_RESUME;
27401         switch (cmd) {
27402         case CDROMRESUME:
27403                 cdb[8] = 1;
27404                 break;
27405         case CDROMPAUSE:
27406                 cdb[8] = 0;
27407                 break;
27408         default:
27409                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
27410                     " Command '%x' Not Supported\n", cmd);
27411                 rval = EINVAL;
27412                 goto done;
27413         }
27414 
27415         com->uscsi_cdb    = cdb;
27416         com->uscsi_cdblen = CDB_GROUP1;
27417         com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27418 
27419         rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27420             SD_PATH_STANDARD);
27421 
27422 done:
27423         kmem_free(com, sizeof (*com));
27424         return (rval);
27425 }
27426 
27427 
27428 /*
27429  *    Function: sr_play_msf()
27430  *
27431  * Description: This routine is the driver entry point for handling CD-ROM
27432  *              ioctl requests to output the audio signals at the specified
27433  *              starting address and continue the audio play until the specified
27434  *              ending address (CDROMPLAYMSF) The address is in Minute Second
27435  *              Frame (MSF) format.
27436  *
27437  *   Arguments: dev     - the device 'dev_t'
27438  *              data    - pointer to user provided audio msf structure,
27439  *                        specifying start/end addresses.
27440  *              flag    - this argument is a pass through to ddi_copyxxx()
27441  *                        directly from the mode argument of ioctl().
27442  *
27443  * Return Code: the code returned by sd_send_scsi_cmd()
27444  *              EFAULT if ddi_copyxxx() fails
27445  *              ENXIO if fail ddi_get_soft_state
27446  *              EINVAL if data pointer is NULL
27447  */
27448 
27449 static int
27450 sr_play_msf(dev_t dev, caddr_t data, int flag)
27451 {
27452         struct sd_lun           *un;
27453         struct uscsi_cmd        *com;
27454         struct cdrom_msf        msf_struct;
27455         struct cdrom_msf        *msf = &msf_struct;
27456         char                    cdb[CDB_GROUP1];
27457         int                     rval;
27458 
27459         if (data == NULL) {
27460                 return (EINVAL);
27461         }
27462 
27463         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27464                 return (ENXIO);
27465         }
27466 
27467         if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
27468                 return (EFAULT);
27469         }
27470 
27471         com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27472         bzero(cdb, CDB_GROUP1);
27473         cdb[0] = SCMD_PLAYAUDIO_MSF;
27474         if (un->un_f_cfg_playmsf_bcd == TRUE) {
27475                 cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
27476                 cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
27477                 cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
27478                 cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
27479                 cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
27480                 cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
27481         } else {
27482                 cdb[3] = msf->cdmsf_min0;
27483                 cdb[4] = msf->cdmsf_sec0;
27484                 cdb[5] = msf->cdmsf_frame0;
27485                 cdb[6] = msf->cdmsf_min1;
27486                 cdb[7] = msf->cdmsf_sec1;
27487                 cdb[8] = msf->cdmsf_frame1;
27488         }
27489         com->uscsi_cdb    = cdb;
27490         com->uscsi_cdblen = CDB_GROUP1;
27491         com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27492         rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27493             SD_PATH_STANDARD);
27494         kmem_free(com, sizeof (*com));
27495         return (rval);
27496 }
27497 
27498 
27499 /*
27500  *    Function: sr_play_trkind()
27501  *
27502  * Description: This routine is the driver entry point for handling CD-ROM
27503  *              ioctl requests to output the audio signals at the specified
27504  *              starting address and continue the audio play until the specified
27505  *              ending address (CDROMPLAYTRKIND). The address is in Track Index
27506  *              format.
27507  *
27508  *   Arguments: dev     - the device 'dev_t'
27509  *              data    - pointer to user provided audio track/index structure,
27510  *                        specifying start/end addresses.
27511  *              flag    - this argument is a pass through to ddi_copyxxx()
27512  *                        directly from the mode argument of ioctl().
27513  *
27514  * Return Code: the code returned by sd_send_scsi_cmd()
27515  *              EFAULT if ddi_copyxxx() fails
27516  *              ENXIO if fail ddi_get_soft_state
27517  *              EINVAL if data pointer is NULL
27518  */
27519 
27520 static int
27521 sr_play_trkind(dev_t dev, caddr_t data, int flag)
27522 {
27523         struct cdrom_ti         ti_struct;
27524         struct cdrom_ti         *ti = &ti_struct;
27525         struct uscsi_cmd        *com = NULL;
27526         char                    cdb[CDB_GROUP1];
27527         int                     rval;
27528 
27529         if (data == NULL) {
27530                 return (EINVAL);
27531         }
27532 
27533         if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
27534                 return (EFAULT);
27535         }
27536 
27537         com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27538         bzero(cdb, CDB_GROUP1);
27539         cdb[0] = SCMD_PLAYAUDIO_TI;
27540         cdb[4] = ti->cdti_trk0;
27541         cdb[5] = ti->cdti_ind0;
27542         cdb[7] = ti->cdti_trk1;
27543         cdb[8] = ti->cdti_ind1;
27544         com->uscsi_cdb    = cdb;
27545         com->uscsi_cdblen = CDB_GROUP1;
27546         com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27547         rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27548             SD_PATH_STANDARD);
27549         kmem_free(com, sizeof (*com));
27550         return (rval);
27551 }
27552 
27553 
27554 /*
27555  *    Function: sr_read_all_subcodes()
27556  *
27557  * Description: This routine is the driver entry point for handling CD-ROM
27558  *              ioctl requests to return raw subcode data while the target is
27559  *              playing audio (CDROMSUBCODE).
27560  *
27561  *   Arguments: dev     - the device 'dev_t'
27562  *              data    - pointer to user provided cdrom subcode structure,
27563  *                        specifying the transfer length and address.
27564  *              flag    - this argument is a pass through to ddi_copyxxx()
27565  *                        directly from the mode argument of ioctl().
27566  *
27567  * Return Code: the code returned by sd_send_scsi_cmd()
27568  *              EFAULT if ddi_copyxxx() fails
27569  *              ENXIO if fail ddi_get_soft_state
27570  *              EINVAL if data pointer is NULL
27571  */
27572 
27573 static int
27574 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
27575 {
27576         struct sd_lun           *un = NULL;
27577         struct uscsi_cmd        *com = NULL;
27578         struct cdrom_subcode    *subcode = NULL;
27579         int                     rval;
27580         size_t                  buflen;
27581         char                    cdb[CDB_GROUP5];
27582 
27583 #ifdef _MULTI_DATAMODEL
27584         /* To support ILP32 applications in an LP64 world */
27585         struct cdrom_subcode32          cdrom_subcode32;
27586         struct cdrom_subcode32          *cdsc32 = &cdrom_subcode32;
27587 #endif
27588         if (data == NULL) {
27589                 return (EINVAL);
27590         }
27591 
27592         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27593                 return (ENXIO);
27594         }
27595 
27596         subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
27597 
27598 #ifdef _MULTI_DATAMODEL
27599         switch (ddi_model_convert_from(flag & FMODELS)) {
27600         case DDI_MODEL_ILP32:
27601                 if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
27602                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27603                             "sr_read_all_subcodes: ddi_copyin Failed\n");
27604                         kmem_free(subcode, sizeof (struct cdrom_subcode));
27605                         return (EFAULT);
27606                 }
27607                 /* Convert the ILP32 uscsi data from the application to LP64 */
27608                 cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
27609                 break;
27610         case DDI_MODEL_NONE:
27611                 if (ddi_copyin(data, subcode,
27612                     sizeof (struct cdrom_subcode), flag)) {
27613                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27614                             "sr_read_all_subcodes: ddi_copyin Failed\n");
27615                         kmem_free(subcode, sizeof (struct cdrom_subcode));
27616                         return (EFAULT);
27617                 }
27618                 break;
27619         }
27620 #else /* ! _MULTI_DATAMODEL */
27621         if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
27622                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27623                     "sr_read_all_subcodes: ddi_copyin Failed\n");
27624                 kmem_free(subcode, sizeof (struct cdrom_subcode));
27625                 return (EFAULT);
27626         }
27627 #endif /* _MULTI_DATAMODEL */
27628 
27629         /*
27630          * Since MMC-2 expects max 3 bytes for length, check if the
27631          * length input is greater than 3 bytes
27632          */
27633         if ((subcode->cdsc_length & 0xFF000000) != 0) {
27634                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27635                     "sr_read_all_subcodes: "
27636                     "cdrom transfer length too large: %d (limit %d)\n",
27637                     subcode->cdsc_length, 0xFFFFFF);
27638                 kmem_free(subcode, sizeof (struct cdrom_subcode));
27639                 return (EINVAL);
27640         }
27641 
27642         buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
27643         com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27644         bzero(cdb, CDB_GROUP5);
27645 
27646         if (un->un_f_mmc_cap == TRUE) {
27647                 cdb[0] = (char)SCMD_READ_CD;
27648                 cdb[2] = (char)0xff;
27649                 cdb[3] = (char)0xff;
27650                 cdb[4] = (char)0xff;
27651                 cdb[5] = (char)0xff;
27652                 cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27653                 cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27654                 cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
27655                 cdb[10] = 1;
27656         } else {
27657                 /*
27658                  * Note: A vendor specific command (0xDF) is being used her to
27659                  * request a read of all subcodes.
27660                  */
27661                 cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
27662                 cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
27663                 cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27664                 cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27665                 cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
27666         }
27667         com->uscsi_cdb          = cdb;
27668         com->uscsi_cdblen  = CDB_GROUP5;
27669         com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
27670         com->uscsi_buflen  = buflen;
27671         com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27672         rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27673             SD_PATH_STANDARD);
27674         kmem_free(subcode, sizeof (struct cdrom_subcode));
27675         kmem_free(com, sizeof (*com));
27676         return (rval);
27677 }
27678 
27679 
27680 /*
27681  *    Function: sr_read_subchannel()
27682  *
27683  * Description: This routine is the driver entry point for handling CD-ROM
27684  *              ioctl requests to return the Q sub-channel data of the CD
27685  *              current position block. (CDROMSUBCHNL) The data includes the
27686  *              track number, index number, absolute CD-ROM address (LBA or MSF
27687  *              format per the user) , track relative CD-ROM address (LBA or MSF
27688  *              format per the user), control data and audio status.
27689  *
27690  *   Arguments: dev     - the device 'dev_t'
27691  *              data    - pointer to user provided cdrom sub-channel structure
27692  *              flag    - this argument is a pass through to ddi_copyxxx()
27693  *                        directly from the mode argument of ioctl().
27694  *
27695  * Return Code: the code returned by sd_send_scsi_cmd()
27696  *              EFAULT if ddi_copyxxx() fails
27697  *              ENXIO if fail ddi_get_soft_state
27698  *              EINVAL if data pointer is NULL
27699  */
27700 
27701 static int
27702 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
27703 {
27704         struct sd_lun           *un;
27705         struct uscsi_cmd        *com;
27706         struct cdrom_subchnl    subchanel;
27707         struct cdrom_subchnl    *subchnl = &subchanel;
27708         char                    cdb[CDB_GROUP1];
27709         caddr_t                 buffer;
27710         int                     rval;
27711 
27712         if (data == NULL) {
27713                 return (EINVAL);
27714         }
27715 
27716         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27717             (un->un_state == SD_STATE_OFFLINE)) {
27718                 return (ENXIO);
27719         }
27720 
27721         if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
27722                 return (EFAULT);
27723         }
27724 
27725         buffer = kmem_zalloc((size_t)16, KM_SLEEP);
27726         bzero(cdb, CDB_GROUP1);
27727         cdb[0] = SCMD_READ_SUBCHANNEL;
27728         /* Set the MSF bit based on the user requested address format */
27729         cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
27730         /*
27731          * Set the Q bit in byte 2 to indicate that Q sub-channel data be
27732          * returned
27733          */
27734         cdb[2] = 0x40;
27735         /*
27736          * Set byte 3 to specify the return data format. A value of 0x01
27737          * indicates that the CD-ROM current position should be returned.
27738          */
27739         cdb[3] = 0x01;
27740         cdb[8] = 0x10;
27741         com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27742         com->uscsi_cdb          = cdb;
27743         com->uscsi_cdblen  = CDB_GROUP1;
27744         com->uscsi_bufaddr = buffer;
27745         com->uscsi_buflen  = 16;
27746         com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27747         rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27748             SD_PATH_STANDARD);
27749         if (rval != 0) {
27750                 kmem_free(buffer, 16);
27751                 kmem_free(com, sizeof (*com));
27752                 return (rval);
27753         }
27754 
27755         /* Process the returned Q sub-channel data */
27756         subchnl->cdsc_audiostatus = buffer[1];
27757         subchnl->cdsc_adr    = (buffer[5] & 0xF0) >> 4;
27758         subchnl->cdsc_ctrl   = (buffer[5] & 0x0F);
27759         subchnl->cdsc_trk    = buffer[6];
27760         subchnl->cdsc_ind    = buffer[7];
27761         if (subchnl->cdsc_format & CDROM_LBA) {
27762                 subchnl->cdsc_absaddr.lba =
27763                     ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27764                     ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27765                 subchnl->cdsc_reladdr.lba =
27766                     ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
27767                     ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
27768         } else if (un->un_f_cfg_readsub_bcd == TRUE) {
27769                 subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
27770                 subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
27771                 subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
27772                 subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
27773                 subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
27774                 subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
27775         } else {
27776                 subchnl->cdsc_absaddr.msf.minute = buffer[9];
27777                 subchnl->cdsc_absaddr.msf.second = buffer[10];
27778                 subchnl->cdsc_absaddr.msf.frame  = buffer[11];
27779                 subchnl->cdsc_reladdr.msf.minute = buffer[13];
27780                 subchnl->cdsc_reladdr.msf.second = buffer[14];
27781                 subchnl->cdsc_reladdr.msf.frame  = buffer[15];
27782         }
27783         kmem_free(buffer, 16);
27784         kmem_free(com, sizeof (*com));
27785         if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
27786             != 0) {
27787                 return (EFAULT);
27788         }
27789         return (rval);
27790 }
27791 
27792 
27793 /*
27794  *    Function: sr_read_tocentry()
27795  *
27796  * Description: This routine is the driver entry point for handling CD-ROM
27797  *              ioctl requests to read from the Table of Contents (TOC)
27798  *              (CDROMREADTOCENTRY). This routine provides the ADR and CTRL
27799  *              fields, the starting address (LBA or MSF format per the user)
27800  *              and the data mode if the user specified track is a data track.
27801  *
27802  *              Note: The READ HEADER (0x44) command used in this routine is
27803  *              obsolete per the SCSI MMC spec but still supported in the
27804  *              MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27805  *              therefore the command is still implemented in this routine.
27806  *
27807  *   Arguments: dev     - the device 'dev_t'
27808  *              data    - pointer to user provided toc entry structure,
27809  *                        specifying the track # and the address format
27810  *                        (LBA or MSF).
27811  *              flag    - this argument is a pass through to ddi_copyxxx()
27812  *                        directly from the mode argument of ioctl().
27813  *
27814  * Return Code: the code returned by sd_send_scsi_cmd()
27815  *              EFAULT if ddi_copyxxx() fails
27816  *              ENXIO if fail ddi_get_soft_state
27817  *              EINVAL if data pointer is NULL
27818  */
27819 
27820 static int
27821 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
27822 {
27823         struct sd_lun           *un = NULL;
27824         struct uscsi_cmd        *com;
27825         struct cdrom_tocentry   toc_entry;
27826         struct cdrom_tocentry   *entry = &toc_entry;
27827         caddr_t                 buffer;
27828         int                     rval;
27829         char                    cdb[CDB_GROUP1];
27830 
27831         if (data == NULL) {
27832                 return (EINVAL);
27833         }
27834 
27835         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27836             (un->un_state == SD_STATE_OFFLINE)) {
27837                 return (ENXIO);
27838         }
27839 
27840         if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
27841                 return (EFAULT);
27842         }
27843 
27844         /* Validate the requested track and address format */
27845         if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
27846                 return (EINVAL);
27847         }
27848 
27849         if (entry->cdte_track == 0) {
27850                 return (EINVAL);
27851         }
27852 
27853         buffer = kmem_zalloc((size_t)12, KM_SLEEP);
27854         com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27855         bzero(cdb, CDB_GROUP1);
27856 
27857         cdb[0] = SCMD_READ_TOC;
27858         /* Set the MSF bit based on the user requested address format  */
27859         cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
27860         if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27861                 cdb[6] = BYTE_TO_BCD(entry->cdte_track);
27862         } else {
27863                 cdb[6] = entry->cdte_track;
27864         }
27865 
27866         /*
27867          * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
27868          * (4 byte TOC response header + 8 byte track descriptor)
27869          */
27870         cdb[8] = 12;
27871         com->uscsi_cdb          = cdb;
27872         com->uscsi_cdblen  = CDB_GROUP1;
27873         com->uscsi_bufaddr = buffer;
27874         com->uscsi_buflen  = 0x0C;
27875         com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
27876         rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27877             SD_PATH_STANDARD);
27878         if (rval != 0) {
27879                 kmem_free(buffer, 12);
27880                 kmem_free(com, sizeof (*com));
27881                 return (rval);
27882         }
27883 
27884         /* Process the toc entry */
27885         entry->cdte_adr              = (buffer[5] & 0xF0) >> 4;
27886         entry->cdte_ctrl     = (buffer[5] & 0x0F);
27887         if (entry->cdte_format & CDROM_LBA) {
27888                 entry->cdte_addr.lba =
27889                     ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27890                     ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27891         } else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
27892                 entry->cdte_addr.msf.minute  = BCD_TO_BYTE(buffer[9]);
27893                 entry->cdte_addr.msf.second  = BCD_TO_BYTE(buffer[10]);
27894                 entry->cdte_addr.msf.frame   = BCD_TO_BYTE(buffer[11]);
27895                 /*
27896                  * Send a READ TOC command using the LBA address format to get
27897                  * the LBA for the track requested so it can be used in the
27898                  * READ HEADER request
27899                  *
27900                  * Note: The MSF bit of the READ HEADER command specifies the
27901                  * output format. The block address specified in that command
27902                  * must be in LBA format.
27903                  */
27904                 cdb[1] = 0;
27905                 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27906                     SD_PATH_STANDARD);
27907                 if (rval != 0) {
27908                         kmem_free(buffer, 12);
27909                         kmem_free(com, sizeof (*com));
27910                         return (rval);
27911                 }
27912         } else {
27913                 entry->cdte_addr.msf.minute  = buffer[9];
27914                 entry->cdte_addr.msf.second  = buffer[10];
27915                 entry->cdte_addr.msf.frame   = buffer[11];
27916                 /*
27917                  * Send a READ TOC command using the LBA address format to get
27918                  * the LBA for the track requested so it can be used in the
27919                  * READ HEADER request
27920                  *
27921                  * Note: The MSF bit of the READ HEADER command specifies the
27922                  * output format. The block address specified in that command
27923                  * must be in LBA format.
27924                  */
27925                 cdb[1] = 0;
27926                 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27927                     SD_PATH_STANDARD);
27928                 if (rval != 0) {
27929                         kmem_free(buffer, 12);
27930                         kmem_free(com, sizeof (*com));
27931                         return (rval);
27932                 }
27933         }
27934 
27935         /*
27936          * Build and send the READ HEADER command to determine the data mode of
27937          * the user specified track.
27938          */
27939         if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
27940             (entry->cdte_track != CDROM_LEADOUT)) {
27941                 bzero(cdb, CDB_GROUP1);
27942                 cdb[0] = SCMD_READ_HEADER;
27943                 cdb[2] = buffer[8];
27944                 cdb[3] = buffer[9];
27945                 cdb[4] = buffer[10];
27946                 cdb[5] = buffer[11];
27947                 cdb[8] = 0x08;
27948                 com->uscsi_buflen = 0x08;
27949                 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27950                     SD_PATH_STANDARD);
27951                 if (rval == 0) {
27952                         entry->cdte_datamode = buffer[0];
27953                 } else {
27954                         /*
27955                          * READ HEADER command failed, since this is
27956                          * obsoleted in one spec, its better to return
27957                          * -1 for an invlid track so that we can still
27958                          * receive the rest of the TOC data.
27959                          */
27960                         entry->cdte_datamode = (uchar_t)-1;
27961                 }
27962         } else {
27963                 entry->cdte_datamode = (uchar_t)-1;
27964         }
27965 
27966         kmem_free(buffer, 12);
27967         kmem_free(com, sizeof (*com));
27968         if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
27969                 return (EFAULT);
27970 
27971         return (rval);
27972 }
27973 
27974 
27975 /*
27976  *    Function: sr_read_tochdr()
27977  *
27978  * Description: This routine is the driver entry point for handling CD-ROM
27979  *              ioctl requests to read the Table of Contents (TOC) header
27980  *              (CDROMREADTOHDR). The TOC header consists of the disk starting
27981  *              and ending track numbers
27982  *
27983  *   Arguments: dev     - the device 'dev_t'
27984  *              data    - pointer to user provided toc header structure,
27985  *                        specifying the starting and ending track numbers.
27986  *              flag    - this argument is a pass through to ddi_copyxxx()
27987  *                        directly from the mode argument of ioctl().
27988  *
27989  * Return Code: the code returned by sd_send_scsi_cmd()
27990  *              EFAULT if ddi_copyxxx() fails
27991  *              ENXIO if fail ddi_get_soft_state
27992  *              EINVAL if data pointer is NULL
27993  */
27994 
27995 static int
27996 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
27997 {
27998         struct sd_lun           *un;
27999         struct uscsi_cmd        *com;
28000         struct cdrom_tochdr     toc_header;
28001         struct cdrom_tochdr     *hdr = &toc_header;
28002         char                    cdb[CDB_GROUP1];
28003         int                     rval;
28004         caddr_t                 buffer;
28005 
28006         if (data == NULL) {
28007                 return (EINVAL);
28008         }
28009 
28010         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28011             (un->un_state == SD_STATE_OFFLINE)) {
28012                 return (ENXIO);
28013         }
28014 
28015         buffer = kmem_zalloc(4, KM_SLEEP);
28016         bzero(cdb, CDB_GROUP1);
28017         cdb[0] = SCMD_READ_TOC;
28018         /*
28019          * Specifying a track number of 0x00 in the READ TOC command indicates
28020          * that the TOC header should be returned
28021          */
28022         cdb[6] = 0x00;
28023         /*
28024          * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
28025          * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
28026          */
28027         cdb[8] = 0x04;
28028         com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28029         com->uscsi_cdb          = cdb;
28030         com->uscsi_cdblen  = CDB_GROUP1;
28031         com->uscsi_bufaddr = buffer;
28032         com->uscsi_buflen  = 0x04;
28033         com->uscsi_timeout = 300;
28034         com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28035 
28036         rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
28037             SD_PATH_STANDARD);
28038         if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
28039                 hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
28040                 hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
28041         } else {
28042                 hdr->cdth_trk0 = buffer[2];
28043                 hdr->cdth_trk1 = buffer[3];
28044         }
28045         kmem_free(buffer, 4);
28046         kmem_free(com, sizeof (*com));
28047         if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
28048                 return (EFAULT);
28049         }
28050         return (rval);
28051 }
28052 
28053 
28054 /*
28055  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
28056  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
28057  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
28058  * digital audio and extended architecture digital audio. These modes are
28059  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
28060  * MMC specs.
28061  *
28062  * In addition to support for the various data formats these routines also
28063  * include support for devices that implement only the direct access READ
28064  * commands (0x08, 0x28), devices that implement the READ_CD commands
28065  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
28066  * READ CDXA commands (0xD8, 0xDB)
28067  */
28068 
28069 /*
28070  *    Function: sr_read_mode1()
28071  *
28072  * Description: This routine is the driver entry point for handling CD-ROM
28073  *              ioctl read mode1 requests (CDROMREADMODE1).
28074  *
28075  *   Arguments: dev     - the device 'dev_t'
28076  *              data    - pointer to user provided cd read structure specifying
28077  *                        the lba buffer address and length.
28078  *              flag    - this argument is a pass through to ddi_copyxxx()
28079  *                        directly from the mode argument of ioctl().
28080  *
28081  * Return Code: the code returned by sd_send_scsi_cmd()
28082  *              EFAULT if ddi_copyxxx() fails
28083  *              ENXIO if fail ddi_get_soft_state
28084  *              EINVAL if data pointer is NULL
28085  */
28086 
28087 static int
28088 sr_read_mode1(dev_t dev, caddr_t data, int flag)
28089 {
28090         struct sd_lun           *un;
28091         struct cdrom_read       mode1_struct;
28092         struct cdrom_read       *mode1 = &mode1_struct;
28093         int                     rval;
28094         sd_ssc_t                *ssc;
28095 
28096 #ifdef _MULTI_DATAMODEL
28097         /* To support ILP32 applications in an LP64 world */
28098         struct cdrom_read32     cdrom_read32;
28099         struct cdrom_read32     *cdrd32 = &cdrom_read32;
28100 #endif /* _MULTI_DATAMODEL */
28101 
28102         if (data == NULL) {
28103                 return (EINVAL);
28104         }
28105 
28106         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28107             (un->un_state == SD_STATE_OFFLINE)) {
28108                 return (ENXIO);
28109         }
28110 
28111         SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28112             "sd_read_mode1: entry: un:0x%p\n", un);
28113 
28114 #ifdef _MULTI_DATAMODEL
28115         switch (ddi_model_convert_from(flag & FMODELS)) {
28116         case DDI_MODEL_ILP32:
28117                 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28118                         return (EFAULT);
28119                 }
28120                 /* Convert the ILP32 uscsi data from the application to LP64 */
28121                 cdrom_read32tocdrom_read(cdrd32, mode1);
28122                 break;
28123         case DDI_MODEL_NONE:
28124                 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28125                         return (EFAULT);
28126                 }
28127         }
28128 #else /* ! _MULTI_DATAMODEL */
28129         if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28130                 return (EFAULT);
28131         }
28132 #endif /* _MULTI_DATAMODEL */
28133 
28134         ssc = sd_ssc_init(un);
28135         rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr,
28136             mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
28137         sd_ssc_fini(ssc);
28138 
28139         SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28140             "sd_read_mode1: exit: un:0x%p\n", un);
28141 
28142         return (rval);
28143 }
28144 
28145 
28146 /*
28147  *    Function: sr_read_cd_mode2()
28148  *
28149  * Description: This routine is the driver entry point for handling CD-ROM
28150  *              ioctl read mode2 requests (CDROMREADMODE2) for devices that
28151  *              support the READ CD (0xBE) command or the 1st generation
28152  *              READ CD (0xD4) command.
28153  *
28154  *   Arguments: dev     - the device 'dev_t'
28155  *              data    - pointer to user provided cd read structure specifying
28156  *                        the lba buffer address and length.
28157  *              flag    - this argument is a pass through to ddi_copyxxx()
28158  *                        directly from the mode argument of ioctl().
28159  *
28160  * Return Code: the code returned by sd_send_scsi_cmd()
28161  *              EFAULT if ddi_copyxxx() fails
28162  *              ENXIO if fail ddi_get_soft_state
28163  *              EINVAL if data pointer is NULL
28164  */
28165 
28166 static int
28167 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
28168 {
28169         struct sd_lun           *un;
28170         struct uscsi_cmd        *com;
28171         struct cdrom_read       mode2_struct;
28172         struct cdrom_read       *mode2 = &mode2_struct;
28173         uchar_t                 cdb[CDB_GROUP5];
28174         int                     nblocks;
28175         int                     rval;
28176 #ifdef _MULTI_DATAMODEL
28177         /*  To support ILP32 applications in an LP64 world */
28178         struct cdrom_read32     cdrom_read32;
28179         struct cdrom_read32     *cdrd32 = &cdrom_read32;
28180 #endif /* _MULTI_DATAMODEL */
28181 
28182         if (data == NULL) {
28183                 return (EINVAL);
28184         }
28185 
28186         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28187             (un->un_state == SD_STATE_OFFLINE)) {
28188                 return (ENXIO);
28189         }
28190 
28191 #ifdef _MULTI_DATAMODEL
28192         switch (ddi_model_convert_from(flag & FMODELS)) {
28193         case DDI_MODEL_ILP32:
28194                 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28195                         return (EFAULT);
28196                 }
28197                 /* Convert the ILP32 uscsi data from the application to LP64 */
28198                 cdrom_read32tocdrom_read(cdrd32, mode2);
28199                 break;
28200         case DDI_MODEL_NONE:
28201                 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28202                         return (EFAULT);
28203                 }
28204                 break;
28205         }
28206 
28207 #else /* ! _MULTI_DATAMODEL */
28208         if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28209                 return (EFAULT);
28210         }
28211 #endif /* _MULTI_DATAMODEL */
28212 
28213         bzero(cdb, sizeof (cdb));
28214         if (un->un_f_cfg_read_cd_xd4 == TRUE) {
28215                 /* Read command supported by 1st generation atapi drives */
28216                 cdb[0] = SCMD_READ_CDD4;
28217         } else {
28218                 /* Universal CD Access Command */
28219                 cdb[0] = SCMD_READ_CD;
28220         }
28221 
28222         /*
28223          * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
28224          */
28225         cdb[1] = CDROM_SECTOR_TYPE_MODE2;
28226 
28227         /* set the start address */
28228         cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
28229         cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
28230         cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28231         cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
28232 
28233         /* set the transfer length */
28234         nblocks = mode2->cdread_buflen / 2336;
28235         cdb[6] = (uchar_t)(nblocks >> 16);
28236         cdb[7] = (uchar_t)(nblocks >> 8);
28237         cdb[8] = (uchar_t)nblocks;
28238 
28239         /* set the filter bits */
28240         cdb[9] = CDROM_READ_CD_USERDATA;
28241 
28242         com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28243         com->uscsi_cdb = (caddr_t)cdb;
28244         com->uscsi_cdblen = sizeof (cdb);
28245         com->uscsi_bufaddr = mode2->cdread_bufaddr;
28246         com->uscsi_buflen = mode2->cdread_buflen;
28247         com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28248 
28249         rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28250             SD_PATH_STANDARD);
28251         kmem_free(com, sizeof (*com));
28252         return (rval);
28253 }
28254 
28255 
28256 /*
28257  *    Function: sr_read_mode2()
28258  *
28259  * Description: This routine is the driver entry point for handling CD-ROM
28260  *              ioctl read mode2 requests (CDROMREADMODE2) for devices that
28261  *              do not support the READ CD (0xBE) command.
28262  *
28263  *   Arguments: dev     - the device 'dev_t'
28264  *              data    - pointer to user provided cd read structure specifying
28265  *                        the lba buffer address and length.
28266  *              flag    - this argument is a pass through to ddi_copyxxx()
28267  *                        directly from the mode argument of ioctl().
28268  *
28269  * Return Code: the code returned by sd_send_scsi_cmd()
28270  *              EFAULT if ddi_copyxxx() fails
28271  *              ENXIO if fail ddi_get_soft_state
28272  *              EINVAL if data pointer is NULL
28273  *              EIO if fail to reset block size
28274  *              EAGAIN if commands are in progress in the driver
28275  */
28276 
28277 static int
28278 sr_read_mode2(dev_t dev, caddr_t data, int flag)
28279 {
28280         struct sd_lun           *un;
28281         struct cdrom_read       mode2_struct;
28282         struct cdrom_read       *mode2 = &mode2_struct;
28283         int                     rval;
28284         uint32_t                restore_blksize;
28285         struct uscsi_cmd        *com;
28286         uchar_t                 cdb[CDB_GROUP0];
28287         int                     nblocks;
28288 
28289 #ifdef _MULTI_DATAMODEL
28290         /* To support ILP32 applications in an LP64 world */
28291         struct cdrom_read32     cdrom_read32;
28292         struct cdrom_read32     *cdrd32 = &cdrom_read32;
28293 #endif /* _MULTI_DATAMODEL */
28294 
28295         if (data == NULL) {
28296                 return (EINVAL);
28297         }
28298 
28299         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28300             (un->un_state == SD_STATE_OFFLINE)) {
28301                 return (ENXIO);
28302         }
28303 
28304         /*
28305          * Because this routine will update the device and driver block size
28306          * being used we want to make sure there are no commands in progress.
28307          * If commands are in progress the user will have to try again.
28308          *
28309          * We check for 1 instead of 0 because we increment un_ncmds_in_driver
28310          * in sdioctl to protect commands from sdioctl through to the top of
28311          * sd_uscsi_strategy. See sdioctl for details.
28312          */
28313         mutex_enter(SD_MUTEX(un));
28314         if (un->un_ncmds_in_driver != 1) {
28315                 mutex_exit(SD_MUTEX(un));
28316                 return (EAGAIN);
28317         }
28318         mutex_exit(SD_MUTEX(un));
28319 
28320         SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28321             "sd_read_mode2: entry: un:0x%p\n", un);
28322 
28323 #ifdef _MULTI_DATAMODEL
28324         switch (ddi_model_convert_from(flag & FMODELS)) {
28325         case DDI_MODEL_ILP32:
28326                 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28327                         return (EFAULT);
28328                 }
28329                 /* Convert the ILP32 uscsi data from the application to LP64 */
28330                 cdrom_read32tocdrom_read(cdrd32, mode2);
28331                 break;
28332         case DDI_MODEL_NONE:
28333                 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28334                         return (EFAULT);
28335                 }
28336                 break;
28337         }
28338 #else /* ! _MULTI_DATAMODEL */
28339         if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
28340                 return (EFAULT);
28341         }
28342 #endif /* _MULTI_DATAMODEL */
28343 
28344         /* Store the current target block size for restoration later */
28345         restore_blksize = un->un_tgt_blocksize;
28346 
28347         /* Change the device and soft state target block size to 2336 */
28348         if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
28349                 rval = EIO;
28350                 goto done;
28351         }
28352 
28353 
28354         bzero(cdb, sizeof (cdb));
28355 
28356         /* set READ operation */
28357         cdb[0] = SCMD_READ;
28358 
28359         /* adjust lba for 2kbyte blocks from 512 byte blocks */
28360         mode2->cdread_lba >>= 2;
28361 
28362         /* set the start address */
28363         cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
28364         cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28365         cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
28366 
28367         /* set the transfer length */
28368         nblocks = mode2->cdread_buflen / 2336;
28369         cdb[4] = (uchar_t)nblocks & 0xFF;
28370 
28371         /* build command */
28372         com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28373         com->uscsi_cdb = (caddr_t)cdb;
28374         com->uscsi_cdblen = sizeof (cdb);
28375         com->uscsi_bufaddr = mode2->cdread_bufaddr;
28376         com->uscsi_buflen = mode2->cdread_buflen;
28377         com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28378 
28379         /*
28380          * Issue SCSI command with user space address for read buffer.
28381          *
28382          * This sends the command through main channel in the driver.
28383          *
28384          * Since this is accessed via an IOCTL call, we go through the
28385          * standard path, so that if the device was powered down, then
28386          * it would be 'awakened' to handle the command.
28387          */
28388         rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28389             SD_PATH_STANDARD);
28390 
28391         kmem_free(com, sizeof (*com));
28392 
28393         /* Restore the device and soft state target block size */
28394         if (sr_sector_mode(dev, restore_blksize) != 0) {
28395                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28396                     "can't do switch back to mode 1\n");
28397                 /*
28398                  * If sd_send_scsi_READ succeeded we still need to report
28399                  * an error because we failed to reset the block size
28400                  */
28401                 if (rval == 0) {
28402                         rval = EIO;
28403                 }
28404         }
28405 
28406 done:
28407         SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28408             "sd_read_mode2: exit: un:0x%p\n", un);
28409 
28410         return (rval);
28411 }
28412 
28413 
28414 /*
28415  *    Function: sr_sector_mode()
28416  *
28417  * Description: This utility function is used by sr_read_mode2 to set the target
28418  *              block size based on the user specified size. This is a legacy
28419  *              implementation based upon a vendor specific mode page
28420  *
28421  *   Arguments: dev     - the device 'dev_t'
28422  *              data    - flag indicating if block size is being set to 2336 or
28423  *                        512.
28424  *
28425  * Return Code: the code returned by sd_send_scsi_cmd()
28426  *              EFAULT if ddi_copyxxx() fails
28427  *              ENXIO if fail ddi_get_soft_state
28428  *              EINVAL if data pointer is NULL
28429  */
28430 
28431 static int
28432 sr_sector_mode(dev_t dev, uint32_t blksize)
28433 {
28434         struct sd_lun   *un;
28435         uchar_t         *sense;
28436         uchar_t         *select;
28437         int             rval;
28438         sd_ssc_t        *ssc;
28439 
28440         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28441             (un->un_state == SD_STATE_OFFLINE)) {
28442                 return (ENXIO);
28443         }
28444 
28445         sense = kmem_zalloc(20, KM_SLEEP);
28446 
28447         /* Note: This is a vendor specific mode page (0x81) */
28448         ssc = sd_ssc_init(un);
28449         rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81,
28450             SD_PATH_STANDARD);
28451         sd_ssc_fini(ssc);
28452         if (rval != 0) {
28453                 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28454                     "sr_sector_mode: Mode Sense failed\n");
28455                 kmem_free(sense, 20);
28456                 return (rval);
28457         }
28458         select = kmem_zalloc(20, KM_SLEEP);
28459         select[3] = 0x08;
28460         select[10] = ((blksize >> 8) & 0xff);
28461         select[11] = (blksize & 0xff);
28462         select[12] = 0x01;
28463         select[13] = 0x06;
28464         select[14] = sense[14];
28465         select[15] = sense[15];
28466         if (blksize == SD_MODE2_BLKSIZE) {
28467                 select[14] |= 0x01;
28468         }
28469 
28470         ssc = sd_ssc_init(un);
28471         rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20,
28472             SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28473         sd_ssc_fini(ssc);
28474         if (rval != 0) {
28475                 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28476                     "sr_sector_mode: Mode Select failed\n");
28477         } else {
28478                 /*
28479                  * Only update the softstate block size if we successfully
28480                  * changed the device block mode.
28481                  */
28482                 mutex_enter(SD_MUTEX(un));
28483                 sd_update_block_info(un, blksize, 0);
28484                 mutex_exit(SD_MUTEX(un));
28485         }
28486         kmem_free(sense, 20);
28487         kmem_free(select, 20);
28488         return (rval);
28489 }
28490 
28491 
28492 /*
28493  *    Function: sr_read_cdda()
28494  *
28495  * Description: This routine is the driver entry point for handling CD-ROM
28496  *              ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
28497  *              the target supports CDDA these requests are handled via a vendor
28498  *              specific command (0xD8) If the target does not support CDDA
28499  *              these requests are handled via the READ CD command (0xBE).
28500  *
28501  *   Arguments: dev     - the device 'dev_t'
28502  *              data    - pointer to user provided CD-DA structure specifying
28503  *                        the track starting address, transfer length, and
28504  *                        subcode options.
28505  *              flag    - this argument is a pass through to ddi_copyxxx()
28506  *                        directly from the mode argument of ioctl().
28507  *
28508  * Return Code: the code returned by sd_send_scsi_cmd()
28509  *              EFAULT if ddi_copyxxx() fails
28510  *              ENXIO if fail ddi_get_soft_state
28511  *              EINVAL if invalid arguments are provided
28512  *              ENOTTY
28513  */
28514 
28515 static int
28516 sr_read_cdda(dev_t dev, caddr_t data, int flag)
28517 {
28518         struct sd_lun                   *un;
28519         struct uscsi_cmd                *com;
28520         struct cdrom_cdda               *cdda;
28521         int                             rval;
28522         size_t                          buflen;
28523         char                            cdb[CDB_GROUP5];
28524 
28525 #ifdef _MULTI_DATAMODEL
28526         /* To support ILP32 applications in an LP64 world */
28527         struct cdrom_cdda32     cdrom_cdda32;
28528         struct cdrom_cdda32     *cdda32 = &cdrom_cdda32;
28529 #endif /* _MULTI_DATAMODEL */
28530 
28531         if (data == NULL) {
28532                 return (EINVAL);
28533         }
28534 
28535         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28536                 return (ENXIO);
28537         }
28538 
28539         cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
28540 
28541 #ifdef _MULTI_DATAMODEL
28542         switch (ddi_model_convert_from(flag & FMODELS)) {
28543         case DDI_MODEL_ILP32:
28544                 if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
28545                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28546                             "sr_read_cdda: ddi_copyin Failed\n");
28547                         kmem_free(cdda, sizeof (struct cdrom_cdda));
28548                         return (EFAULT);
28549                 }
28550                 /* Convert the ILP32 uscsi data from the application to LP64 */
28551                 cdrom_cdda32tocdrom_cdda(cdda32, cdda);
28552                 break;
28553         case DDI_MODEL_NONE:
28554                 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28555                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28556                             "sr_read_cdda: ddi_copyin Failed\n");
28557                         kmem_free(cdda, sizeof (struct cdrom_cdda));
28558                         return (EFAULT);
28559                 }
28560                 break;
28561         }
28562 #else /* ! _MULTI_DATAMODEL */
28563         if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28564                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28565                     "sr_read_cdda: ddi_copyin Failed\n");
28566                 kmem_free(cdda, sizeof (struct cdrom_cdda));
28567                 return (EFAULT);
28568         }
28569 #endif /* _MULTI_DATAMODEL */
28570 
28571         /*
28572          * Since MMC-2 expects max 3 bytes for length, check if the
28573          * length input is greater than 3 bytes
28574          */
28575         if ((cdda->cdda_length & 0xFF000000) != 0) {
28576                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
28577                     "cdrom transfer length too large: %d (limit %d)\n",
28578                     cdda->cdda_length, 0xFFFFFF);
28579                 kmem_free(cdda, sizeof (struct cdrom_cdda));
28580                 return (EINVAL);
28581         }
28582 
28583         switch (cdda->cdda_subcode) {
28584         case CDROM_DA_NO_SUBCODE:
28585                 buflen = CDROM_BLK_2352 * cdda->cdda_length;
28586                 break;
28587         case CDROM_DA_SUBQ:
28588                 buflen = CDROM_BLK_2368 * cdda->cdda_length;
28589                 break;
28590         case CDROM_DA_ALL_SUBCODE:
28591                 buflen = CDROM_BLK_2448 * cdda->cdda_length;
28592                 break;
28593         case CDROM_DA_SUBCODE_ONLY:
28594                 buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
28595                 break;
28596         default:
28597                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28598                     "sr_read_cdda: Subcode '0x%x' Not Supported\n",
28599                     cdda->cdda_subcode);
28600                 kmem_free(cdda, sizeof (struct cdrom_cdda));
28601                 return (EINVAL);
28602         }
28603 
28604         /* Build and send the command */
28605         com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28606         bzero(cdb, CDB_GROUP5);
28607 
28608         if (un->un_f_cfg_cdda == TRUE) {
28609                 cdb[0] = (char)SCMD_READ_CD;
28610                 cdb[1] = 0x04;
28611                 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28612                 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28613                 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28614                 cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28615                 cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28616                 cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28617                 cdb[8] = ((cdda->cdda_length) & 0x000000ff);
28618                 cdb[9] = 0x10;
28619                 switch (cdda->cdda_subcode) {
28620                 case CDROM_DA_NO_SUBCODE :
28621                         cdb[10] = 0x0;
28622                         break;
28623                 case CDROM_DA_SUBQ :
28624                         cdb[10] = 0x2;
28625                         break;
28626                 case CDROM_DA_ALL_SUBCODE :
28627                         cdb[10] = 0x1;
28628                         break;
28629                 case CDROM_DA_SUBCODE_ONLY :
28630                         /* FALLTHROUGH */
28631                 default :
28632                         kmem_free(cdda, sizeof (struct cdrom_cdda));
28633                         kmem_free(com, sizeof (*com));
28634                         return (ENOTTY);
28635                 }
28636         } else {
28637                 cdb[0] = (char)SCMD_READ_CDDA;
28638                 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28639                 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28640                 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28641                 cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28642                 cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
28643                 cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28644                 cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28645                 cdb[9] = ((cdda->cdda_length) & 0x000000ff);
28646                 cdb[10] = cdda->cdda_subcode;
28647         }
28648 
28649         com->uscsi_cdb = cdb;
28650         com->uscsi_cdblen = CDB_GROUP5;
28651         com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
28652         com->uscsi_buflen = buflen;
28653         com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28654 
28655         rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28656             SD_PATH_STANDARD);
28657 
28658         kmem_free(cdda, sizeof (struct cdrom_cdda));
28659         kmem_free(com, sizeof (*com));
28660         return (rval);
28661 }
28662 
28663 
28664 /*
28665  *    Function: sr_read_cdxa()
28666  *
28667  * Description: This routine is the driver entry point for handling CD-ROM
28668  *              ioctl requests to return CD-XA (Extended Architecture) data.
28669  *              (CDROMCDXA).
28670  *
28671  *   Arguments: dev     - the device 'dev_t'
28672  *              data    - pointer to user provided CD-XA structure specifying
28673  *                        the data starting address, transfer length, and format
28674  *              flag    - this argument is a pass through to ddi_copyxxx()
28675  *                        directly from the mode argument of ioctl().
28676  *
28677  * Return Code: the code returned by sd_send_scsi_cmd()
28678  *              EFAULT if ddi_copyxxx() fails
28679  *              ENXIO if fail ddi_get_soft_state
28680  *              EINVAL if data pointer is NULL
28681  */
28682 
28683 static int
28684 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
28685 {
28686         struct sd_lun           *un;
28687         struct uscsi_cmd        *com;
28688         struct cdrom_cdxa       *cdxa;
28689         int                     rval;
28690         size_t                  buflen;
28691         char                    cdb[CDB_GROUP5];
28692         uchar_t                 read_flags;
28693 
28694 #ifdef _MULTI_DATAMODEL
28695         /* To support ILP32 applications in an LP64 world */
28696         struct cdrom_cdxa32             cdrom_cdxa32;
28697         struct cdrom_cdxa32             *cdxa32 = &cdrom_cdxa32;
28698 #endif /* _MULTI_DATAMODEL */
28699 
28700         if (data == NULL) {
28701                 return (EINVAL);
28702         }
28703 
28704         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28705                 return (ENXIO);
28706         }
28707 
28708         cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
28709 
28710 #ifdef _MULTI_DATAMODEL
28711         switch (ddi_model_convert_from(flag & FMODELS)) {
28712         case DDI_MODEL_ILP32:
28713                 if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
28714                         kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28715                         return (EFAULT);
28716                 }
28717                 /*
28718                  * Convert the ILP32 uscsi data from the
28719                  * application to LP64 for internal use.
28720                  */
28721                 cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
28722                 break;
28723         case DDI_MODEL_NONE:
28724                 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28725                         kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28726                         return (EFAULT);
28727                 }
28728                 break;
28729         }
28730 #else /* ! _MULTI_DATAMODEL */
28731         if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28732                 kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28733                 return (EFAULT);
28734         }
28735 #endif /* _MULTI_DATAMODEL */
28736 
28737         /*
28738          * Since MMC-2 expects max 3 bytes for length, check if the
28739          * length input is greater than 3 bytes
28740          */
28741         if ((cdxa->cdxa_length & 0xFF000000) != 0) {
28742                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
28743                     "cdrom transfer length too large: %d (limit %d)\n",
28744                     cdxa->cdxa_length, 0xFFFFFF);
28745                 kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28746                 return (EINVAL);
28747         }
28748 
28749         switch (cdxa->cdxa_format) {
28750         case CDROM_XA_DATA:
28751                 buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
28752                 read_flags = 0x10;
28753                 break;
28754         case CDROM_XA_SECTOR_DATA:
28755                 buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
28756                 read_flags = 0xf8;
28757                 break;
28758         case CDROM_XA_DATA_W_ERROR:
28759                 buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
28760                 read_flags = 0xfc;
28761                 break;
28762         default:
28763                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28764                     "sr_read_cdxa: Format '0x%x' Not Supported\n",
28765                     cdxa->cdxa_format);
28766                 kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28767                 return (EINVAL);
28768         }
28769 
28770         com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28771         bzero(cdb, CDB_GROUP5);
28772         if (un->un_f_mmc_cap == TRUE) {
28773                 cdb[0] = (char)SCMD_READ_CD;
28774                 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28775                 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28776                 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28777                 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28778                 cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28779                 cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28780                 cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
28781                 cdb[9] = (char)read_flags;
28782         } else {
28783                 /*
28784                  * Note: A vendor specific command (0xDB) is being used her to
28785                  * request a read of all subcodes.
28786                  */
28787                 cdb[0] = (char)SCMD_READ_CDXA;
28788                 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28789                 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28790                 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28791                 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28792                 cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
28793                 cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28794                 cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28795                 cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
28796                 cdb[10] = cdxa->cdxa_format;
28797         }
28798         com->uscsi_cdb          = cdb;
28799         com->uscsi_cdblen  = CDB_GROUP5;
28800         com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
28801         com->uscsi_buflen  = buflen;
28802         com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28803         rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28804             SD_PATH_STANDARD);
28805         kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28806         kmem_free(com, sizeof (*com));
28807         return (rval);
28808 }
28809 
28810 
28811 /*
28812  *    Function: sr_eject()
28813  *
28814  * Description: This routine is the driver entry point for handling CD-ROM
28815  *              eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
28816  *
28817  *   Arguments: dev     - the device 'dev_t'
28818  *
28819  * Return Code: the code returned by sd_send_scsi_cmd()
28820  */
28821 
28822 static int
28823 sr_eject(dev_t dev)
28824 {
28825         struct sd_lun   *un;
28826         int             rval;
28827         sd_ssc_t        *ssc;
28828 
28829         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28830             (un->un_state == SD_STATE_OFFLINE)) {
28831                 return (ENXIO);
28832         }
28833 
28834         /*
28835          * To prevent race conditions with the eject
28836          * command, keep track of an eject command as
28837          * it progresses. If we are already handling
28838          * an eject command in the driver for the given
28839          * unit and another request to eject is received
28840          * immediately return EAGAIN so we don't lose
28841          * the command if the current eject command fails.
28842          */
28843         mutex_enter(SD_MUTEX(un));
28844         if (un->un_f_ejecting == TRUE) {
28845                 mutex_exit(SD_MUTEX(un));
28846                 return (EAGAIN);
28847         }
28848         un->un_f_ejecting = TRUE;
28849         mutex_exit(SD_MUTEX(un));
28850 
28851         ssc = sd_ssc_init(un);
28852         rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
28853             SD_PATH_STANDARD);
28854         sd_ssc_fini(ssc);
28855 
28856         if (rval != 0) {
28857                 mutex_enter(SD_MUTEX(un));
28858                 un->un_f_ejecting = FALSE;
28859                 mutex_exit(SD_MUTEX(un));
28860                 return (rval);
28861         }
28862 
28863         ssc = sd_ssc_init(un);
28864         rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
28865             SD_TARGET_EJECT, SD_PATH_STANDARD);
28866         sd_ssc_fini(ssc);
28867 
28868         if (rval == 0) {
28869                 mutex_enter(SD_MUTEX(un));
28870                 sr_ejected(un);
28871                 un->un_mediastate = DKIO_EJECTED;
28872                 un->un_f_ejecting = FALSE;
28873                 cv_broadcast(&un->un_state_cv);
28874                 mutex_exit(SD_MUTEX(un));
28875         } else {
28876                 mutex_enter(SD_MUTEX(un));
28877                 un->un_f_ejecting = FALSE;
28878                 mutex_exit(SD_MUTEX(un));
28879         }
28880         return (rval);
28881 }
28882 
28883 
28884 /*
28885  *    Function: sr_ejected()
28886  *
28887  * Description: This routine updates the soft state structure to invalidate the
28888  *              geometry information after the media has been ejected or a
28889  *              media eject has been detected.
28890  *
28891  *   Arguments: un - driver soft state (unit) structure
28892  */
28893 
28894 static void
28895 sr_ejected(struct sd_lun *un)
28896 {
28897         struct sd_errstats *stp;
28898 
28899         ASSERT(un != NULL);
28900         ASSERT(mutex_owned(SD_MUTEX(un)));
28901 
28902         un->un_f_blockcount_is_valid = FALSE;
28903         un->un_f_tgt_blocksize_is_valid      = FALSE;
28904         mutex_exit(SD_MUTEX(un));
28905         cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
28906         mutex_enter(SD_MUTEX(un));
28907 
28908         if (un->un_errstats != NULL) {
28909                 stp = (struct sd_errstats *)un->un_errstats->ks_data;
28910                 stp->sd_capacity.value.ui64 = 0;
28911         }
28912 }
28913 
28914 
28915 /*
28916  *    Function: sr_check_wp()
28917  *
28918  * Description: This routine checks the write protection of a removable
28919  *      media disk and hotpluggable devices via the write protect bit of
28920  *      the Mode Page Header device specific field. Some devices choke
28921  *      on unsupported mode page. In order to workaround this issue,
28922  *      this routine has been implemented to use 0x3f mode page(request
28923  *      for all pages) for all device types.
28924  *
28925  *   Arguments: dev             - the device 'dev_t'
28926  *
28927  * Return Code: int indicating if the device is write protected (1) or not (0)
28928  *
28929  *     Context: Kernel thread.
28930  *
28931  */
28932 
28933 static int
28934 sr_check_wp(dev_t dev)
28935 {
28936         struct sd_lun   *un;
28937         uchar_t         device_specific;
28938         uchar_t         *sense;
28939         int             hdrlen;
28940         int             rval = FALSE;
28941         int             status;
28942         sd_ssc_t        *ssc;
28943 
28944         /*
28945          * Note: The return codes for this routine should be reworked to
28946          * properly handle the case of a NULL softstate.
28947          */
28948         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28949                 return (FALSE);
28950         }
28951 
28952         if (un->un_f_cfg_is_atapi == TRUE) {
28953                 /*
28954                  * The mode page contents are not required; set the allocation
28955                  * length for the mode page header only
28956                  */
28957                 hdrlen = MODE_HEADER_LENGTH_GRP2;
28958                 sense = kmem_zalloc(hdrlen, KM_SLEEP);
28959                 ssc = sd_ssc_init(un);
28960                 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen,
28961                     MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
28962                 sd_ssc_fini(ssc);
28963                 if (status != 0)
28964                         goto err_exit;
28965                 device_specific =
28966                     ((struct mode_header_grp2 *)sense)->device_specific;
28967         } else {
28968                 hdrlen = MODE_HEADER_LENGTH;
28969                 sense = kmem_zalloc(hdrlen, KM_SLEEP);
28970                 ssc = sd_ssc_init(un);
28971                 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen,
28972                     MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
28973                 sd_ssc_fini(ssc);
28974                 if (status != 0)
28975                         goto err_exit;
28976                 device_specific =
28977                     ((struct mode_header *)sense)->device_specific;
28978         }
28979 
28980 
28981         /*
28982          * Write protect mode sense failed; not all disks
28983          * understand this query. Return FALSE assuming that
28984          * these devices are not writable.
28985          */
28986         if (device_specific & WRITE_PROTECT) {
28987                 rval = TRUE;
28988         }
28989 
28990 err_exit:
28991         kmem_free(sense, hdrlen);
28992         return (rval);
28993 }
28994 
28995 /*
28996  *    Function: sr_volume_ctrl()
28997  *
28998  * Description: This routine is the driver entry point for handling CD-ROM
28999  *              audio output volume ioctl requests. (CDROMVOLCTRL)
29000  *
29001  *   Arguments: dev     - the device 'dev_t'
29002  *              data    - pointer to user audio volume control structure
29003  *              flag    - this argument is a pass through to ddi_copyxxx()
29004  *                        directly from the mode argument of ioctl().
29005  *
29006  * Return Code: the code returned by sd_send_scsi_cmd()
29007  *              EFAULT if ddi_copyxxx() fails
29008  *              ENXIO if fail ddi_get_soft_state
29009  *              EINVAL if data pointer is NULL
29010  *
29011  */
29012 
29013 static int
29014 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
29015 {
29016         struct sd_lun           *un;
29017         struct cdrom_volctrl    volume;
29018         struct cdrom_volctrl    *vol = &volume;
29019         uchar_t                 *sense_page;
29020         uchar_t                 *select_page;
29021         uchar_t                 *sense;
29022         uchar_t                 *select;
29023         int                     sense_buflen;
29024         int                     select_buflen;
29025         int                     rval;
29026         sd_ssc_t                *ssc;
29027 
29028         if (data == NULL) {
29029                 return (EINVAL);
29030         }
29031 
29032         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29033             (un->un_state == SD_STATE_OFFLINE)) {
29034                 return (ENXIO);
29035         }
29036 
29037         if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
29038                 return (EFAULT);
29039         }
29040 
29041         if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29042                 struct mode_header_grp2         *sense_mhp;
29043                 struct mode_header_grp2         *select_mhp;
29044                 int                             bd_len;
29045 
29046                 sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
29047                 select_buflen = MODE_HEADER_LENGTH_GRP2 +
29048                     MODEPAGE_AUDIO_CTRL_LEN;
29049                 sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29050                 select = kmem_zalloc(select_buflen, KM_SLEEP);
29051                 ssc = sd_ssc_init(un);
29052                 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
29053                     sense_buflen, MODEPAGE_AUDIO_CTRL,
29054                     SD_PATH_STANDARD);
29055                 sd_ssc_fini(ssc);
29056 
29057                 if (rval != 0) {
29058                         SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29059                             "sr_volume_ctrl: Mode Sense Failed\n");
29060                         kmem_free(sense, sense_buflen);
29061                         kmem_free(select, select_buflen);
29062                         return (rval);
29063                 }
29064                 sense_mhp = (struct mode_header_grp2 *)sense;
29065                 select_mhp = (struct mode_header_grp2 *)select;
29066                 bd_len = (sense_mhp->bdesc_length_hi << 8) |
29067                     sense_mhp->bdesc_length_lo;
29068                 if (bd_len > MODE_BLK_DESC_LENGTH) {
29069                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29070                             "sr_volume_ctrl: Mode Sense returned invalid "
29071                             "block descriptor length\n");
29072                         kmem_free(sense, sense_buflen);
29073                         kmem_free(select, select_buflen);
29074                         return (EIO);
29075                 }
29076                 sense_page = (uchar_t *)
29077                     (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
29078                 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
29079                 select_mhp->length_msb = 0;
29080                 select_mhp->length_lsb = 0;
29081                 select_mhp->bdesc_length_hi = 0;
29082                 select_mhp->bdesc_length_lo = 0;
29083         } else {
29084                 struct mode_header              *sense_mhp, *select_mhp;
29085 
29086                 sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29087                 select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29088                 sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29089                 select = kmem_zalloc(select_buflen, KM_SLEEP);
29090                 ssc = sd_ssc_init(un);
29091                 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
29092                     sense_buflen, MODEPAGE_AUDIO_CTRL,
29093                     SD_PATH_STANDARD);
29094                 sd_ssc_fini(ssc);
29095 
29096                 if (rval != 0) {
29097                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29098                             "sr_volume_ctrl: Mode Sense Failed\n");
29099                         kmem_free(sense, sense_buflen);
29100                         kmem_free(select, select_buflen);
29101                         return (rval);
29102                 }
29103                 sense_mhp  = (struct mode_header *)sense;
29104                 select_mhp = (struct mode_header *)select;
29105                 if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
29106                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29107                             "sr_volume_ctrl: Mode Sense returned invalid "
29108                             "block descriptor length\n");
29109                         kmem_free(sense, sense_buflen);
29110                         kmem_free(select, select_buflen);
29111                         return (EIO);
29112                 }
29113                 sense_page = (uchar_t *)
29114                     (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
29115                 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
29116                 select_mhp->length = 0;
29117                 select_mhp->bdesc_length = 0;
29118         }
29119         /*
29120          * Note: An audio control data structure could be created and overlayed
29121          * on the following in place of the array indexing method implemented.
29122          */
29123 
29124         /* Build the select data for the user volume data */
29125         select_page[0] = MODEPAGE_AUDIO_CTRL;
29126         select_page[1] = 0xE;
29127         /* Set the immediate bit */
29128         select_page[2] = 0x04;
29129         /* Zero out reserved fields */
29130         select_page[3] = 0x00;
29131         select_page[4] = 0x00;
29132         /* Return sense data for fields not to be modified */
29133         select_page[5] = sense_page[5];
29134         select_page[6] = sense_page[6];
29135         select_page[7] = sense_page[7];
29136         /* Set the user specified volume levels for channel 0 and 1 */
29137         select_page[8] = 0x01;
29138         select_page[9] = vol->channel0;
29139         select_page[10] = 0x02;
29140         select_page[11] = vol->channel1;
29141         /* Channel 2 and 3 are currently unsupported so return the sense data */
29142         select_page[12] = sense_page[12];
29143         select_page[13] = sense_page[13];
29144         select_page[14] = sense_page[14];
29145         select_page[15] = sense_page[15];
29146 
29147         ssc = sd_ssc_init(un);
29148         if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29149                 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select,
29150                     select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29151         } else {
29152                 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
29153                     select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29154         }
29155         sd_ssc_fini(ssc);
29156 
29157         kmem_free(sense, sense_buflen);
29158         kmem_free(select, select_buflen);
29159         return (rval);
29160 }
29161 
29162 
29163 /*
29164  *    Function: sr_read_sony_session_offset()
29165  *
29166  * Description: This routine is the driver entry point for handling CD-ROM
29167  *              ioctl requests for session offset information. (CDROMREADOFFSET)
29168  *              The address of the first track in the last session of a
29169  *              multi-session CD-ROM is returned
29170  *
29171  *              Note: This routine uses a vendor specific key value in the
29172  *              command control field without implementing any vendor check here
29173  *              or in the ioctl routine.
29174  *
29175  *   Arguments: dev     - the device 'dev_t'
29176  *              data    - pointer to an int to hold the requested address
29177  *              flag    - this argument is a pass through to ddi_copyxxx()
29178  *                        directly from the mode argument of ioctl().
29179  *
29180  * Return Code: the code returned by sd_send_scsi_cmd()
29181  *              EFAULT if ddi_copyxxx() fails
29182  *              ENXIO if fail ddi_get_soft_state
29183  *              EINVAL if data pointer is NULL
29184  */
29185 
29186 static int
29187 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
29188 {
29189         struct sd_lun           *un;
29190         struct uscsi_cmd        *com;
29191         caddr_t                 buffer;
29192         char                    cdb[CDB_GROUP1];
29193         int                     session_offset = 0;
29194         int                     rval;
29195 
29196         if (data == NULL) {
29197                 return (EINVAL);
29198         }
29199 
29200         if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29201             (un->un_state == SD_STATE_OFFLINE)) {
29202                 return (ENXIO);
29203         }
29204 
29205         buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
29206         bzero(cdb, CDB_GROUP1);
29207         cdb[0] = SCMD_READ_TOC;
29208         /*
29209          * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
29210          * (4 byte TOC response header + 8 byte response data)
29211          */
29212         cdb[8] = SONY_SESSION_OFFSET_LEN;
29213         /* Byte 9 is the control byte. A vendor specific value is used */
29214         cdb[9] = SONY_SESSION_OFFSET_KEY;
29215         com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29216         com->uscsi_cdb = cdb;
29217         com->uscsi_cdblen = CDB_GROUP1;
29218         com->uscsi_bufaddr = buffer;
29219         com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
29220         com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29221 
29222         rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
29223             SD_PATH_STANDARD);
29224         if (rval != 0) {
29225                 kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29226                 kmem_free(com, sizeof (*com));
29227                 return (rval);
29228         }
29229         if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
29230                 session_offset =
29231                     ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
29232                     ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
29233                 /*
29234                  * Offset returned offset in current lbasize block's. Convert to
29235                  * 2k block's to return to the user
29236                  */
29237                 if (un->un_tgt_blocksize == CDROM_BLK_512) {
29238                         session_offset >>= 2;
29239                 } else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
29240                         session_offset >>= 1;
29241                 }
29242         }
29243 
29244         if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
29245                 rval = EFAULT;
29246         }
29247 
29248         kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29249         kmem_free(com, sizeof (*com));
29250         return (rval);
29251 }
29252 
29253 
29254 /*
29255  *    Function: sd_wm_cache_constructor()
29256  *
29257  * Description: Cache Constructor for the wmap cache for the read/modify/write
29258  *              devices.
29259  *
29260  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29261  *              un      - sd_lun structure for the device.
29262  *              flag    - the km flags passed to constructor
29263  *
29264  * Return Code: 0 on success.
29265  *              -1 on failure.
29266  */
29267 
29268 /*ARGSUSED*/
29269 static int
29270 sd_wm_cache_constructor(void *wm, void *un, int flags)
29271 {
29272         bzero(wm, sizeof (struct sd_w_map));
29273         cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
29274         return (0);
29275 }
29276 
29277 
29278 /*
29279  *    Function: sd_wm_cache_destructor()
29280  *
29281  * Description: Cache destructor for the wmap cache for the read/modify/write
29282  *              devices.
29283  *
29284  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29285  *              un      - sd_lun structure for the device.
29286  */
29287 /*ARGSUSED*/
29288 static void
29289 sd_wm_cache_destructor(void *wm, void *un)
29290 {
29291         cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
29292 }
29293 
29294 
29295 /*
29296  *    Function: sd_range_lock()
29297  *
29298  * Description: Lock the range of blocks specified as parameter to ensure
29299  *              that read, modify write is atomic and no other i/o writes
29300  *              to the same location. The range is specified in terms
29301  *              of start and end blocks. Block numbers are the actual
29302  *              media block numbers and not system.
29303  *
29304  *   Arguments: un      - sd_lun structure for the device.
29305  *              startb - The starting block number
29306  *              endb - The end block number
29307  *              typ - type of i/o - simple/read_modify_write
29308  *
29309  * Return Code: wm  - pointer to the wmap structure.
29310  *
29311  *     Context: This routine can sleep.
29312  */
29313 
29314 static struct sd_w_map *
29315 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
29316 {
29317         struct sd_w_map *wmp = NULL;
29318         struct sd_w_map *sl_wmp = NULL;
29319         struct sd_w_map *tmp_wmp;
29320         wm_state state = SD_WM_CHK_LIST;
29321 
29322 
29323         ASSERT(un != NULL);
29324         ASSERT(!mutex_owned(SD_MUTEX(un)));
29325 
29326         mutex_enter(SD_MUTEX(un));
29327 
29328         while (state != SD_WM_DONE) {
29329 
29330                 switch (state) {
29331                 case SD_WM_CHK_LIST:
29332                         /*
29333                          * This is the starting state. Check the wmap list
29334                          * to see if the range is currently available.
29335                          */
29336                         if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
29337                                 /*
29338                                  * If this is a simple write and no rmw
29339                                  * i/o is pending then try to lock the
29340                                  * range as the range should be available.
29341                                  */
29342                                 state = SD_WM_LOCK_RANGE;
29343                         } else {
29344                                 tmp_wmp = sd_get_range(un, startb, endb);
29345                                 if (tmp_wmp != NULL) {
29346                                         if ((wmp != NULL) && ONLIST(un, wmp)) {
29347                                                 /*
29348                                                  * Should not keep onlist wmps
29349                                                  * while waiting this macro
29350                                                  * will also do wmp = NULL;
29351                                                  */
29352                                                 FREE_ONLIST_WMAP(un, wmp);
29353                                         }
29354                                         /*
29355                                          * sl_wmp is the wmap on which wait
29356                                          * is done, since the tmp_wmp points
29357                                          * to the inuse wmap, set sl_wmp to
29358                                          * tmp_wmp and change the state to sleep
29359                                          */
29360                                         sl_wmp = tmp_wmp;
29361                                         state = SD_WM_WAIT_MAP;
29362                                 } else {
29363                                         state = SD_WM_LOCK_RANGE;
29364                                 }
29365 
29366                         }
29367                         break;
29368 
29369                 case SD_WM_LOCK_RANGE:
29370                         ASSERT(un->un_wm_cache);
29371                         /*
29372                          * The range need to be locked, try to get a wmap.
29373                          * First attempt it with NO_SLEEP, want to avoid a sleep
29374                          * if possible as we will have to release the sd mutex
29375                          * if we have to sleep.
29376                          */
29377                         if (wmp == NULL)
29378                                 wmp = kmem_cache_alloc(un->un_wm_cache,
29379                                     KM_NOSLEEP);
29380                         if (wmp == NULL) {
29381                                 mutex_exit(SD_MUTEX(un));
29382                                 _NOTE(DATA_READABLE_WITHOUT_LOCK
29383                                     (sd_lun::un_wm_cache))
29384                                 wmp = kmem_cache_alloc(un->un_wm_cache,
29385                                     KM_SLEEP);
29386                                 mutex_enter(SD_MUTEX(un));
29387                                 /*
29388                                  * we released the mutex so recheck and go to
29389                                  * check list state.
29390                                  */
29391                                 state = SD_WM_CHK_LIST;
29392                         } else {
29393                                 /*
29394                                  * We exit out of state machine since we
29395                                  * have the wmap. Do the housekeeping first.
29396                                  * place the wmap on the wmap list if it is not
29397                                  * on it already and then set the state to done.
29398                                  */
29399                                 wmp->wm_start = startb;
29400                                 wmp->wm_end = endb;
29401                                 wmp->wm_flags = typ | SD_WM_BUSY;
29402                                 if (typ & SD_WTYPE_RMW) {
29403                                         un->un_rmw_count++;
29404                                 }
29405                                 /*
29406                                  * If not already on the list then link
29407                                  */
29408                                 if (!ONLIST(un, wmp)) {
29409                                         wmp->wm_next = un->un_wm;
29410                                         wmp->wm_prev = NULL;
29411                                         if (wmp->wm_next)
29412                                                 wmp->wm_next->wm_prev = wmp;
29413                                         un->un_wm = wmp;
29414                                 }
29415                                 state = SD_WM_DONE;
29416                         }
29417                         break;
29418 
29419                 case SD_WM_WAIT_MAP:
29420                         ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
29421                         /*
29422                          * Wait is done on sl_wmp, which is set in the
29423                          * check_list state.
29424                          */
29425                         sl_wmp->wm_wanted_count++;
29426                         cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
29427                         sl_wmp->wm_wanted_count--;
29428                         /*
29429                          * We can reuse the memory from the completed sl_wmp
29430                          * lock range for our new lock, but only if noone is
29431                          * waiting for it.
29432                          */
29433                         ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
29434                         if (sl_wmp->wm_wanted_count == 0) {
29435                                 if (wmp != NULL)
29436                                         CHK_N_FREEWMP(un, wmp);
29437                                 wmp = sl_wmp;
29438                         }
29439                         sl_wmp = NULL;
29440                         /*
29441                          * After waking up, need to recheck for availability of
29442                          * range.
29443                          */
29444                         state = SD_WM_CHK_LIST;
29445                         break;
29446 
29447                 default:
29448                         panic("sd_range_lock: "
29449                             "Unknown state %d in sd_range_lock", state);
29450                         /*NOTREACHED*/
29451                 } /* switch(state) */
29452 
29453         } /* while(state != SD_WM_DONE) */
29454 
29455         mutex_exit(SD_MUTEX(un));
29456 
29457         ASSERT(wmp != NULL);
29458 
29459         return (wmp);
29460 }
29461 
29462 
29463 /*
29464  *    Function: sd_get_range()
29465  *
29466  * Description: Find if there any overlapping I/O to this one
29467  *              Returns the write-map of 1st such I/O, NULL otherwise.
29468  *
29469  *   Arguments: un      - sd_lun structure for the device.
29470  *              startb - The starting block number
29471  *              endb - The end block number
29472  *
29473  * Return Code: wm  - pointer to the wmap structure.
29474  */
29475 
29476 static struct sd_w_map *
29477 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
29478 {
29479         struct sd_w_map *wmp;
29480 
29481         ASSERT(un != NULL);
29482 
29483         for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
29484                 if (!(wmp->wm_flags & SD_WM_BUSY)) {
29485                         continue;
29486                 }
29487                 if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
29488                         break;
29489                 }
29490                 if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
29491                         break;
29492                 }
29493         }
29494 
29495         return (wmp);
29496 }
29497 
29498 
29499 /*
29500  *    Function: sd_free_inlist_wmap()
29501  *
29502  * Description: Unlink and free a write map struct.
29503  *
29504  *   Arguments: un      - sd_lun structure for the device.
29505  *              wmp     - sd_w_map which needs to be unlinked.
29506  */
29507 
29508 static void
29509 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
29510 {
29511         ASSERT(un != NULL);
29512 
29513         if (un->un_wm == wmp) {
29514                 un->un_wm = wmp->wm_next;
29515         } else {
29516                 wmp->wm_prev->wm_next = wmp->wm_next;
29517         }
29518 
29519         if (wmp->wm_next) {
29520                 wmp->wm_next->wm_prev = wmp->wm_prev;
29521         }
29522 
29523         wmp->wm_next = wmp->wm_prev = NULL;
29524 
29525         kmem_cache_free(un->un_wm_cache, wmp);
29526 }
29527 
29528 
29529 /*
29530  *    Function: sd_range_unlock()
29531  *
29532  * Description: Unlock the range locked by wm.
29533  *              Free write map if nobody else is waiting on it.
29534  *
29535  *   Arguments: un      - sd_lun structure for the device.
29536  *              wmp     - sd_w_map which needs to be unlinked.
29537  */
29538 
29539 static void
29540 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
29541 {
29542         ASSERT(un != NULL);
29543         ASSERT(wm != NULL);
29544         ASSERT(!mutex_owned(SD_MUTEX(un)));
29545 
29546         mutex_enter(SD_MUTEX(un));
29547 
29548         if (wm->wm_flags & SD_WTYPE_RMW) {
29549                 un->un_rmw_count--;
29550         }
29551 
29552         if (wm->wm_wanted_count) {
29553                 wm->wm_flags = 0;
29554                 /*
29555                  * Broadcast that the wmap is available now.
29556                  */
29557                 cv_broadcast(&wm->wm_avail);
29558         } else {
29559                 /*
29560                  * If no one is waiting on the map, it should be free'ed.
29561                  */
29562                 sd_free_inlist_wmap(un, wm);
29563         }
29564 
29565         mutex_exit(SD_MUTEX(un));
29566 }
29567 
29568 
29569 /*
29570  *    Function: sd_read_modify_write_task
29571  *
29572  * Description: Called from a taskq thread to initiate the write phase of
29573  *              a read-modify-write request.  This is used for targets where
29574  *              un->un_sys_blocksize != un->un_tgt_blocksize.
29575  *
29576  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
29577  *
29578  *     Context: Called under taskq thread context.
29579  */
29580 
29581 static void
29582 sd_read_modify_write_task(void *arg)
29583 {
29584         struct sd_mapblocksize_info     *bsp;
29585         struct buf      *bp;
29586         struct sd_xbuf  *xp;
29587         struct sd_lun   *un;
29588 
29589         bp = arg;       /* The bp is given in arg */
29590         ASSERT(bp != NULL);
29591 
29592         /* Get the pointer to the layer-private data struct */
29593         xp = SD_GET_XBUF(bp);
29594         ASSERT(xp != NULL);
29595         bsp = xp->xb_private;
29596         ASSERT(bsp != NULL);
29597 
29598         un = SD_GET_UN(bp);
29599         ASSERT(un != NULL);
29600         ASSERT(!mutex_owned(SD_MUTEX(un)));
29601 
29602         SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29603             "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
29604 
29605         /*
29606          * This is the write phase of a read-modify-write request, called
29607          * under the context of a taskq thread in response to the completion
29608          * of the read portion of the rmw request completing under interrupt
29609          * context. The write request must be sent from here down the iostart
29610          * chain as if it were being sent from sd_mapblocksize_iostart(), so
29611          * we use the layer index saved in the layer-private data area.
29612          */
29613         SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
29614 
29615         SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29616             "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
29617 }
29618 
29619 
29620 /*
29621  *    Function: sddump_do_read_of_rmw()
29622  *
29623  * Description: This routine will be called from sddump, If sddump is called
29624  *              with an I/O which not aligned on device blocksize boundary
29625  *              then the write has to be converted to read-modify-write.
29626  *              Do the read part here in order to keep sddump simple.
29627  *              Note - That the sd_mutex is held across the call to this
29628  *              routine.
29629  *
29630  *   Arguments: un      - sd_lun
29631  *              blkno   - block number in terms of media block size.
29632  *              nblk    - number of blocks.
29633  *              bpp     - pointer to pointer to the buf structure. On return
29634  *                      from this function, *bpp points to the valid buffer
29635  *                      to which the write has to be done.
29636  *
29637  * Return Code: 0 for success or errno-type return code
29638  */
29639 
29640 static int
29641 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
29642         struct buf **bpp)
29643 {
29644         int err;
29645         int i;
29646         int rval;
29647         struct buf *bp;
29648         struct scsi_pkt *pkt = NULL;
29649         uint32_t target_blocksize;
29650 
29651         ASSERT(un != NULL);
29652         ASSERT(mutex_owned(SD_MUTEX(un)));
29653 
29654         target_blocksize = un->un_tgt_blocksize;
29655 
29656         mutex_exit(SD_MUTEX(un));
29657 
29658         bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
29659             (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
29660         if (bp == NULL) {
29661                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29662                     "no resources for dumping; giving up");
29663                 err = ENOMEM;
29664                 goto done;
29665         }
29666 
29667         rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
29668             blkno, nblk);
29669         if (rval != 0) {
29670                 scsi_free_consistent_buf(bp);
29671                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29672                     "no resources for dumping; giving up");
29673                 err = ENOMEM;
29674                 goto done;
29675         }
29676 
29677         pkt->pkt_flags |= FLAG_NOINTR;
29678 
29679         err = EIO;
29680         for (i = 0; i < SD_NDUMP_RETRIES; i++) {
29681 
29682                 /*
29683                  * Scsi_poll returns 0 (success) if the command completes and
29684                  * the status block is STATUS_GOOD.  We should only check
29685                  * errors if this condition is not true.  Even then we should
29686                  * send our own request sense packet only if we have a check
29687                  * condition and auto request sense has not been performed by
29688                  * the hba.
29689                  */
29690                 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
29691 
29692                 if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
29693                         err = 0;
29694                         break;
29695                 }
29696 
29697                 /*
29698                  * Check CMD_DEV_GONE 1st, give up if device is gone,
29699                  * no need to read RQS data.
29700                  */
29701                 if (pkt->pkt_reason == CMD_DEV_GONE) {
29702                         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29703                             "Error while dumping state with rmw..."
29704                             "Device is gone\n");
29705                         break;
29706                 }
29707 
29708                 if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
29709                         SD_INFO(SD_LOG_DUMP, un,
29710                             "sddump: read failed with CHECK, try # %d\n", i);
29711                         if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
29712                                 (void) sd_send_polled_RQS(un);
29713                         }
29714 
29715                         continue;
29716                 }
29717 
29718                 if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
29719                         int reset_retval = 0;
29720 
29721                         SD_INFO(SD_LOG_DUMP, un,
29722                             "sddump: read failed with BUSY, try # %d\n", i);
29723 
29724                         if (un->un_f_lun_reset_enabled == TRUE) {
29725                                 reset_retval = scsi_reset(SD_ADDRESS(un),
29726                                     RESET_LUN);
29727                         }
29728                         if (reset_retval == 0) {
29729                                 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
29730                         }
29731                         (void) sd_send_polled_RQS(un);
29732 
29733                 } else {
29734                         SD_INFO(SD_LOG_DUMP, un,
29735                             "sddump: read failed with 0x%x, try # %d\n",
29736                             SD_GET_PKT_STATUS(pkt), i);
29737                         mutex_enter(SD_MUTEX(un));
29738                         sd_reset_target(un, pkt);
29739                         mutex_exit(SD_MUTEX(un));
29740                 }
29741 
29742                 /*
29743                  * If we are not getting anywhere with lun/target resets,
29744                  * let's reset the bus.
29745                  */
29746                 if (i > SD_NDUMP_RETRIES/2) {
29747                         (void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
29748                         (void) sd_send_polled_RQS(un);
29749                 }
29750 
29751         }
29752         scsi_destroy_pkt(pkt);
29753 
29754         if (err != 0) {
29755                 scsi_free_consistent_buf(bp);
29756                 *bpp = NULL;
29757         } else {
29758                 *bpp = bp;
29759         }
29760 
29761 done:
29762         mutex_enter(SD_MUTEX(un));
29763         return (err);
29764 }
29765 
29766 
29767 /*
29768  *    Function: sd_failfast_flushq
29769  *
29770  * Description: Take all bp's on the wait queue that have B_FAILFAST set
29771  *              in b_flags and move them onto the failfast queue, then kick
29772  *              off a thread to return all bp's on the failfast queue to
29773  *              their owners with an error set.
29774  *
29775  *   Arguments: un - pointer to the soft state struct for the instance.
29776  *
29777  *     Context: may execute in interrupt context.
29778  */
29779 
29780 static void
29781 sd_failfast_flushq(struct sd_lun *un)
29782 {
29783         struct buf *bp;
29784         struct buf *next_waitq_bp;
29785         struct buf *prev_waitq_bp = NULL;
29786 
29787         ASSERT(un != NULL);
29788         ASSERT(mutex_owned(SD_MUTEX(un)));
29789         ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
29790         ASSERT(un->un_failfast_bp == NULL);
29791 
29792         SD_TRACE(SD_LOG_IO_FAILFAST, un,
29793             "sd_failfast_flushq: entry: un:0x%p\n", un);
29794 
29795         /*
29796          * Check if we should flush all bufs when entering failfast state, or
29797          * just those with B_FAILFAST set.
29798          */
29799         if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
29800                 /*
29801                  * Move *all* bp's on the wait queue to the failfast flush
29802                  * queue, including those that do NOT have B_FAILFAST set.
29803                  */
29804                 if (un->un_failfast_headp == NULL) {
29805                         ASSERT(un->un_failfast_tailp == NULL);
29806                         un->un_failfast_headp = un->un_waitq_headp;
29807                 } else {
29808                         ASSERT(un->un_failfast_tailp != NULL);
29809                         un->un_failfast_tailp->av_forw = un->un_waitq_headp;
29810                 }
29811 
29812                 un->un_failfast_tailp = un->un_waitq_tailp;
29813 
29814                 /* update kstat for each bp moved out of the waitq */
29815                 for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
29816                         SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29817                 }
29818 
29819                 /* empty the waitq */
29820                 un->un_waitq_headp = un->un_waitq_tailp = NULL;
29821 
29822         } else {
29823                 /*
29824                  * Go thru the wait queue, pick off all entries with
29825                  * B_FAILFAST set, and move these onto the failfast queue.
29826                  */
29827                 for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
29828                         /*
29829                          * Save the pointer to the next bp on the wait queue,
29830                          * so we get to it on the next iteration of this loop.
29831                          */
29832                         next_waitq_bp = bp->av_forw;
29833 
29834                         /*
29835                          * If this bp from the wait queue does NOT have
29836                          * B_FAILFAST set, just move on to the next element
29837                          * in the wait queue. Note, this is the only place
29838                          * where it is correct to set prev_waitq_bp.
29839                          */
29840                         if ((bp->b_flags & B_FAILFAST) == 0) {
29841                                 prev_waitq_bp = bp;
29842                                 continue;
29843                         }
29844 
29845                         /*
29846                          * Remove the bp from the wait queue.
29847                          */
29848                         if (bp == un->un_waitq_headp) {
29849                                 /* The bp is the first element of the waitq. */
29850                                 un->un_waitq_headp = next_waitq_bp;
29851                                 if (un->un_waitq_headp == NULL) {
29852                                         /* The wait queue is now empty */
29853                                         un->un_waitq_tailp = NULL;
29854                                 }
29855                         } else {
29856                                 /*
29857                                  * The bp is either somewhere in the middle
29858                                  * or at the end of the wait queue.
29859                                  */
29860                                 ASSERT(un->un_waitq_headp != NULL);
29861                                 ASSERT(prev_waitq_bp != NULL);
29862                                 ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
29863                                     == 0);
29864                                 if (bp == un->un_waitq_tailp) {
29865                                         /* bp is the last entry on the waitq. */
29866                                         ASSERT(next_waitq_bp == NULL);
29867                                         un->un_waitq_tailp = prev_waitq_bp;
29868                                 }
29869                                 prev_waitq_bp->av_forw = next_waitq_bp;
29870                         }
29871                         bp->av_forw = NULL;
29872 
29873                         /*
29874                          * update kstat since the bp is moved out of
29875                          * the waitq
29876                          */
29877                         SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29878 
29879                         /*
29880                          * Now put the bp onto the failfast queue.
29881                          */
29882                         if (un->un_failfast_headp == NULL) {
29883                                 /* failfast queue is currently empty */
29884                                 ASSERT(un->un_failfast_tailp == NULL);
29885                                 un->un_failfast_headp =
29886                                     un->un_failfast_tailp = bp;
29887                         } else {
29888                                 /* Add the bp to the end of the failfast q */
29889                                 ASSERT(un->un_failfast_tailp != NULL);
29890                                 ASSERT(un->un_failfast_tailp->b_flags &
29891                                     B_FAILFAST);
29892                                 un->un_failfast_tailp->av_forw = bp;
29893                                 un->un_failfast_tailp = bp;
29894                         }
29895                 }
29896         }
29897 
29898         /*
29899          * Now return all bp's on the failfast queue to their owners.
29900          */
29901         while ((bp = un->un_failfast_headp) != NULL) {
29902 
29903                 un->un_failfast_headp = bp->av_forw;
29904                 if (un->un_failfast_headp == NULL) {
29905                         un->un_failfast_tailp = NULL;
29906                 }
29907 
29908                 /*
29909                  * We want to return the bp with a failure error code, but
29910                  * we do not want a call to sd_start_cmds() to occur here,
29911                  * so use sd_return_failed_command_no_restart() instead of
29912                  * sd_return_failed_command().
29913                  */
29914                 sd_return_failed_command_no_restart(un, bp, EIO);
29915         }
29916 
29917         /* Flush the xbuf queues if required. */
29918         if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
29919                 ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
29920         }
29921 
29922         SD_TRACE(SD_LOG_IO_FAILFAST, un,
29923             "sd_failfast_flushq: exit: un:0x%p\n", un);
29924 }
29925 
29926 
29927 /*
29928  *    Function: sd_failfast_flushq_callback
29929  *
29930  * Description: Return TRUE if the given bp meets the criteria for failfast
29931  *              flushing. Used with ddi_xbuf_flushq(9F).
29932  *
29933  *   Arguments: bp - ptr to buf struct to be examined.
29934  *
29935  *     Context: Any
29936  */
29937 
29938 static int
29939 sd_failfast_flushq_callback(struct buf *bp)
29940 {
29941         /*
29942          * Return TRUE if (1) we want to flush ALL bufs when the failfast
29943          * state is entered; OR (2) the given bp has B_FAILFAST set.
29944          */
29945         return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
29946             (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
29947 }
29948 
29949 
29950 
29951 /*
29952  * Function: sd_setup_next_xfer
29953  *
29954  * Description: Prepare next I/O operation using DMA_PARTIAL
29955  *
29956  */
29957 
29958 static int
29959 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
29960     struct scsi_pkt *pkt, struct sd_xbuf *xp)
29961 {
29962         ssize_t num_blks_not_xfered;
29963         daddr_t strt_blk_num;
29964         ssize_t bytes_not_xfered;
29965         int     rval;
29966 
29967         ASSERT(pkt->pkt_resid == 0);
29968 
29969         /*
29970          * Calculate next block number and amount to be transferred.
29971          *
29972          * How much data NOT transfered to the HBA yet.
29973          */
29974         bytes_not_xfered = xp->xb_dma_resid;
29975 
29976         /*
29977          * figure how many blocks NOT transfered to the HBA yet.
29978          */
29979         num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
29980 
29981         /*
29982          * set starting block number to the end of what WAS transfered.
29983          */
29984         strt_blk_num = xp->xb_blkno +
29985             SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
29986 
29987         /*
29988          * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
29989          * will call scsi_initpkt with NULL_FUNC so we do not have to release
29990          * the disk mutex here.
29991          */
29992         rval = sd_setup_next_rw_pkt(un, pkt, bp,
29993             strt_blk_num, num_blks_not_xfered);
29994 
29995         if (rval == 0) {
29996 
29997                 /*
29998                  * Success.
29999                  *
30000                  * Adjust things if there are still more blocks to be
30001                  * transfered.
30002                  */
30003                 xp->xb_dma_resid = pkt->pkt_resid;
30004                 pkt->pkt_resid = 0;
30005 
30006                 return (1);
30007         }
30008 
30009         /*
30010          * There's really only one possible return value from
30011          * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
30012          * returns NULL.
30013          */
30014         ASSERT(rval == SD_PKT_ALLOC_FAILURE);
30015 
30016         bp->b_resid = bp->b_bcount;
30017         bp->b_flags |= B_ERROR;
30018 
30019         scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
30020             "Error setting up next portion of DMA transfer\n");
30021 
30022         return (0);
30023 }
30024 
30025 /*
30026  *    Function: sd_panic_for_res_conflict
30027  *
30028  * Description: Call panic with a string formatted with "Reservation Conflict"
30029  *              and a human readable identifier indicating the SD instance
30030  *              that experienced the reservation conflict.
30031  *
30032  *   Arguments: un - pointer to the soft state struct for the instance.
30033  *
30034  *     Context: may execute in interrupt context.
30035  */
30036 
30037 #define SD_RESV_CONFLICT_FMT_LEN 40
30038 void
30039 sd_panic_for_res_conflict(struct sd_lun *un)
30040 {
30041         char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
30042         char path_str[MAXPATHLEN];
30043 
30044         (void) snprintf(panic_str, sizeof (panic_str),
30045             "Reservation Conflict\nDisk: %s",
30046             ddi_pathname(SD_DEVINFO(un), path_str));
30047 
30048         panic(panic_str);
30049 }
30050 
30051 /*
30052  * Note: The following sd_faultinjection_ioctl( ) routines implement
30053  * driver support for handling fault injection for error analysis
30054  * causing faults in multiple layers of the driver.
30055  *
30056  */
30057 
30058 #ifdef SD_FAULT_INJECTION
30059 static uint_t   sd_fault_injection_on = 0;
30060 
30061 /*
30062  *    Function: sd_faultinjection_ioctl()
30063  *
30064  * Description: This routine is the driver entry point for handling
30065  *              faultinjection ioctls to inject errors into the
30066  *              layer model
30067  *
30068  *   Arguments: cmd     - the ioctl cmd received
30069  *              arg     - the arguments from user and returns
30070  */
30071 
30072 static void
30073 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
30074 
30075         uint_t i = 0;
30076         uint_t rval;
30077 
30078         SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
30079 
30080         mutex_enter(SD_MUTEX(un));
30081 
30082         switch (cmd) {
30083         case SDIOCRUN:
30084                 /* Allow pushed faults to be injected */
30085                 SD_INFO(SD_LOG_SDTEST, un,
30086                     "sd_faultinjection_ioctl: Injecting Fault Run\n");
30087 
30088                 sd_fault_injection_on = 1;
30089 
30090                 SD_INFO(SD_LOG_IOERR, un,
30091                     "sd_faultinjection_ioctl: run finished\n");
30092                 break;
30093 
30094         case SDIOCSTART:
30095                 /* Start Injection Session */
30096                 SD_INFO(SD_LOG_SDTEST, un,
30097                     "sd_faultinjection_ioctl: Injecting Fault Start\n");
30098 
30099                 sd_fault_injection_on = 0;
30100                 un->sd_injection_mask = 0xFFFFFFFF;
30101                 for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30102                         un->sd_fi_fifo_pkt[i] = NULL;
30103                         un->sd_fi_fifo_xb[i] = NULL;
30104                         un->sd_fi_fifo_un[i] = NULL;
30105                         un->sd_fi_fifo_arq[i] = NULL;
30106                 }
30107                 un->sd_fi_fifo_start = 0;
30108                 un->sd_fi_fifo_end = 0;
30109 
30110                 mutex_enter(&(un->un_fi_mutex));
30111                 un->sd_fi_log[0] = '\0';
30112                 un->sd_fi_buf_len = 0;
30113                 mutex_exit(&(un->un_fi_mutex));
30114 
30115                 SD_INFO(SD_LOG_IOERR, un,
30116                     "sd_faultinjection_ioctl: start finished\n");
30117                 break;
30118 
30119         case SDIOCSTOP:
30120                 /* Stop Injection Session */
30121                 SD_INFO(SD_LOG_SDTEST, un,
30122                     "sd_faultinjection_ioctl: Injecting Fault Stop\n");
30123                 sd_fault_injection_on = 0;
30124                 un->sd_injection_mask = 0x0;
30125 
30126                 /* Empty stray or unuseds structs from fifo */
30127                 for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30128                         if (un->sd_fi_fifo_pkt[i] != NULL) {
30129                                 kmem_free(un->sd_fi_fifo_pkt[i],
30130                                     sizeof (struct sd_fi_pkt));
30131                         }
30132                         if (un->sd_fi_fifo_xb[i] != NULL) {
30133                                 kmem_free(un->sd_fi_fifo_xb[i],
30134                                     sizeof (struct sd_fi_xb));
30135                         }
30136                         if (un->sd_fi_fifo_un[i] != NULL) {
30137                                 kmem_free(un->sd_fi_fifo_un[i],
30138                                     sizeof (struct sd_fi_un));
30139                         }
30140                         if (un->sd_fi_fifo_arq[i] != NULL) {
30141                                 kmem_free(un->sd_fi_fifo_arq[i],
30142                                     sizeof (struct sd_fi_arq));
30143                         }
30144                         un->sd_fi_fifo_pkt[i] = NULL;
30145                         un->sd_fi_fifo_un[i] = NULL;
30146                         un->sd_fi_fifo_xb[i] = NULL;
30147                         un->sd_fi_fifo_arq[i] = NULL;
30148                 }
30149                 un->sd_fi_fifo_start = 0;
30150                 un->sd_fi_fifo_end = 0;
30151 
30152                 SD_INFO(SD_LOG_IOERR, un,
30153                     "sd_faultinjection_ioctl: stop finished\n");
30154                 break;
30155 
30156         case SDIOCINSERTPKT:
30157                 /* Store a packet struct to be pushed onto fifo */
30158                 SD_INFO(SD_LOG_SDTEST, un,
30159                     "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
30160 
30161                 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30162 
30163                 sd_fault_injection_on = 0;
30164 
30165                 /* No more that SD_FI_MAX_ERROR allowed in Queue */
30166                 if (un->sd_fi_fifo_pkt[i] != NULL) {
30167                         kmem_free(un->sd_fi_fifo_pkt[i],
30168                             sizeof (struct sd_fi_pkt));
30169                 }
30170                 if (arg != NULL) {
30171                         un->sd_fi_fifo_pkt[i] =
30172                             kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
30173                         if (un->sd_fi_fifo_pkt[i] == NULL) {
30174                                 /* Alloc failed don't store anything */
30175                                 break;
30176                         }
30177                         rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
30178                             sizeof (struct sd_fi_pkt), 0);
30179                         if (rval == -1) {
30180                                 kmem_free(un->sd_fi_fifo_pkt[i],
30181                                     sizeof (struct sd_fi_pkt));
30182                                 un->sd_fi_fifo_pkt[i] = NULL;
30183                         }
30184                 } else {
30185                         SD_INFO(SD_LOG_IOERR, un,
30186                             "sd_faultinjection_ioctl: pkt null\n");
30187                 }
30188                 break;
30189 
30190         case SDIOCINSERTXB:
30191                 /* Store a xb struct to be pushed onto fifo */
30192                 SD_INFO(SD_LOG_SDTEST, un,
30193                     "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
30194 
30195                 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30196 
30197                 sd_fault_injection_on = 0;
30198 
30199                 if (un->sd_fi_fifo_xb[i] != NULL) {
30200                         kmem_free(un->sd_fi_fifo_xb[i],
30201                             sizeof (struct sd_fi_xb));
30202                         un->sd_fi_fifo_xb[i] = NULL;
30203                 }
30204                 if (arg != NULL) {
30205                         un->sd_fi_fifo_xb[i] =
30206                             kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
30207                         if (un->sd_fi_fifo_xb[i] == NULL) {
30208                                 /* Alloc failed don't store anything */
30209                                 break;
30210                         }
30211                         rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
30212                             sizeof (struct sd_fi_xb), 0);
30213 
30214                         if (rval == -1) {
30215                                 kmem_free(un->sd_fi_fifo_xb[i],
30216                                     sizeof (struct sd_fi_xb));
30217                                 un->sd_fi_fifo_xb[i] = NULL;
30218                         }
30219                 } else {
30220                         SD_INFO(SD_LOG_IOERR, un,
30221                             "sd_faultinjection_ioctl: xb null\n");
30222                 }
30223                 break;
30224 
30225         case SDIOCINSERTUN:
30226                 /* Store a un struct to be pushed onto fifo */
30227                 SD_INFO(SD_LOG_SDTEST, un,
30228                     "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
30229 
30230                 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30231 
30232                 sd_fault_injection_on = 0;
30233 
30234                 if (un->sd_fi_fifo_un[i] != NULL) {
30235                         kmem_free(un->sd_fi_fifo_un[i],
30236                             sizeof (struct sd_fi_un));
30237                         un->sd_fi_fifo_un[i] = NULL;
30238                 }
30239                 if (arg != NULL) {
30240                         un->sd_fi_fifo_un[i] =
30241                             kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
30242                         if (un->sd_fi_fifo_un[i] == NULL) {
30243                                 /* Alloc failed don't store anything */
30244                                 break;
30245                         }
30246                         rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
30247                             sizeof (struct sd_fi_un), 0);
30248                         if (rval == -1) {
30249                                 kmem_free(un->sd_fi_fifo_un[i],
30250                                     sizeof (struct sd_fi_un));
30251                                 un->sd_fi_fifo_un[i] = NULL;
30252                         }
30253 
30254                 } else {
30255                         SD_INFO(SD_LOG_IOERR, un,
30256                             "sd_faultinjection_ioctl: un null\n");
30257                 }
30258 
30259                 break;
30260 
30261         case SDIOCINSERTARQ:
30262                 /* Store a arq struct to be pushed onto fifo */
30263                 SD_INFO(SD_LOG_SDTEST, un,
30264                     "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
30265                 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30266 
30267                 sd_fault_injection_on = 0;
30268 
30269                 if (un->sd_fi_fifo_arq[i] != NULL) {
30270                         kmem_free(un->sd_fi_fifo_arq[i],
30271                             sizeof (struct sd_fi_arq));
30272                         un->sd_fi_fifo_arq[i] = NULL;
30273                 }
30274                 if (arg != NULL) {
30275                         un->sd_fi_fifo_arq[i] =
30276                             kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
30277                         if (un->sd_fi_fifo_arq[i] == NULL) {
30278                                 /* Alloc failed don't store anything */
30279                                 break;
30280                         }
30281                         rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
30282                             sizeof (struct sd_fi_arq), 0);
30283                         if (rval == -1) {
30284                                 kmem_free(un->sd_fi_fifo_arq[i],
30285                                     sizeof (struct sd_fi_arq));
30286                                 un->sd_fi_fifo_arq[i] = NULL;
30287                         }
30288 
30289                 } else {
30290                         SD_INFO(SD_LOG_IOERR, un,
30291                             "sd_faultinjection_ioctl: arq null\n");
30292                 }
30293 
30294                 break;
30295 
30296         case SDIOCPUSH:
30297                 /* Push stored xb, pkt, un, and arq onto fifo */
30298                 sd_fault_injection_on = 0;
30299 
30300                 if (arg != NULL) {
30301                         rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
30302                         if (rval != -1 &&
30303                             un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30304                                 un->sd_fi_fifo_end += i;
30305                         }
30306                 } else {
30307                         SD_INFO(SD_LOG_IOERR, un,
30308                             "sd_faultinjection_ioctl: push arg null\n");
30309                         if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30310                                 un->sd_fi_fifo_end++;
30311                         }
30312                 }
30313                 SD_INFO(SD_LOG_IOERR, un,
30314                     "sd_faultinjection_ioctl: push to end=%d\n",
30315                     un->sd_fi_fifo_end);
30316                 break;
30317 
30318         case SDIOCRETRIEVE:
30319                 /* Return buffer of log from Injection session */
30320                 SD_INFO(SD_LOG_SDTEST, un,
30321                     "sd_faultinjection_ioctl: Injecting Fault Retreive");
30322 
30323                 sd_fault_injection_on = 0;
30324 
30325                 mutex_enter(&(un->un_fi_mutex));
30326                 rval = ddi_copyout(un->sd_fi_log, (void *)arg,
30327                     un->sd_fi_buf_len+1, 0);
30328                 mutex_exit(&(un->un_fi_mutex));
30329 
30330                 if (rval == -1) {
30331                         /*
30332                          * arg is possibly invalid setting
30333                          * it to NULL for return
30334                          */
30335                         arg = NULL;
30336                 }
30337                 break;
30338         }
30339 
30340         mutex_exit(SD_MUTEX(un));
30341         SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
30342                             " exit\n");
30343 }
30344 
30345 
30346 /*
30347  *    Function: sd_injection_log()
30348  *
30349  * Description: This routine adds buff to the already existing injection log
30350  *              for retrieval via faultinjection_ioctl for use in fault
30351  *              detection and recovery
30352  *
30353  *   Arguments: buf - the string to add to the log
30354  */
30355 
30356 static void
30357 sd_injection_log(char *buf, struct sd_lun *un)
30358 {
30359         uint_t len;
30360 
30361         ASSERT(un != NULL);
30362         ASSERT(buf != NULL);
30363 
30364         mutex_enter(&(un->un_fi_mutex));
30365 
30366         len = min(strlen(buf), 255);
30367         /* Add logged value to Injection log to be returned later */
30368         if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
30369                 uint_t  offset = strlen((char *)un->sd_fi_log);
30370                 char *destp = (char *)un->sd_fi_log + offset;
30371                 int i;
30372                 for (i = 0; i < len; i++) {
30373                         *destp++ = *buf++;
30374                 }
30375                 un->sd_fi_buf_len += len;
30376                 un->sd_fi_log[un->sd_fi_buf_len] = '\0';
30377         }
30378 
30379         mutex_exit(&(un->un_fi_mutex));
30380 }
30381 
30382 
30383 /*
30384  *    Function: sd_faultinjection()
30385  *
30386  * Description: This routine takes the pkt and changes its
30387  *              content based on error injection scenerio.
30388  *
30389  *   Arguments: pktp    - packet to be changed
30390  */
30391 
30392 static void
30393 sd_faultinjection(struct scsi_pkt *pktp)
30394 {
30395         uint_t i;
30396         struct sd_fi_pkt *fi_pkt;
30397         struct sd_fi_xb *fi_xb;
30398         struct sd_fi_un *fi_un;
30399         struct sd_fi_arq *fi_arq;
30400         struct buf *bp;
30401         struct sd_xbuf *xb;
30402         struct sd_lun *un;
30403 
30404         ASSERT(pktp != NULL);
30405 
30406         /* pull bp xb and un from pktp */
30407         bp = (struct buf *)pktp->pkt_private;
30408         xb = SD_GET_XBUF(bp);
30409         un = SD_GET_UN(bp);
30410 
30411         ASSERT(un != NULL);
30412 
30413         mutex_enter(SD_MUTEX(un));
30414 
30415         SD_TRACE(SD_LOG_SDTEST, un,
30416             "sd_faultinjection: entry Injection from sdintr\n");
30417 
30418         /* if injection is off return */
30419         if (sd_fault_injection_on == 0 ||
30420             un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
30421                 mutex_exit(SD_MUTEX(un));
30422                 return;
30423         }
30424 
30425         SD_INFO(SD_LOG_SDTEST, un,
30426             "sd_faultinjection: is working for copying\n");
30427 
30428         /* take next set off fifo */
30429         i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
30430 
30431         fi_pkt = un->sd_fi_fifo_pkt[i];
30432         fi_xb = un->sd_fi_fifo_xb[i];
30433         fi_un = un->sd_fi_fifo_un[i];
30434         fi_arq = un->sd_fi_fifo_arq[i];
30435 
30436 
30437         /* set variables accordingly */
30438         /* set pkt if it was on fifo */
30439         if (fi_pkt != NULL) {
30440                 SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
30441                 SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
30442                 if (fi_pkt->pkt_cdbp != 0xff)
30443                         SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
30444                 SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
30445                 SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
30446                 SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
30447 
30448         }
30449         /* set xb if it was on fifo */
30450         if (fi_xb != NULL) {
30451                 SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
30452                 SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
30453                 if (fi_xb->xb_retry_count != 0)
30454                         SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
30455                 SD_CONDSET(xb, xb, xb_victim_retry_count,
30456                     "xb_victim_retry_count");
30457                 SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
30458                 SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
30459                 SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
30460 
30461                 /* copy in block data from sense */
30462                 /*
30463                  * if (fi_xb->xb_sense_data[0] != -1) {
30464                  *      bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
30465                  *      SENSE_LENGTH);
30466                  * }
30467                  */
30468                 bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH);
30469 
30470                 /* copy in extended sense codes */
30471                 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30472                     xb, es_code, "es_code");
30473                 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30474                     xb, es_key, "es_key");
30475                 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30476                     xb, es_add_code, "es_add_code");
30477                 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30478                     xb, es_qual_code, "es_qual_code");
30479                 struct scsi_extended_sense *esp;
30480                 esp = (struct scsi_extended_sense *)xb->xb_sense_data;
30481                 esp->es_class = CLASS_EXTENDED_SENSE;
30482         }
30483 
30484         /* set un if it was on fifo */
30485         if (fi_un != NULL) {
30486                 SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
30487                 SD_CONDSET(un, un, un_ctype, "un_ctype");
30488                 SD_CONDSET(un, un, un_reset_retry_count,
30489                     "un_reset_retry_count");
30490                 SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
30491                 SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
30492                 SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
30493                 SD_CONDSET(un, un, un_f_allow_bus_device_reset,
30494                     "un_f_allow_bus_device_reset");
30495                 SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
30496 
30497         }
30498 
30499         /* copy in auto request sense if it was on fifo */
30500         if (fi_arq != NULL) {
30501                 bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
30502         }
30503 
30504         /* free structs */
30505         if (un->sd_fi_fifo_pkt[i] != NULL) {
30506                 kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
30507         }
30508         if (un->sd_fi_fifo_xb[i] != NULL) {
30509                 kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
30510         }
30511         if (un->sd_fi_fifo_un[i] != NULL) {
30512                 kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
30513         }
30514         if (un->sd_fi_fifo_arq[i] != NULL) {
30515                 kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
30516         }
30517 
30518         /*
30519          * kmem_free does not gurantee to set to NULL
30520          * since we uses these to determine if we set
30521          * values or not lets confirm they are always
30522          * NULL after free
30523          */
30524         un->sd_fi_fifo_pkt[i] = NULL;
30525         un->sd_fi_fifo_un[i] = NULL;
30526         un->sd_fi_fifo_xb[i] = NULL;
30527         un->sd_fi_fifo_arq[i] = NULL;
30528 
30529         un->sd_fi_fifo_start++;
30530 
30531         mutex_exit(SD_MUTEX(un));
30532 
30533         SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
30534 }
30535 
30536 #endif /* SD_FAULT_INJECTION */
30537 
30538 /*
30539  * This routine is invoked in sd_unit_attach(). Before calling it, the
30540  * properties in conf file should be processed already, and "hotpluggable"
30541  * property was processed also.
30542  *
30543  * The sd driver distinguishes 3 different type of devices: removable media,
30544  * non-removable media, and hotpluggable. Below the differences are defined:
30545  *
30546  * 1. Device ID
30547  *
30548  *     The device ID of a device is used to identify this device. Refer to
30549  *     ddi_devid_register(9F).
30550  *
30551  *     For a non-removable media disk device which can provide 0x80 or 0x83
30552  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
30553  *     device ID is created to identify this device. For other non-removable
30554  *     media devices, a default device ID is created only if this device has
30555  *     at least 2 alter cylinders. Otherwise, this device has no devid.
30556  *
30557  *     -------------------------------------------------------
30558  *     removable media   hotpluggable  | Can Have Device ID
30559  *     -------------------------------------------------------
30560  *         false             false     |     Yes
30561  *         false             true      |     Yes
30562  *         true                x       |     No
30563  *     ------------------------------------------------------
30564  *
30565  *
30566  * 2. SCSI group 4 commands
30567  *
30568  *     In SCSI specs, only some commands in group 4 command set can use
30569  *     8-byte addresses that can be used to access >2TB storage spaces.
30570  *     Other commands have no such capability. Without supporting group4,
30571  *     it is impossible to make full use of storage spaces of a disk with
30572  *     capacity larger than 2TB.
30573  *
30574  *     -----------------------------------------------
30575  *     removable media   hotpluggable   LP64  |  Group
30576  *     -----------------------------------------------
30577  *           false          false       false |   1
30578  *           false          false       true  |   4
30579  *           false          true        false |   1
30580  *           false          true        true  |   4
30581  *           true             x           x   |   5
30582  *     -----------------------------------------------
30583  *
30584  *
30585  * 3. Check for VTOC Label
30586  *
30587  *     If a direct-access disk has no EFI label, sd will check if it has a
30588  *     valid VTOC label. Now, sd also does that check for removable media
30589  *     and hotpluggable devices.
30590  *
30591  *     --------------------------------------------------------------
30592  *     Direct-Access   removable media    hotpluggable |  Check Label
30593  *     -------------------------------------------------------------
30594  *         false          false           false        |   No
30595  *         false          false           true         |   No
30596  *         false          true            false        |   Yes
30597  *         false          true            true         |   Yes
30598  *         true            x                x          |   Yes
30599  *     --------------------------------------------------------------
30600  *
30601  *
30602  * 4. Building default VTOC label
30603  *
30604  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
30605  *     If those devices have no valid VTOC label, sd(7d) will attempt to
30606  *     create default VTOC for them. Currently sd creates default VTOC label
30607  *     for all devices on x86 platform (VTOC_16), but only for removable
30608  *     media devices on SPARC (VTOC_8).
30609  *
30610  *     -----------------------------------------------------------
30611  *       removable media hotpluggable platform   |   Default Label
30612  *     -----------------------------------------------------------
30613  *             false          false    sparc     |     No
30614  *             false          true      x86      |     Yes
30615  *             false          true     sparc     |     Yes
30616  *             true             x        x       |     Yes
30617  *     ----------------------------------------------------------
30618  *
30619  *
30620  * 5. Supported blocksizes of target devices
30621  *
30622  *     Sd supports non-512-byte blocksize for removable media devices only.
30623  *     For other devices, only 512-byte blocksize is supported. This may be
30624  *     changed in near future because some RAID devices require non-512-byte
30625  *     blocksize
30626  *
30627  *     -----------------------------------------------------------
30628  *     removable media    hotpluggable    | non-512-byte blocksize
30629  *     -----------------------------------------------------------
30630  *           false          false         |   No
30631  *           false          true          |   No
30632  *           true             x           |   Yes
30633  *     -----------------------------------------------------------
30634  *
30635  *
30636  * 6. Automatic mount & unmount
30637  *
30638  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
30639  *     if a device is removable media device. It return 1 for removable media
30640  *     devices, and 0 for others.
30641  *
30642  *     The automatic mounting subsystem should distinguish between the types
30643  *     of devices and apply automounting policies to each.
30644  *
30645  *
30646  * 7. fdisk partition management
30647  *
30648  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
30649  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
30650  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
30651  *     fdisk partitions on both x86 and SPARC platform.
30652  *
30653  *     -----------------------------------------------------------
30654  *       platform   removable media  USB/1394  |  fdisk supported
30655  *     -----------------------------------------------------------
30656  *        x86         X               X        |       true
30657  *     ------------------------------------------------------------
30658  *        sparc       X               X        |       false
30659  *     ------------------------------------------------------------
30660  *
30661  *
30662  * 8. MBOOT/MBR
30663  *
30664  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
30665  *     read/write mboot for removable media devices on sparc platform.
30666  *
30667  *     -----------------------------------------------------------
30668  *       platform   removable media  USB/1394  |  mboot supported
30669  *     -----------------------------------------------------------
30670  *        x86         X               X        |       true
30671  *     ------------------------------------------------------------
30672  *        sparc      false           false     |       false
30673  *        sparc      false           true      |       true
30674  *        sparc      true            false     |       true
30675  *        sparc      true            true      |       true
30676  *     ------------------------------------------------------------
30677  *
30678  *
30679  * 9.  error handling during opening device
30680  *
30681  *     If failed to open a disk device, an errno is returned. For some kinds
30682  *     of errors, different errno is returned depending on if this device is
30683  *     a removable media device. This brings USB/1394 hard disks in line with
30684  *     expected hard disk behavior. It is not expected that this breaks any
30685  *     application.
30686  *
30687  *     ------------------------------------------------------
30688  *       removable media    hotpluggable   |  errno
30689  *     ------------------------------------------------------
30690  *             false          false        |   EIO
30691  *             false          true         |   EIO
30692  *             true             x          |   ENXIO
30693  *     ------------------------------------------------------
30694  *
30695  *
30696  * 11. ioctls: DKIOCEJECT, CDROMEJECT
30697  *
30698  *     These IOCTLs are applicable only to removable media devices.
30699  *
30700  *     -----------------------------------------------------------
30701  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
30702  *     -----------------------------------------------------------
30703  *             false          false        |     No
30704  *             false          true         |     No
30705  *             true            x           |     Yes
30706  *     -----------------------------------------------------------
30707  *
30708  *
30709  * 12. Kstats for partitions
30710  *
30711  *     sd creates partition kstat for non-removable media devices. USB and
30712  *     Firewire hard disks now have partition kstats
30713  *
30714  *      ------------------------------------------------------
30715  *       removable media    hotpluggable   |   kstat
30716  *      ------------------------------------------------------
30717  *             false          false        |    Yes
30718  *             false          true         |    Yes
30719  *             true             x          |    No
30720  *       ------------------------------------------------------
30721  *
30722  *
30723  * 13. Removable media & hotpluggable properties
30724  *
30725  *     Sd driver creates a "removable-media" property for removable media
30726  *     devices. Parent nexus drivers create a "hotpluggable" property if
30727  *     it supports hotplugging.
30728  *
30729  *     ---------------------------------------------------------------------
30730  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
30731  *     ---------------------------------------------------------------------
30732  *       false            false       |    No                   No
30733  *       false            true        |    No                   Yes
30734  *       true             false       |    Yes                  No
30735  *       true             true        |    Yes                  Yes
30736  *     ---------------------------------------------------------------------
30737  *
30738  *
30739  * 14. Power Management
30740  *
30741  *     sd only power manages removable media devices or devices that support
30742  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
30743  *
30744  *     A parent nexus that supports hotplugging can also set "pm-capable"
30745  *     if the disk can be power managed.
30746  *
30747  *     ------------------------------------------------------------
30748  *       removable media hotpluggable pm-capable  |   power manage
30749  *     ------------------------------------------------------------
30750  *             false          false     false     |     No
30751  *             false          false     true      |     Yes
30752  *             false          true      false     |     No
30753  *             false          true      true      |     Yes
30754  *             true             x        x        |     Yes
30755  *     ------------------------------------------------------------
30756  *
30757  *      USB and firewire hard disks can now be power managed independently
30758  *      of the framebuffer
30759  *
30760  *
30761  * 15. Support for USB disks with capacity larger than 1TB
30762  *
30763  *     Currently, sd doesn't permit a fixed disk device with capacity
30764  *     larger than 1TB to be used in a 32-bit operating system environment.
30765  *     However, sd doesn't do that for removable media devices. Instead, it
30766  *     assumes that removable media devices cannot have a capacity larger
30767  *     than 1TB. Therefore, using those devices on 32-bit system is partially
30768  *     supported, which can cause some unexpected results.
30769  *
30770  *     ---------------------------------------------------------------------
30771  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
30772  *     ---------------------------------------------------------------------
30773  *             false          false  |   true         |     no
30774  *             false          true   |   true         |     no
30775  *             true           false  |   true         |     Yes
30776  *             true           true   |   true         |     Yes
30777  *     ---------------------------------------------------------------------
30778  *
30779  *
30780  * 16. Check write-protection at open time
30781  *
30782  *     When a removable media device is being opened for writing without NDELAY
30783  *     flag, sd will check if this device is writable. If attempting to open
30784  *     without NDELAY flag a write-protected device, this operation will abort.
30785  *
30786  *     ------------------------------------------------------------
30787  *       removable media    USB/1394   |   WP Check
30788  *     ------------------------------------------------------------
30789  *             false          false    |     No
30790  *             false          true     |     No
30791  *             true           false    |     Yes
30792  *             true           true     |     Yes
30793  *     ------------------------------------------------------------
30794  *
30795  *
30796  * 17. syslog when corrupted VTOC is encountered
30797  *
30798  *      Currently, if an invalid VTOC is encountered, sd only print syslog
30799  *      for fixed SCSI disks.
30800  *     ------------------------------------------------------------
30801  *       removable media    USB/1394   |   print syslog
30802  *     ------------------------------------------------------------
30803  *             false          false    |     Yes
30804  *             false          true     |     No
30805  *             true           false    |     No
30806  *             true           true     |     No
30807  *     ------------------------------------------------------------
30808  */
30809 static void
30810 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
30811 {
30812         int     pm_cap;
30813 
30814         ASSERT(un->un_sd);
30815         ASSERT(un->un_sd->sd_inq);
30816 
30817         /*
30818          * Enable SYNC CACHE support for all devices.
30819          */
30820         un->un_f_sync_cache_supported = TRUE;
30821 
30822         /*
30823          * Set the sync cache required flag to false.
30824          * This would ensure that there is no SYNC CACHE
30825          * sent when there are no writes
30826          */
30827         un->un_f_sync_cache_required = FALSE;
30828 
30829         if (un->un_sd->sd_inq->inq_rmb) {
30830                 /*
30831                  * The media of this device is removable. And for this kind
30832                  * of devices, it is possible to change medium after opening
30833                  * devices. Thus we should support this operation.
30834                  */
30835                 un->un_f_has_removable_media = TRUE;
30836 
30837                 /*
30838                  * support non-512-byte blocksize of removable media devices
30839                  */
30840                 un->un_f_non_devbsize_supported = TRUE;
30841 
30842                 /*
30843                  * Assume that all removable media devices support DOOR_LOCK
30844                  */
30845                 un->un_f_doorlock_supported = TRUE;
30846 
30847                 /*
30848                  * For a removable media device, it is possible to be opened
30849                  * with NDELAY flag when there is no media in drive, in this
30850                  * case we don't care if device is writable. But if without
30851                  * NDELAY flag, we need to check if media is write-protected.
30852                  */
30853                 un->un_f_chk_wp_open = TRUE;
30854 
30855                 /*
30856                  * need to start a SCSI watch thread to monitor media state,
30857                  * when media is being inserted or ejected, notify syseventd.
30858                  */
30859                 un->un_f_monitor_media_state = TRUE;
30860 
30861                 /*
30862                  * Some devices don't support START_STOP_UNIT command.
30863                  * Therefore, we'd better check if a device supports it
30864                  * before sending it.
30865                  */
30866                 un->un_f_check_start_stop = TRUE;
30867 
30868                 /*
30869                  * support eject media ioctl:
30870                  *              FDEJECT, DKIOCEJECT, CDROMEJECT
30871                  */
30872                 un->un_f_eject_media_supported = TRUE;
30873 
30874                 /*
30875                  * Because many removable-media devices don't support
30876                  * LOG_SENSE, we couldn't use this command to check if
30877                  * a removable media device support power-management.
30878                  * We assume that they support power-management via
30879                  * START_STOP_UNIT command and can be spun up and down
30880                  * without limitations.
30881                  */
30882                 un->un_f_pm_supported = TRUE;
30883 
30884                 /*
30885                  * Need to create a zero length (Boolean) property
30886                  * removable-media for the removable media devices.
30887                  * Note that the return value of the property is not being
30888                  * checked, since if unable to create the property
30889                  * then do not want the attach to fail altogether. Consistent
30890                  * with other property creation in attach.
30891                  */
30892                 (void) ddi_prop_create(DDI_DEV_T_NONE, devi,
30893                     DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
30894 
30895         } else {
30896                 /*
30897                  * create device ID for device
30898                  */
30899                 un->un_f_devid_supported = TRUE;
30900 
30901                 /*
30902                  * Spin up non-removable-media devices once it is attached
30903                  */
30904                 un->un_f_attach_spinup = TRUE;
30905 
30906                 /*
30907                  * According to SCSI specification, Sense data has two kinds of
30908                  * format: fixed format, and descriptor format. At present, we
30909                  * don't support descriptor format sense data for removable
30910                  * media.
30911                  */
30912                 if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
30913                         un->un_f_descr_format_supported = TRUE;
30914                 }
30915 
30916                 /*
30917                  * kstats are created only for non-removable media devices.
30918                  *
30919                  * Set this in sd.conf to 0 in order to disable kstats.  The
30920                  * default is 1, so they are enabled by default.
30921                  */
30922                 un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
30923                     SD_DEVINFO(un), DDI_PROP_DONTPASS,
30924                     "enable-partition-kstats", 1));
30925 
30926                 /*
30927                  * Check if HBA has set the "pm-capable" property.
30928                  * If "pm-capable" exists and is non-zero then we can
30929                  * power manage the device without checking the start/stop
30930                  * cycle count log sense page.
30931                  *
30932                  * If "pm-capable" exists and is set to be false (0),
30933                  * then we should not power manage the device.
30934                  *
30935                  * If "pm-capable" doesn't exist then pm_cap will
30936                  * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
30937                  * sd will check the start/stop cycle count log sense page
30938                  * and power manage the device if the cycle count limit has
30939                  * not been exceeded.
30940                  */
30941                 pm_cap = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
30942                     DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
30943                 if (SD_PM_CAPABLE_IS_UNDEFINED(pm_cap)) {
30944                         un->un_f_log_sense_supported = TRUE;
30945                         if (!un->un_f_power_condition_disabled &&
30946                             SD_INQUIRY(un)->inq_ansi == 6) {
30947                                 un->un_f_power_condition_supported = TRUE;
30948                         }
30949                 } else {
30950                         /*
30951                          * pm-capable property exists.
30952                          *
30953                          * Convert "TRUE" values for pm_cap to
30954                          * SD_PM_CAPABLE_IS_TRUE to make it easier to check
30955                          * later. "TRUE" values are any values defined in
30956                          * inquiry.h.
30957                          */
30958                         if (SD_PM_CAPABLE_IS_FALSE(pm_cap)) {
30959                                 un->un_f_log_sense_supported = FALSE;
30960                         } else {
30961                                 /* SD_PM_CAPABLE_IS_TRUE case */
30962                                 un->un_f_pm_supported = TRUE;
30963                                 if (!un->un_f_power_condition_disabled &&
30964                                     SD_PM_CAPABLE_IS_SPC_4(pm_cap)) {
30965                                         un->un_f_power_condition_supported =
30966                                             TRUE;
30967                                 }
30968                                 if (SD_PM_CAP_LOG_SUPPORTED(pm_cap)) {
30969                                         un->un_f_log_sense_supported = TRUE;
30970                                         un->un_f_pm_log_sense_smart =
30971                                             SD_PM_CAP_SMART_LOG(pm_cap);
30972                                 }
30973                         }
30974 
30975                         SD_INFO(SD_LOG_ATTACH_DETACH, un,
30976                             "sd_unit_attach: un:0x%p pm-capable "
30977                             "property set to %d.\n", un, un->un_f_pm_supported);
30978                 }
30979         }
30980 
30981         if (un->un_f_is_hotpluggable) {
30982 
30983                 /*
30984                  * Have to watch hotpluggable devices as well, since
30985                  * that's the only way for userland applications to
30986                  * detect hot removal while device is busy/mounted.
30987                  */
30988                 un->un_f_monitor_media_state = TRUE;
30989 
30990                 un->un_f_check_start_stop = TRUE;
30991 
30992         }
30993 }
30994 
30995 /*
30996  * sd_tg_rdwr:
30997  * Provides rdwr access for cmlb via sd_tgops. The start_block is
30998  * in sys block size, req_length in bytes.
30999  *
31000  */
31001 static int
31002 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
31003     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
31004 {
31005         struct sd_lun *un;
31006         int path_flag = (int)(uintptr_t)tg_cookie;
31007         char *dkl = NULL;
31008         diskaddr_t real_addr = start_block;
31009         diskaddr_t first_byte, end_block;
31010 
31011         size_t  buffer_size = reqlength;
31012         int rval = 0;
31013         diskaddr_t      cap;
31014         uint32_t        lbasize;
31015         sd_ssc_t        *ssc;
31016 
31017         un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
31018         if (un == NULL)
31019                 return (ENXIO);
31020 
31021         if (cmd != TG_READ && cmd != TG_WRITE)
31022                 return (EINVAL);
31023 
31024         ssc = sd_ssc_init(un);
31025         mutex_enter(SD_MUTEX(un));
31026         if (un->un_f_tgt_blocksize_is_valid == FALSE) {
31027                 mutex_exit(SD_MUTEX(un));
31028                 rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
31029                     &lbasize, path_flag);
31030                 if (rval != 0)
31031                         goto done1;
31032                 mutex_enter(SD_MUTEX(un));
31033                 sd_update_block_info(un, lbasize, cap);
31034                 if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
31035                         mutex_exit(SD_MUTEX(un));
31036                         rval = EIO;
31037                         goto done;
31038                 }
31039         }
31040 
31041         if (NOT_DEVBSIZE(un)) {
31042                 /*
31043                  * sys_blocksize != tgt_blocksize, need to re-adjust
31044                  * blkno and save the index to beginning of dk_label
31045                  */
31046                 first_byte  = SD_SYSBLOCKS2BYTES(start_block);
31047                 real_addr = first_byte / un->un_tgt_blocksize;
31048 
31049                 end_block = (first_byte + reqlength +
31050                     un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
31051 
31052                 /* round up buffer size to multiple of target block size */
31053                 buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
31054 
31055                 SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
31056                     "label_addr: 0x%x allocation size: 0x%x\n",
31057                     real_addr, buffer_size);
31058 
31059                 if (((first_byte % un->un_tgt_blocksize) != 0) ||
31060                     (reqlength % un->un_tgt_blocksize) != 0)
31061                         /* the request is not aligned */
31062                         dkl = kmem_zalloc(buffer_size, KM_SLEEP);
31063         }
31064 
31065         /*
31066          * The MMC standard allows READ CAPACITY to be
31067          * inaccurate by a bounded amount (in the interest of
31068          * response latency).  As a result, failed READs are
31069          * commonplace (due to the reading of metadata and not
31070          * data). Depending on the per-Vendor/drive Sense data,
31071          * the failed READ can cause many (unnecessary) retries.
31072          */
31073 
31074         if (ISCD(un) && (cmd == TG_READ) &&
31075             (un->un_f_blockcount_is_valid == TRUE) &&
31076             ((start_block == (un->un_blockcount - 1))||
31077             (start_block == (un->un_blockcount - 2)))) {
31078                         path_flag = SD_PATH_DIRECT_PRIORITY;
31079         }
31080 
31081         mutex_exit(SD_MUTEX(un));
31082         if (cmd == TG_READ) {
31083                 rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr,
31084                     buffer_size, real_addr, path_flag);
31085                 if (dkl != NULL)
31086                         bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
31087                             real_addr), bufaddr, reqlength);
31088         } else {
31089                 if (dkl) {
31090                         rval = sd_send_scsi_READ(ssc, dkl, buffer_size,
31091                             real_addr, path_flag);
31092                         if (rval) {
31093                                 goto done1;
31094                         }
31095                         bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
31096                             real_addr), reqlength);
31097                 }
31098                 rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr,
31099                     buffer_size, real_addr, path_flag);
31100         }
31101 
31102 done1:
31103         if (dkl != NULL)
31104                 kmem_free(dkl, buffer_size);
31105 
31106         if (rval != 0) {
31107                 if (rval == EIO)
31108                         sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
31109                 else
31110                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
31111         }
31112 done:
31113         sd_ssc_fini(ssc);
31114         return (rval);
31115 }
31116 
31117 
31118 static int
31119 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
31120 {
31121 
31122         struct sd_lun *un;
31123         diskaddr_t      cap;
31124         uint32_t        lbasize;
31125         int             path_flag = (int)(uintptr_t)tg_cookie;
31126         int             ret = 0;
31127 
31128         un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
31129         if (un == NULL)
31130                 return (ENXIO);
31131 
31132         switch (cmd) {
31133         case TG_GETPHYGEOM:
31134         case TG_GETVIRTGEOM:
31135         case TG_GETCAPACITY:
31136         case TG_GETBLOCKSIZE:
31137                 mutex_enter(SD_MUTEX(un));
31138 
31139                 if ((un->un_f_blockcount_is_valid == TRUE) &&
31140                     (un->un_f_tgt_blocksize_is_valid == TRUE)) {
31141                         cap = un->un_blockcount;
31142                         lbasize = un->un_tgt_blocksize;
31143                         mutex_exit(SD_MUTEX(un));
31144                 } else {
31145                         sd_ssc_t        *ssc;
31146                         mutex_exit(SD_MUTEX(un));
31147                         ssc = sd_ssc_init(un);
31148                         ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
31149                             &lbasize, path_flag);
31150                         if (ret != 0) {
31151                                 if (ret == EIO)
31152                                         sd_ssc_assessment(ssc,
31153                                             SD_FMT_STATUS_CHECK);
31154                                 else
31155                                         sd_ssc_assessment(ssc,
31156                                             SD_FMT_IGNORE);
31157                                 sd_ssc_fini(ssc);
31158                                 return (ret);
31159                         }
31160                         sd_ssc_fini(ssc);
31161                         mutex_enter(SD_MUTEX(un));
31162                         sd_update_block_info(un, lbasize, cap);
31163                         if ((un->un_f_blockcount_is_valid == FALSE) ||
31164                             (un->un_f_tgt_blocksize_is_valid == FALSE)) {
31165                                 mutex_exit(SD_MUTEX(un));
31166                                 return (EIO);
31167                         }
31168                         mutex_exit(SD_MUTEX(un));
31169                 }
31170 
31171                 if (cmd == TG_GETCAPACITY) {
31172                         *(diskaddr_t *)arg = cap;
31173                         return (0);
31174                 }
31175 
31176                 if (cmd == TG_GETBLOCKSIZE) {
31177                         *(uint32_t *)arg = lbasize;
31178                         return (0);
31179                 }
31180 
31181                 if (cmd == TG_GETPHYGEOM)
31182                         ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
31183                             cap, lbasize, path_flag);
31184                 else
31185                         /* TG_GETVIRTGEOM */
31186                         ret = sd_get_virtual_geometry(un,
31187                             (cmlb_geom_t *)arg, cap, lbasize);
31188 
31189                 return (ret);
31190 
31191         case TG_GETATTR:
31192                 mutex_enter(SD_MUTEX(un));
31193                 ((tg_attribute_t *)arg)->media_is_writable =
31194                     un->un_f_mmc_writable_media;
31195                 ((tg_attribute_t *)arg)->media_is_solid_state =
31196                     un->un_f_is_solid_state;
31197                 mutex_exit(SD_MUTEX(un));
31198                 return (0);
31199         default:
31200                 return (ENOTTY);
31201 
31202         }
31203 }
31204 
31205 /*
31206  *    Function: sd_ssc_ereport_post
31207  *
31208  * Description: Will be called when SD driver need to post an ereport.
31209  *
31210  *    Context: Kernel thread or interrupt context.
31211  */
31212 
31213 #define DEVID_IF_KNOWN(d) "devid", DATA_TYPE_STRING, (d) ? (d) : "unknown"
31214 
31215 static void
31216 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess)
31217 {
31218         int uscsi_path_instance = 0;
31219         uchar_t uscsi_pkt_reason;
31220         uint32_t uscsi_pkt_state;
31221         uint32_t uscsi_pkt_statistics;
31222         uint64_t uscsi_ena;
31223         uchar_t op_code;
31224         uint8_t *sensep;
31225         union scsi_cdb *cdbp;
31226         uint_t cdblen = 0;
31227         uint_t senlen = 0;
31228         struct sd_lun *un;
31229         dev_info_t *dip;
31230         char *devid;
31231         int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON |
31232             SSC_FLAGS_INVALID_STATUS |
31233             SSC_FLAGS_INVALID_SENSE |
31234             SSC_FLAGS_INVALID_DATA;
31235         char assessment[16];
31236 
31237         ASSERT(ssc != NULL);
31238         ASSERT(ssc->ssc_uscsi_cmd != NULL);
31239         ASSERT(ssc->ssc_uscsi_info != NULL);
31240 
31241         un = ssc->ssc_un;
31242         ASSERT(un != NULL);
31243 
31244         dip = un->un_sd->sd_dev;
31245 
31246         /*
31247          * Get the devid:
31248          *      devid will only be passed to non-transport error reports.
31249          */
31250         devid = DEVI(dip)->devi_devid_str;
31251 
31252         /*
31253          * If we are syncing or dumping, the command will not be executed
31254          * so we bypass this situation.
31255          */
31256         if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
31257             (un->un_state == SD_STATE_DUMPING))
31258                 return;
31259 
31260         uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason;
31261         uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance;
31262         uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state;
31263         uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics;
31264         uscsi_ena = ssc->ssc_uscsi_info->ui_ena;
31265 
31266         sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
31267         cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb;
31268 
31269         /* In rare cases, EG:DOORLOCK, the cdb could be NULL */
31270         if (cdbp == NULL) {
31271                 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
31272                     "sd_ssc_ereport_post meet empty cdb\n");
31273                 return;
31274         }
31275 
31276         op_code = cdbp->scc_cmd;
31277 
31278         cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen;
31279         senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
31280             ssc->ssc_uscsi_cmd->uscsi_rqresid);
31281 
31282         if (senlen > 0)
31283                 ASSERT(sensep != NULL);
31284 
31285         /*
31286          * Initialize drv_assess to corresponding values.
31287          * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending
31288          * on the sense-key returned back.
31289          */
31290         switch (drv_assess) {
31291                 case SD_FM_DRV_RECOVERY:
31292                         (void) sprintf(assessment, "%s", "recovered");
31293                         break;
31294                 case SD_FM_DRV_RETRY:
31295                         (void) sprintf(assessment, "%s", "retry");
31296                         break;
31297                 case SD_FM_DRV_NOTICE:
31298                         (void) sprintf(assessment, "%s", "info");
31299                         break;
31300                 case SD_FM_DRV_FATAL:
31301                 default:
31302                         (void) sprintf(assessment, "%s", "unknown");
31303         }
31304         /*
31305          * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered
31306          * command, we will post ereport.io.scsi.cmd.disk.recovered.
31307          * driver-assessment will always be "recovered" here.
31308          */
31309         if (drv_assess == SD_FM_DRV_RECOVERY) {
31310                 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL,
31311                     "cmd.disk.recovered", uscsi_ena, devid, NULL,
31312                     DDI_NOSLEEP, NULL,
31313                     FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31314                     DEVID_IF_KNOWN(devid),
31315                     "driver-assessment", DATA_TYPE_STRING, assessment,
31316                     "op-code", DATA_TYPE_UINT8, op_code,
31317                     "cdb", DATA_TYPE_UINT8_ARRAY,
31318                     cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31319                     "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31320                     "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31321                     "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
31322                     NULL);
31323                 return;
31324         }
31325 
31326         /*
31327          * If there is un-expected/un-decodable data, we should post
31328          * ereport.io.scsi.cmd.disk.dev.uderr.
31329          * driver-assessment will be set based on parameter drv_assess.
31330          * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back.
31331          * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered.
31332          * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered.
31333          * SSC_FLAGS_INVALID_DATA - invalid data sent back.
31334          */
31335         if (ssc->ssc_flags & ssc_invalid_flags) {
31336                 if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) {
31337                         scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31338                             NULL, "cmd.disk.dev.uderr", uscsi_ena, devid,
31339                             NULL, DDI_NOSLEEP, NULL,
31340                             FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31341                             DEVID_IF_KNOWN(devid),
31342                             "driver-assessment", DATA_TYPE_STRING,
31343                             drv_assess == SD_FM_DRV_FATAL ?
31344                             "fail" : assessment,
31345                             "op-code", DATA_TYPE_UINT8, op_code,
31346                             "cdb", DATA_TYPE_UINT8_ARRAY,
31347                             cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31348                             "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31349                             "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31350                             "pkt-stats", DATA_TYPE_UINT32,
31351                             uscsi_pkt_statistics,
31352                             "stat-code", DATA_TYPE_UINT8,
31353                             ssc->ssc_uscsi_cmd->uscsi_status,
31354                             "un-decode-info", DATA_TYPE_STRING,
31355                             ssc->ssc_info,
31356                             "un-decode-value", DATA_TYPE_UINT8_ARRAY,
31357                             senlen, sensep,
31358                             NULL);
31359                 } else {
31360                         /*
31361                          * For other type of invalid data, the
31362                          * un-decode-value field would be empty because the
31363                          * un-decodable content could be seen from upper
31364                          * level payload or inside un-decode-info.
31365                          */
31366                         scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31367                             NULL,
31368                             "cmd.disk.dev.uderr", uscsi_ena, devid,
31369                             NULL, DDI_NOSLEEP, NULL,
31370                             FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31371                             DEVID_IF_KNOWN(devid),
31372                             "driver-assessment", DATA_TYPE_STRING,
31373                             drv_assess == SD_FM_DRV_FATAL ?
31374                             "fail" : assessment,
31375                             "op-code", DATA_TYPE_UINT8, op_code,
31376                             "cdb", DATA_TYPE_UINT8_ARRAY,
31377                             cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31378                             "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31379                             "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31380                             "pkt-stats", DATA_TYPE_UINT32,
31381                             uscsi_pkt_statistics,
31382                             "stat-code", DATA_TYPE_UINT8,
31383                             ssc->ssc_uscsi_cmd->uscsi_status,
31384                             "un-decode-info", DATA_TYPE_STRING,
31385                             ssc->ssc_info,
31386                             "un-decode-value", DATA_TYPE_UINT8_ARRAY,
31387                             0, NULL,
31388                             NULL);
31389                 }
31390                 ssc->ssc_flags &= ~ssc_invalid_flags;
31391                 return;
31392         }
31393 
31394         if (uscsi_pkt_reason != CMD_CMPLT ||
31395             (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) {
31396                 /*
31397                  * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was
31398                  * set inside sd_start_cmds due to errors(bad packet or
31399                  * fatal transport error), we should take it as a
31400                  * transport error, so we post ereport.io.scsi.cmd.disk.tran.
31401                  * driver-assessment will be set based on drv_assess.
31402                  * We will set devid to NULL because it is a transport
31403                  * error.
31404                  */
31405                 if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)
31406                         ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT;
31407 
31408                 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL,
31409                     "cmd.disk.tran", uscsi_ena, NULL, NULL, DDI_NOSLEEP, NULL,
31410                     FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31411                     DEVID_IF_KNOWN(devid),
31412                     "driver-assessment", DATA_TYPE_STRING,
31413                     drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
31414                     "op-code", DATA_TYPE_UINT8, op_code,
31415                     "cdb", DATA_TYPE_UINT8_ARRAY,
31416                     cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31417                     "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31418                     "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state,
31419                     "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
31420                     NULL);
31421         } else {
31422                 /*
31423                  * If we got here, we have a completed command, and we need
31424                  * to further investigate the sense data to see what kind
31425                  * of ereport we should post.
31426                  * No ereport is needed if sense-key is KEY_RECOVERABLE_ERROR
31427                  * and asc/ascq is "ATA PASS-THROUGH INFORMATION AVAILABLE".
31428                  * Post ereport.io.scsi.cmd.disk.dev.rqs.merr if sense-key is
31429                  * KEY_MEDIUM_ERROR.
31430                  * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise.
31431                  * driver-assessment will be set based on the parameter
31432                  * drv_assess.
31433                  */
31434                 if (senlen > 0) {
31435                         /*
31436                          * Here we have sense data available.
31437                          */
31438                         uint8_t sense_key = scsi_sense_key(sensep);
31439                         uint8_t sense_asc = scsi_sense_asc(sensep);
31440                         uint8_t sense_ascq = scsi_sense_ascq(sensep);
31441 
31442                         if (sense_key == KEY_RECOVERABLE_ERROR &&
31443                             sense_asc == 0x00 && sense_ascq == 0x1d)
31444                                 return;
31445 
31446                         if (sense_key == KEY_MEDIUM_ERROR) {
31447                                 /*
31448                                  * driver-assessment should be "fatal" if
31449                                  * drv_assess is SD_FM_DRV_FATAL.
31450                                  */
31451                                 scsi_fm_ereport_post(un->un_sd,
31452                                     uscsi_path_instance, NULL,
31453                                     "cmd.disk.dev.rqs.merr",
31454                                     uscsi_ena, devid, NULL, DDI_NOSLEEP, NULL,
31455                                     FM_VERSION, DATA_TYPE_UINT8,
31456                                     FM_EREPORT_VERS0,
31457                                     DEVID_IF_KNOWN(devid),
31458                                     "driver-assessment",
31459                                     DATA_TYPE_STRING,
31460                                     drv_assess == SD_FM_DRV_FATAL ?
31461                                     "fatal" : assessment,
31462                                     "op-code",
31463                                     DATA_TYPE_UINT8, op_code,
31464                                     "cdb",
31465                                     DATA_TYPE_UINT8_ARRAY, cdblen,
31466                                     ssc->ssc_uscsi_cmd->uscsi_cdb,
31467                                     "pkt-reason",
31468                                     DATA_TYPE_UINT8, uscsi_pkt_reason,
31469                                     "pkt-state",
31470                                     DATA_TYPE_UINT8, uscsi_pkt_state,
31471                                     "pkt-stats",
31472                                     DATA_TYPE_UINT32,
31473                                     uscsi_pkt_statistics,
31474                                     "stat-code",
31475                                     DATA_TYPE_UINT8,
31476                                     ssc->ssc_uscsi_cmd->uscsi_status,
31477                                     "key",
31478                                     DATA_TYPE_UINT8,
31479                                     scsi_sense_key(sensep),
31480                                     "asc",
31481                                     DATA_TYPE_UINT8,
31482                                     scsi_sense_asc(sensep),
31483                                     "ascq",
31484                                     DATA_TYPE_UINT8,
31485                                     scsi_sense_ascq(sensep),
31486                                     "sense-data",
31487                                     DATA_TYPE_UINT8_ARRAY,
31488                                     senlen, sensep,
31489                                     "lba",
31490                                     DATA_TYPE_UINT64,
31491                                     ssc->ssc_uscsi_info->ui_lba,
31492                                     NULL);
31493                         } else {
31494                                 /*
31495                                  * if sense-key == 0x4(hardware
31496                                  * error), driver-assessment should
31497                                  * be "fatal" if drv_assess is
31498                                  * SD_FM_DRV_FATAL.
31499                                  */
31500                                 scsi_fm_ereport_post(un->un_sd,
31501                                     uscsi_path_instance, NULL,
31502                                     "cmd.disk.dev.rqs.derr",
31503                                     uscsi_ena, devid,
31504                                     NULL, DDI_NOSLEEP, NULL,
31505                                     FM_VERSION,
31506                                     DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31507                                     DEVID_IF_KNOWN(devid),
31508                                     "driver-assessment",
31509                                     DATA_TYPE_STRING,
31510                                     drv_assess == SD_FM_DRV_FATAL ?
31511                                     (sense_key == 0x4 ?
31512                                     "fatal" : "fail") : assessment,
31513                                     "op-code",
31514                                     DATA_TYPE_UINT8, op_code,
31515                                     "cdb",
31516                                     DATA_TYPE_UINT8_ARRAY, cdblen,
31517                                     ssc->ssc_uscsi_cmd->uscsi_cdb,
31518                                     "pkt-reason",
31519                                     DATA_TYPE_UINT8, uscsi_pkt_reason,
31520                                     "pkt-state",
31521                                     DATA_TYPE_UINT8, uscsi_pkt_state,
31522                                     "pkt-stats",
31523                                     DATA_TYPE_UINT32,
31524                                     uscsi_pkt_statistics,
31525                                     "stat-code",
31526                                     DATA_TYPE_UINT8,
31527                                     ssc->ssc_uscsi_cmd->uscsi_status,
31528                                     "key",
31529                                     DATA_TYPE_UINT8,
31530                                     scsi_sense_key(sensep),
31531                                     "asc",
31532                                     DATA_TYPE_UINT8,
31533                                     scsi_sense_asc(sensep),
31534                                     "ascq",
31535                                     DATA_TYPE_UINT8,
31536                                     scsi_sense_ascq(sensep),
31537                                     "sense-data",
31538                                     DATA_TYPE_UINT8_ARRAY,
31539                                     senlen, sensep,
31540                                     NULL);
31541                         }
31542                 } else {
31543                         /*
31544                          * For stat_code == STATUS_GOOD, this is not a
31545                          * hardware error.
31546                          */
31547                         if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD)
31548                                 return;
31549 
31550                         /*
31551                          * Post ereport.io.scsi.cmd.disk.dev.serr if we got the
31552                          * stat-code but with sense data unavailable.
31553                          * driver-assessment will be set based on parameter
31554                          * drv_assess.
31555                          */
31556                         scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31557                             NULL,
31558                             "cmd.disk.dev.serr", uscsi_ena,
31559                             devid, NULL, DDI_NOSLEEP, NULL,
31560                             FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31561                             DEVID_IF_KNOWN(devid),
31562                             "driver-assessment", DATA_TYPE_STRING,
31563                             drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
31564                             "op-code", DATA_TYPE_UINT8, op_code,
31565                             "cdb",
31566                             DATA_TYPE_UINT8_ARRAY,
31567                             cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31568                             "pkt-reason",
31569                             DATA_TYPE_UINT8, uscsi_pkt_reason,
31570                             "pkt-state",
31571                             DATA_TYPE_UINT8, uscsi_pkt_state,
31572                             "pkt-stats",
31573                             DATA_TYPE_UINT32, uscsi_pkt_statistics,
31574                             "stat-code",
31575                             DATA_TYPE_UINT8,
31576                             ssc->ssc_uscsi_cmd->uscsi_status,
31577                             NULL);
31578                 }
31579         }
31580 }
31581 
31582 /*
31583  *     Function: sd_ssc_extract_info
31584  *
31585  * Description: Extract information available to help generate ereport.
31586  *
31587  *     Context: Kernel thread or interrupt context.
31588  */
31589 static void
31590 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp,
31591     struct buf *bp, struct sd_xbuf *xp)
31592 {
31593         size_t senlen = 0;
31594         union scsi_cdb *cdbp;
31595         int path_instance;
31596         /*
31597          * Need scsi_cdb_size array to determine the cdb length.
31598          */
31599         extern uchar_t  scsi_cdb_size[];
31600 
31601         ASSERT(un != NULL);
31602         ASSERT(pktp != NULL);
31603         ASSERT(bp != NULL);
31604         ASSERT(xp != NULL);
31605         ASSERT(ssc != NULL);
31606         ASSERT(mutex_owned(SD_MUTEX(un)));
31607 
31608         /*
31609          * Transfer the cdb buffer pointer here.
31610          */
31611         cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
31612 
31613         ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)];
31614         ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp;
31615 
31616         /*
31617          * Transfer the sense data buffer pointer if sense data is available,
31618          * calculate the sense data length first.
31619          */
31620         if ((xp->xb_sense_state & STATE_XARQ_DONE) ||
31621             (xp->xb_sense_state & STATE_ARQ_DONE)) {
31622                 /*
31623                  * For arq case, we will enter here.
31624                  */
31625                 if (xp->xb_sense_state & STATE_XARQ_DONE) {
31626                         senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid;
31627                 } else {
31628                         senlen = SENSE_LENGTH;
31629                 }
31630         } else {
31631                 /*
31632                  * For non-arq case, we will enter this branch.
31633                  */
31634                 if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK &&
31635                     (xp->xb_sense_state & STATE_XFERRED_DATA)) {
31636                         senlen = SENSE_LENGTH - xp->xb_sense_resid;
31637                 }
31638 
31639         }
31640 
31641         ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff);
31642         ssc->ssc_uscsi_cmd->uscsi_rqresid = 0;
31643         ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data;
31644 
31645         ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
31646 
31647         /*
31648          * Only transfer path_instance when scsi_pkt was properly allocated.
31649          */
31650         path_instance = pktp->pkt_path_instance;
31651         if (scsi_pkt_allocated_correctly(pktp) && path_instance)
31652                 ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance;
31653         else
31654                 ssc->ssc_uscsi_cmd->uscsi_path_instance = 0;
31655 
31656         /*
31657          * Copy in the other fields we may need when posting ereport.
31658          */
31659         ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason;
31660         ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state;
31661         ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics;
31662         ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
31663 
31664         /*
31665          * For partially read/write command, we will not create ena
31666          * in case of a successful command be reconized as recovered.
31667          */
31668         if ((pktp->pkt_reason == CMD_CMPLT) &&
31669             (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) &&
31670             (senlen == 0)) {
31671                 return;
31672         }
31673 
31674         /*
31675          * To associate ereports of a single command execution flow, we
31676          * need a shared ena for a specific command.
31677          */
31678         if (xp->xb_ena == 0)
31679                 xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1);
31680         ssc->ssc_uscsi_info->ui_ena = xp->xb_ena;
31681 }
31682 
31683 
31684 /*
31685  *     Function: sd_check_solid_state
31686  *
31687  * Description: Query the optional INQUIRY VPD page 0xb1. If the device
31688  *              supports VPD page 0xb1, sd examines the MEDIUM ROTATION
31689  *              RATE. If the MEDIUM ROTATION RATE is 1, sd assumes the
31690  *              device is a solid state drive.
31691  *
31692  *     Context: Kernel thread or interrupt context.
31693  */
31694 
31695 static void
31696 sd_check_solid_state(sd_ssc_t *ssc)
31697 {
31698         int             rval            = 0;
31699         uchar_t         *inqb1          = NULL;
31700         size_t          inqb1_len       = MAX_INQUIRY_SIZE;
31701         size_t          inqb1_resid     = 0;
31702         struct sd_lun   *un;
31703 
31704         ASSERT(ssc != NULL);
31705         un = ssc->ssc_un;
31706         ASSERT(un != NULL);
31707         ASSERT(!mutex_owned(SD_MUTEX(un)));
31708 
31709         mutex_enter(SD_MUTEX(un));
31710         un->un_f_is_solid_state = FALSE;
31711 
31712         if (ISCD(un)) {
31713                 mutex_exit(SD_MUTEX(un));
31714                 return;
31715         }
31716 
31717         if (sd_check_vpd_page_support(ssc) == 0 &&
31718             un->un_vpd_page_mask & SD_VPD_DEV_CHARACTER_PG) {
31719                 mutex_exit(SD_MUTEX(un));
31720                 /* collect page b1 data */
31721                 inqb1 = kmem_zalloc(inqb1_len, KM_SLEEP);
31722 
31723                 rval = sd_send_scsi_INQUIRY(ssc, inqb1, inqb1_len,
31724                     0x01, 0xB1, &inqb1_resid);
31725 
31726                 if (rval == 0 && (inqb1_len - inqb1_resid > 5)) {
31727                         SD_TRACE(SD_LOG_COMMON, un,
31728                             "sd_check_solid_state: \
31729                             successfully get VPD page: %x \
31730                             PAGE LENGTH: %x BYTE 4: %x \
31731                             BYTE 5: %x", inqb1[1], inqb1[3], inqb1[4],
31732                             inqb1[5]);
31733 
31734                         mutex_enter(SD_MUTEX(un));
31735                         /*
31736                          * Check the MEDIUM ROTATION RATE. If it is set
31737                          * to 1, the device is a solid state drive.
31738                          */
31739                         if (inqb1[4] == 0 && inqb1[5] == 1) {
31740                                 un->un_f_is_solid_state = TRUE;
31741                                 /* solid state drives don't need disksort */
31742                                 un->un_f_disksort_disabled = TRUE;
31743                         }
31744                         mutex_exit(SD_MUTEX(un));
31745                 } else if (rval != 0) {
31746                         sd_ssc_assessment(ssc, SD_FMT_IGNORE);
31747                 }
31748 
31749                 kmem_free(inqb1, inqb1_len);
31750         } else {
31751                 mutex_exit(SD_MUTEX(un));
31752         }
31753 }
31754 
31755 /*
31756  *      Function: sd_check_emulation_mode
31757  *
31758  *   Description: Check whether the SSD is at emulation mode
31759  *                by issuing READ_CAPACITY_16 to see whether
31760  *                we can get physical block size of the drive.
31761  *
31762  *       Context: Kernel thread or interrupt context.
31763  */
31764 
31765 static void
31766 sd_check_emulation_mode(sd_ssc_t *ssc)
31767 {
31768         int             rval = 0;
31769         uint64_t        capacity;
31770         uint_t          lbasize;
31771         uint_t          pbsize;
31772         int             i;
31773         int             devid_len;
31774         struct sd_lun   *un;
31775 
31776         ASSERT(ssc != NULL);
31777         un = ssc->ssc_un;
31778         ASSERT(un != NULL);
31779         ASSERT(!mutex_owned(SD_MUTEX(un)));
31780 
31781         mutex_enter(SD_MUTEX(un));
31782         if (ISCD(un)) {
31783                 mutex_exit(SD_MUTEX(un));
31784                 return;
31785         }
31786 
31787         if (un->un_f_descr_format_supported) {
31788                 mutex_exit(SD_MUTEX(un));
31789                 rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize,
31790                     &pbsize, SD_PATH_DIRECT);
31791                 mutex_enter(SD_MUTEX(un));
31792 
31793                 if (rval != 0) {
31794                         un->un_phy_blocksize = DEV_BSIZE;
31795                 } else {
31796                         if (!ISP2(pbsize % DEV_BSIZE) || pbsize == 0) {
31797                                 un->un_phy_blocksize = DEV_BSIZE;
31798                         } else if (pbsize > un->un_phy_blocksize) {
31799                                 /*
31800                                  * Don't reset the physical blocksize
31801                                  * unless we've detected a larger value.
31802                                  */
31803                                 un->un_phy_blocksize = pbsize;
31804                         }
31805                 }
31806         }
31807 
31808         for (i = 0; i < sd_flash_dev_table_size; i++) {
31809                 devid_len = (int)strlen(sd_flash_dev_table[i]);
31810                 if (sd_sdconf_id_match(un, sd_flash_dev_table[i], devid_len)
31811                     == SD_SUCCESS) {
31812                         un->un_phy_blocksize = SSD_SECSIZE;
31813                         if (un->un_f_is_solid_state &&
31814                             un->un_phy_blocksize != un->un_tgt_blocksize)
31815                                 un->un_f_enable_rmw = TRUE;
31816                 }
31817         }
31818 
31819         mutex_exit(SD_MUTEX(un));
31820 }