1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 /*
  27  * Copyright (c) 2014 by Delphix. All rights reserved.
  28  */
  29 
  30 /*
  31  * AVL - generic AVL tree implementation for kernel use
  32  *
  33  * A complete description of AVL trees can be found in many CS textbooks.
  34  *
  35  * Here is a very brief overview. An AVL tree is a binary search tree that is
  36  * almost perfectly balanced. By "almost" perfectly balanced, we mean that at
  37  * any given node, the left and right subtrees are allowed to differ in height
  38  * by at most 1 level.
  39  *
  40  * This relaxation from a perfectly balanced binary tree allows doing
  41  * insertion and deletion relatively efficiently. Searching the tree is
  42  * still a fast operation, roughly O(log(N)).
  43  *
  44  * The key to insertion and deletion is a set of tree manipulations called
  45  * rotations, which bring unbalanced subtrees back into the semi-balanced state.
  46  *
  47  * This implementation of AVL trees has the following peculiarities:
  48  *
  49  *      - The AVL specific data structures are physically embedded as fields
  50  *        in the "using" data structures.  To maintain generality the code
  51  *        must constantly translate between "avl_node_t *" and containing
  52  *        data structure "void *"s by adding/subtracting the avl_offset.
  53  *
  54  *      - Since the AVL data is always embedded in other structures, there is
  55  *        no locking or memory allocation in the AVL routines. This must be
  56  *        provided for by the enclosing data structure's semantics. Typically,
  57  *        avl_insert()/_add()/_remove()/avl_insert_here() require some kind of
  58  *        exclusive write lock. Other operations require a read lock.
  59  *
  60  *      - The implementation uses iteration instead of explicit recursion,
  61  *        since it is intended to run on limited size kernel stacks. Since
  62  *        there is no recursion stack present to move "up" in the tree,
  63  *        there is an explicit "parent" link in the avl_node_t.
  64  *
  65  *      - The left/right children pointers of a node are in an array.
  66  *        In the code, variables (instead of constants) are used to represent
  67  *        left and right indices.  The implementation is written as if it only
  68  *        dealt with left handed manipulations.  By changing the value assigned
  69  *        to "left", the code also works for right handed trees.  The
  70  *        following variables/terms are frequently used:
  71  *
  72  *              int left;       // 0 when dealing with left children,
  73  *                              // 1 for dealing with right children
  74  *
  75  *              int left_heavy; // -1 when left subtree is taller at some node,
  76  *                              // +1 when right subtree is taller
  77  *
  78  *              int right;      // will be the opposite of left (0 or 1)
  79  *              int right_heavy;// will be the opposite of left_heavy (-1 or 1)
  80  *
  81  *              int direction;  // 0 for "<" (ie. left child); 1 for ">" (right)
  82  *
  83  *        Though it is a little more confusing to read the code, the approach
  84  *        allows using half as much code (and hence cache footprint) for tree
  85  *        manipulations and eliminates many conditional branches.
  86  *
  87  *      - The avl_index_t is an opaque "cookie" used to find nodes at or
  88  *        adjacent to where a new value would be inserted in the tree. The value
  89  *        is a modified "avl_node_t *".  The bottom bit (normally 0 for a
  90  *        pointer) is set to indicate if that the new node has a value greater
  91  *        than the value of the indicated "avl_node_t *".
  92  *
  93  * Note - in addition to userland (e.g. libavl and libutil) and the kernel
  94  * (e.g. genunix), avl.c is compiled into ld.so and kmdb's genunix module,
  95  * which each have their own compilation environments and subsequent
  96  * requirements. Each of these environments must be considered when adding
  97  * dependencies from avl.c.
  98  */
  99 
 100 #include <sys/types.h>
 101 #include <sys/param.h>
 102 #include <sys/debug.h>
 103 #include <sys/avl.h>
 104 #include <sys/cmn_err.h>
 105 
 106 /*
 107  * Small arrays to translate between balance (or diff) values and child indices.
 108  *
 109  * Code that deals with binary tree data structures will randomly use
 110  * left and right children when examining a tree.  C "if()" statements
 111  * which evaluate randomly suffer from very poor hardware branch prediction.
 112  * In this code we avoid some of the branch mispredictions by using the
 113  * following translation arrays. They replace random branches with an
 114  * additional memory reference. Since the translation arrays are both very
 115  * small the data should remain efficiently in cache.
 116  */
 117 static const int  avl_child2balance[2]  = {-1, 1};
 118 static const int  avl_balance2child[]   = {0, 0, 1};
 119 
 120 
 121 /*
 122  * Walk from one node to the previous valued node (ie. an infix walk
 123  * towards the left). At any given node we do one of 2 things:
 124  *
 125  * - If there is a left child, go to it, then to it's rightmost descendant.
 126  *
 127  * - otherwise we return through parent nodes until we've come from a right
 128  *   child.
 129  *
 130  * Return Value:
 131  * NULL - if at the end of the nodes
 132  * otherwise next node
 133  */
 134 void *
 135 avl_walk(avl_tree_t *tree, void *oldnode, int left)
 136 {
 137         size_t off = tree->avl_offset;
 138         avl_node_t *node = AVL_DATA2NODE(oldnode, off);
 139         int right = 1 - left;
 140         int was_child;
 141 
 142 
 143         /*
 144          * nowhere to walk to if tree is empty
 145          */
 146         if (node == NULL)
 147                 return (NULL);
 148 
 149         /*
 150          * Visit the previous valued node. There are two possibilities:
 151          *
 152          * If this node has a left child, go down one left, then all
 153          * the way right.
 154          */
 155         if (node->avl_child[left] != NULL) {
 156                 for (node = node->avl_child[left];
 157                     node->avl_child[right] != NULL;
 158                     node = node->avl_child[right])
 159                         ;
 160         /*
 161          * Otherwise, return thru left children as far as we can.
 162          */
 163         } else {
 164                 for (;;) {
 165                         was_child = AVL_XCHILD(node);
 166                         node = AVL_XPARENT(node);
 167                         if (node == NULL)
 168                                 return (NULL);
 169                         if (was_child == right)
 170                                 break;
 171                 }
 172         }
 173 
 174         return (AVL_NODE2DATA(node, off));
 175 }
 176 
 177 /*
 178  * Return the lowest valued node in a tree or NULL.
 179  * (leftmost child from root of tree)
 180  */
 181 void *
 182 avl_first(avl_tree_t *tree)
 183 {
 184         avl_node_t *node;
 185         avl_node_t *prev = NULL;
 186         size_t off = tree->avl_offset;
 187 
 188         for (node = tree->avl_root; node != NULL; node = node->avl_child[0])
 189                 prev = node;
 190 
 191         if (prev != NULL)
 192                 return (AVL_NODE2DATA(prev, off));
 193         return (NULL);
 194 }
 195 
 196 /*
 197  * Return the highest valued node in a tree or NULL.
 198  * (rightmost child from root of tree)
 199  */
 200 void *
 201 avl_last(avl_tree_t *tree)
 202 {
 203         avl_node_t *node;
 204         avl_node_t *prev = NULL;
 205         size_t off = tree->avl_offset;
 206 
 207         for (node = tree->avl_root; node != NULL; node = node->avl_child[1])
 208                 prev = node;
 209 
 210         if (prev != NULL)
 211                 return (AVL_NODE2DATA(prev, off));
 212         return (NULL);
 213 }
 214 
 215 /*
 216  * Access the node immediately before or after an insertion point.
 217  *
 218  * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child
 219  *
 220  * Return value:
 221  *      NULL: no node in the given direction
 222  *      "void *"  of the found tree node
 223  */
 224 void *
 225 avl_nearest(avl_tree_t *tree, avl_index_t where, int direction)
 226 {
 227         int child = AVL_INDEX2CHILD(where);
 228         avl_node_t *node = AVL_INDEX2NODE(where);
 229         void *data;
 230         size_t off = tree->avl_offset;
 231 
 232         if (node == NULL) {
 233                 ASSERT(tree->avl_root == NULL);
 234                 return (NULL);
 235         }
 236         data = AVL_NODE2DATA(node, off);
 237         if (child != direction)
 238                 return (data);
 239 
 240         return (avl_walk(tree, data, direction));
 241 }
 242 
 243 
 244 /*
 245  * Search for the node which contains "value".  The algorithm is a
 246  * simple binary tree search.
 247  *
 248  * return value:
 249  *      NULL: the value is not in the AVL tree
 250  *              *where (if not NULL)  is set to indicate the insertion point
 251  *      "void *"  of the found tree node
 252  */
 253 void *
 254 avl_find(avl_tree_t *tree, const void *value, avl_index_t *where)
 255 {
 256         avl_node_t *node;
 257         avl_node_t *prev = NULL;
 258         int child = 0;
 259         int diff;
 260         size_t off = tree->avl_offset;
 261 
 262         for (node = tree->avl_root; node != NULL;
 263             node = node->avl_child[child]) {
 264 
 265                 prev = node;
 266 
 267                 diff = tree->avl_compar(value, AVL_NODE2DATA(node, off));
 268                 ASSERT(-1 <= diff && diff <= 1);
 269                 if (diff == 0) {
 270 #ifdef DEBUG
 271                         if (where != NULL)
 272                                 *where = 0;
 273 #endif
 274                         return (AVL_NODE2DATA(node, off));
 275                 }
 276                 child = avl_balance2child[1 + diff];
 277 
 278         }
 279 
 280         if (where != NULL)
 281                 *where = AVL_MKINDEX(prev, child);
 282 
 283         return (NULL);
 284 }
 285 
 286 
 287 /*
 288  * Perform a rotation to restore balance at the subtree given by depth.
 289  *
 290  * This routine is used by both insertion and deletion. The return value
 291  * indicates:
 292  *       0 : subtree did not change height
 293  *      !0 : subtree was reduced in height
 294  *
 295  * The code is written as if handling left rotations, right rotations are
 296  * symmetric and handled by swapping values of variables right/left[_heavy]
 297  *
 298  * On input balance is the "new" balance at "node". This value is either
 299  * -2 or +2.
 300  */
 301 static int
 302 avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance)
 303 {
 304         int left = !(balance < 0);   /* when balance = -2, left will be 0 */
 305         int right = 1 - left;
 306         int left_heavy = balance >> 1;
 307         int right_heavy = -left_heavy;
 308         avl_node_t *parent = AVL_XPARENT(node);
 309         avl_node_t *child = node->avl_child[left];
 310         avl_node_t *cright;
 311         avl_node_t *gchild;
 312         avl_node_t *gright;
 313         avl_node_t *gleft;
 314         int which_child = AVL_XCHILD(node);
 315         int child_bal = AVL_XBALANCE(child);
 316 
 317         /* BEGIN CSTYLED */
 318         /*
 319          * case 1 : node is overly left heavy, the left child is balanced or
 320          * also left heavy. This requires the following rotation.
 321          *
 322          *                   (node bal:-2)
 323          *                    /           \
 324          *                   /             \
 325          *              (child bal:0 or -1)
 326          *              /    \
 327          *             /      \
 328          *                     cright
 329          *
 330          * becomes:
 331          *
 332          *              (child bal:1 or 0)
 333          *              /        \
 334          *             /          \
 335          *                        (node bal:-1 or 0)
 336          *                         /     \
 337          *                        /       \
 338          *                     cright
 339          *
 340          * we detect this situation by noting that child's balance is not
 341          * right_heavy.
 342          */
 343         /* END CSTYLED */
 344         if (child_bal != right_heavy) {
 345 
 346                 /*
 347                  * compute new balance of nodes
 348                  *
 349                  * If child used to be left heavy (now balanced) we reduced
 350                  * the height of this sub-tree -- used in "return...;" below
 351                  */
 352                 child_bal += right_heavy; /* adjust towards right */
 353 
 354                 /*
 355                  * move "cright" to be node's left child
 356                  */
 357                 cright = child->avl_child[right];
 358                 node->avl_child[left] = cright;
 359                 if (cright != NULL) {
 360                         AVL_SETPARENT(cright, node);
 361                         AVL_SETCHILD(cright, left);
 362                 }
 363 
 364                 /*
 365                  * move node to be child's right child
 366                  */
 367                 child->avl_child[right] = node;
 368                 AVL_SETBALANCE(node, -child_bal);
 369                 AVL_SETCHILD(node, right);
 370                 AVL_SETPARENT(node, child);
 371 
 372                 /*
 373                  * update the pointer into this subtree
 374                  */
 375                 AVL_SETBALANCE(child, child_bal);
 376                 AVL_SETCHILD(child, which_child);
 377                 AVL_SETPARENT(child, parent);
 378                 if (parent != NULL)
 379                         parent->avl_child[which_child] = child;
 380                 else
 381                         tree->avl_root = child;
 382 
 383                 return (child_bal == 0);
 384         }
 385 
 386         /* BEGIN CSTYLED */
 387         /*
 388          * case 2 : When node is left heavy, but child is right heavy we use
 389          * a different rotation.
 390          *
 391          *                   (node b:-2)
 392          *                    /   \
 393          *                   /     \
 394          *                  /       \
 395          *             (child b:+1)
 396          *              /     \
 397          *             /       \
 398          *                   (gchild b: != 0)
 399          *                     /  \
 400          *                    /    \
 401          *                 gleft   gright
 402          *
 403          * becomes:
 404          *
 405          *              (gchild b:0)
 406          *              /       \
 407          *             /         \
 408          *            /           \
 409          *        (child b:?)   (node b:?)
 410          *         /  \          /   \
 411          *        /    \        /     \
 412          *            gleft   gright
 413          *
 414          * computing the new balances is more complicated. As an example:
 415          *       if gchild was right_heavy, then child is now left heavy
 416          *              else it is balanced
 417          */
 418         /* END CSTYLED */
 419         gchild = child->avl_child[right];
 420         gleft = gchild->avl_child[left];
 421         gright = gchild->avl_child[right];
 422 
 423         /*
 424          * move gright to left child of node and
 425          *
 426          * move gleft to right child of node
 427          */
 428         node->avl_child[left] = gright;
 429         if (gright != NULL) {
 430                 AVL_SETPARENT(gright, node);
 431                 AVL_SETCHILD(gright, left);
 432         }
 433 
 434         child->avl_child[right] = gleft;
 435         if (gleft != NULL) {
 436                 AVL_SETPARENT(gleft, child);
 437                 AVL_SETCHILD(gleft, right);
 438         }
 439 
 440         /*
 441          * move child to left child of gchild and
 442          *
 443          * move node to right child of gchild and
 444          *
 445          * fixup parent of all this to point to gchild
 446          */
 447         balance = AVL_XBALANCE(gchild);
 448         gchild->avl_child[left] = child;
 449         AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0));
 450         AVL_SETPARENT(child, gchild);
 451         AVL_SETCHILD(child, left);
 452 
 453         gchild->avl_child[right] = node;
 454         AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0));
 455         AVL_SETPARENT(node, gchild);
 456         AVL_SETCHILD(node, right);
 457 
 458         AVL_SETBALANCE(gchild, 0);
 459         AVL_SETPARENT(gchild, parent);
 460         AVL_SETCHILD(gchild, which_child);
 461         if (parent != NULL)
 462                 parent->avl_child[which_child] = gchild;
 463         else
 464                 tree->avl_root = gchild;
 465 
 466         return (1);     /* the new tree is always shorter */
 467 }
 468 
 469 
 470 /*
 471  * Insert a new node into an AVL tree at the specified (from avl_find()) place.
 472  *
 473  * Newly inserted nodes are always leaf nodes in the tree, since avl_find()
 474  * searches out to the leaf positions.  The avl_index_t indicates the node
 475  * which will be the parent of the new node.
 476  *
 477  * After the node is inserted, a single rotation further up the tree may
 478  * be necessary to maintain an acceptable AVL balance.
 479  */
 480 void
 481 avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where)
 482 {
 483         avl_node_t *node;
 484         avl_node_t *parent = AVL_INDEX2NODE(where);
 485         int old_balance;
 486         int new_balance;
 487         int which_child = AVL_INDEX2CHILD(where);
 488         size_t off = tree->avl_offset;
 489 
 490         ASSERT(tree);
 491 #ifdef _LP64
 492         ASSERT(((uintptr_t)new_data & 0x7) == 0);
 493 #endif
 494 
 495         node = AVL_DATA2NODE(new_data, off);
 496 
 497         /*
 498          * First, add the node to the tree at the indicated position.
 499          */
 500         ++tree->avl_numnodes;
 501 
 502         node->avl_child[0] = NULL;
 503         node->avl_child[1] = NULL;
 504 
 505         AVL_SETCHILD(node, which_child);
 506         AVL_SETBALANCE(node, 0);
 507         AVL_SETPARENT(node, parent);
 508         if (parent != NULL) {
 509                 ASSERT(parent->avl_child[which_child] == NULL);
 510                 parent->avl_child[which_child] = node;
 511         } else {
 512                 ASSERT(tree->avl_root == NULL);
 513                 tree->avl_root = node;
 514         }
 515         /*
 516          * Now, back up the tree modifying the balance of all nodes above the
 517          * insertion point. If we get to a highly unbalanced ancestor, we
 518          * need to do a rotation.  If we back out of the tree we are done.
 519          * If we brought any subtree into perfect balance (0), we are also done.
 520          */
 521         for (;;) {
 522                 node = parent;
 523                 if (node == NULL)
 524                         return;
 525 
 526                 /*
 527                  * Compute the new balance
 528                  */
 529                 old_balance = AVL_XBALANCE(node);
 530                 new_balance = old_balance + avl_child2balance[which_child];
 531 
 532                 /*
 533                  * If we introduced equal balance, then we are done immediately
 534                  */
 535                 if (new_balance == 0) {
 536                         AVL_SETBALANCE(node, 0);
 537                         return;
 538                 }
 539 
 540                 /*
 541                  * If both old and new are not zero we went
 542                  * from -1 to -2 balance, do a rotation.
 543                  */
 544                 if (old_balance != 0)
 545                         break;
 546 
 547                 AVL_SETBALANCE(node, new_balance);
 548                 parent = AVL_XPARENT(node);
 549                 which_child = AVL_XCHILD(node);
 550         }
 551 
 552         /*
 553          * perform a rotation to fix the tree and return
 554          */
 555         (void) avl_rotation(tree, node, new_balance);
 556 }
 557 
 558 /*
 559  * Insert "new_data" in "tree" in the given "direction" either after or
 560  * before (AVL_AFTER, AVL_BEFORE) the data "here".
 561  *
 562  * Insertions can only be done at empty leaf points in the tree, therefore
 563  * if the given child of the node is already present we move to either
 564  * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since
 565  * every other node in the tree is a leaf, this always works.
 566  *
 567  * To help developers using this interface, we assert that the new node
 568  * is correctly ordered at every step of the way in DEBUG kernels.
 569  */
 570 void
 571 avl_insert_here(
 572         avl_tree_t *tree,
 573         void *new_data,
 574         void *here,
 575         int direction)
 576 {
 577         avl_node_t *node;
 578         int child = direction;  /* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */
 579 #ifdef DEBUG
 580         int diff;
 581 #endif
 582 
 583         ASSERT(tree != NULL);
 584         ASSERT(new_data != NULL);
 585         ASSERT(here != NULL);
 586         ASSERT(direction == AVL_BEFORE || direction == AVL_AFTER);
 587 
 588         /*
 589          * If corresponding child of node is not NULL, go to the neighboring
 590          * node and reverse the insertion direction.
 591          */
 592         node = AVL_DATA2NODE(here, tree->avl_offset);
 593 
 594 #ifdef DEBUG
 595         diff = tree->avl_compar(new_data, here);
 596         ASSERT(-1 <= diff && diff <= 1);
 597         ASSERT(diff != 0);
 598         ASSERT(diff > 0 ? child == 1 : child == 0);
 599 #endif
 600 
 601         if (node->avl_child[child] != NULL) {
 602                 node = node->avl_child[child];
 603                 child = 1 - child;
 604                 while (node->avl_child[child] != NULL) {
 605 #ifdef DEBUG
 606                         diff = tree->avl_compar(new_data,
 607                             AVL_NODE2DATA(node, tree->avl_offset));
 608                         ASSERT(-1 <= diff && diff <= 1);
 609                         ASSERT(diff != 0);
 610                         ASSERT(diff > 0 ? child == 1 : child == 0);
 611 #endif
 612                         node = node->avl_child[child];
 613                 }
 614 #ifdef DEBUG
 615                 diff = tree->avl_compar(new_data,
 616                     AVL_NODE2DATA(node, tree->avl_offset));
 617                 ASSERT(-1 <= diff && diff <= 1);
 618                 ASSERT(diff != 0);
 619                 ASSERT(diff > 0 ? child == 1 : child == 0);
 620 #endif
 621         }
 622         ASSERT(node->avl_child[child] == NULL);
 623 
 624         avl_insert(tree, new_data, AVL_MKINDEX(node, child));
 625 }
 626 
 627 /*
 628  * Add a new node to an AVL tree.
 629  */
 630 void
 631 avl_add(avl_tree_t *tree, void *new_node)
 632 {
 633         avl_index_t where;
 634 
 635         /*
 636          * This is unfortunate.  We want to call panic() here, even for
 637          * non-DEBUG kernels.  In userland, however, we can't depend on anything
 638          * in libc or else the rtld build process gets confused.  So, all we can
 639          * do in userland is resort to a normal ASSERT().
 640          */
 641         if (avl_find(tree, new_node, &where) != NULL)
 642 #ifdef _KERNEL
 643                 panic("avl_find() succeeded inside avl_add()");
 644 #else
 645                 ASSERT(0);
 646 #endif
 647         avl_insert(tree, new_node, where);
 648 }
 649 
 650 /*
 651  * Delete a node from the AVL tree.  Deletion is similar to insertion, but
 652  * with 2 complications.
 653  *
 654  * First, we may be deleting an interior node. Consider the following subtree:
 655  *
 656  *     d           c            c
 657  *    / \         / \          / \
 658  *   b   e       b   e        b   e
 659  *  / \         / \          /
 660  * a   c       a            a
 661  *
 662  * When we are deleting node (d), we find and bring up an adjacent valued leaf
 663  * node, say (c), to take the interior node's place. In the code this is
 664  * handled by temporarily swapping (d) and (c) in the tree and then using
 665  * common code to delete (d) from the leaf position.
 666  *
 667  * Secondly, an interior deletion from a deep tree may require more than one
 668  * rotation to fix the balance. This is handled by moving up the tree through
 669  * parents and applying rotations as needed. The return value from
 670  * avl_rotation() is used to detect when a subtree did not change overall
 671  * height due to a rotation.
 672  */
 673 void
 674 avl_remove(avl_tree_t *tree, void *data)
 675 {
 676         avl_node_t *delete;
 677         avl_node_t *parent;
 678         avl_node_t *node;
 679         avl_node_t tmp;
 680         int old_balance;
 681         int new_balance;
 682         int left;
 683         int right;
 684         int which_child;
 685         size_t off = tree->avl_offset;
 686 
 687         ASSERT(tree);
 688 
 689         delete = AVL_DATA2NODE(data, off);
 690 
 691         /*
 692          * Deletion is easiest with a node that has at most 1 child.
 693          * We swap a node with 2 children with a sequentially valued
 694          * neighbor node. That node will have at most 1 child. Note this
 695          * has no effect on the ordering of the remaining nodes.
 696          *
 697          * As an optimization, we choose the greater neighbor if the tree
 698          * is right heavy, otherwise the left neighbor. This reduces the
 699          * number of rotations needed.
 700          */
 701         if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) {
 702 
 703                 /*
 704                  * choose node to swap from whichever side is taller
 705                  */
 706                 old_balance = AVL_XBALANCE(delete);
 707                 left = avl_balance2child[old_balance + 1];
 708                 right = 1 - left;
 709 
 710                 /*
 711                  * get to the previous value'd node
 712                  * (down 1 left, as far as possible right)
 713                  */
 714                 for (node = delete->avl_child[left];
 715                     node->avl_child[right] != NULL;
 716                     node = node->avl_child[right])
 717                         ;
 718 
 719                 /*
 720                  * create a temp placeholder for 'node'
 721                  * move 'node' to delete's spot in the tree
 722                  */
 723                 tmp = *node;
 724 
 725                 *node = *delete;
 726                 if (node->avl_child[left] == node)
 727                         node->avl_child[left] = &tmp;
 728 
 729                 parent = AVL_XPARENT(node);
 730                 if (parent != NULL)
 731                         parent->avl_child[AVL_XCHILD(node)] = node;
 732                 else
 733                         tree->avl_root = node;
 734                 AVL_SETPARENT(node->avl_child[left], node);
 735                 AVL_SETPARENT(node->avl_child[right], node);
 736 
 737                 /*
 738                  * Put tmp where node used to be (just temporary).
 739                  * It always has a parent and at most 1 child.
 740                  */
 741                 delete = &tmp;
 742                 parent = AVL_XPARENT(delete);
 743                 parent->avl_child[AVL_XCHILD(delete)] = delete;
 744                 which_child = (delete->avl_child[1] != 0);
 745                 if (delete->avl_child[which_child] != NULL)
 746                         AVL_SETPARENT(delete->avl_child[which_child], delete);
 747         }
 748 
 749 
 750         /*
 751          * Here we know "delete" is at least partially a leaf node. It can
 752          * be easily removed from the tree.
 753          */
 754         ASSERT(tree->avl_numnodes > 0);
 755         --tree->avl_numnodes;
 756         parent = AVL_XPARENT(delete);
 757         which_child = AVL_XCHILD(delete);
 758         if (delete->avl_child[0] != NULL)
 759                 node = delete->avl_child[0];
 760         else
 761                 node = delete->avl_child[1];
 762 
 763         /*
 764          * Connect parent directly to node (leaving out delete).
 765          */
 766         if (node != NULL) {
 767                 AVL_SETPARENT(node, parent);
 768                 AVL_SETCHILD(node, which_child);
 769         }
 770         if (parent == NULL) {
 771                 tree->avl_root = node;
 772                 return;
 773         }
 774         parent->avl_child[which_child] = node;
 775 
 776 
 777         /*
 778          * Since the subtree is now shorter, begin adjusting parent balances
 779          * and performing any needed rotations.
 780          */
 781         do {
 782 
 783                 /*
 784                  * Move up the tree and adjust the balance
 785                  *
 786                  * Capture the parent and which_child values for the next
 787                  * iteration before any rotations occur.
 788                  */
 789                 node = parent;
 790                 old_balance = AVL_XBALANCE(node);
 791                 new_balance = old_balance - avl_child2balance[which_child];
 792                 parent = AVL_XPARENT(node);
 793                 which_child = AVL_XCHILD(node);
 794 
 795                 /*
 796                  * If a node was in perfect balance but isn't anymore then
 797                  * we can stop, since the height didn't change above this point
 798                  * due to a deletion.
 799                  */
 800                 if (old_balance == 0) {
 801                         AVL_SETBALANCE(node, new_balance);
 802                         break;
 803                 }
 804 
 805                 /*
 806                  * If the new balance is zero, we don't need to rotate
 807                  * else
 808                  * need a rotation to fix the balance.
 809                  * If the rotation doesn't change the height
 810                  * of the sub-tree we have finished adjusting.
 811                  */
 812                 if (new_balance == 0)
 813                         AVL_SETBALANCE(node, new_balance);
 814                 else if (!avl_rotation(tree, node, new_balance))
 815                         break;
 816         } while (parent != NULL);
 817 }
 818 
 819 #define AVL_REINSERT(tree, obj)         \
 820         avl_remove((tree), (obj));      \
 821         avl_add((tree), (obj))
 822 
 823 boolean_t
 824 avl_update_lt(avl_tree_t *t, void *obj)
 825 {
 826         void *neighbor;
 827 
 828         ASSERT(((neighbor = AVL_NEXT(t, obj)) == NULL) ||
 829             (t->avl_compar(obj, neighbor) <= 0));
 830 
 831         neighbor = AVL_PREV(t, obj);
 832         if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
 833                 AVL_REINSERT(t, obj);
 834                 return (B_TRUE);
 835         }
 836 
 837         return (B_FALSE);
 838 }
 839 
 840 boolean_t
 841 avl_update_gt(avl_tree_t *t, void *obj)
 842 {
 843         void *neighbor;
 844 
 845         ASSERT(((neighbor = AVL_PREV(t, obj)) == NULL) ||
 846             (t->avl_compar(obj, neighbor) >= 0));
 847 
 848         neighbor = AVL_NEXT(t, obj);
 849         if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
 850                 AVL_REINSERT(t, obj);
 851                 return (B_TRUE);
 852         }
 853 
 854         return (B_FALSE);
 855 }
 856 
 857 boolean_t
 858 avl_update(avl_tree_t *t, void *obj)
 859 {
 860         void *neighbor;
 861 
 862         neighbor = AVL_PREV(t, obj);
 863         if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
 864                 AVL_REINSERT(t, obj);
 865                 return (B_TRUE);
 866         }
 867 
 868         neighbor = AVL_NEXT(t, obj);
 869         if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
 870                 AVL_REINSERT(t, obj);
 871                 return (B_TRUE);
 872         }
 873 
 874         return (B_FALSE);
 875 }
 876 
 877 void
 878 avl_swap(avl_tree_t *tree1, avl_tree_t *tree2)
 879 {
 880         avl_node_t *temp_node;
 881         ulong_t temp_numnodes;
 882 
 883         ASSERT3P(tree1->avl_compar, ==, tree2->avl_compar);
 884         ASSERT3U(tree1->avl_offset, ==, tree2->avl_offset);
 885         ASSERT3U(tree1->avl_size, ==, tree2->avl_size);
 886 
 887         temp_node = tree1->avl_root;
 888         temp_numnodes = tree1->avl_numnodes;
 889         tree1->avl_root = tree2->avl_root;
 890         tree1->avl_numnodes = tree2->avl_numnodes;
 891         tree2->avl_root = temp_node;
 892         tree2->avl_numnodes = temp_numnodes;
 893 }
 894 
 895 /*
 896  * initialize a new AVL tree
 897  */
 898 void
 899 avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *),
 900     size_t size, size_t offset)
 901 {
 902         ASSERT(tree);
 903         ASSERT(compar);
 904         ASSERT(size > 0);
 905         ASSERT(size >= offset + sizeof (avl_node_t));
 906 #ifdef _LP64
 907         ASSERT((offset & 0x7) == 0);
 908 #endif
 909 
 910         tree->avl_compar = compar;
 911         tree->avl_root = NULL;
 912         tree->avl_numnodes = 0;
 913         tree->avl_size = size;
 914         tree->avl_offset = offset;
 915 }
 916 
 917 /*
 918  * Delete a tree.
 919  */
 920 /* ARGSUSED */
 921 void
 922 avl_destroy(avl_tree_t *tree)
 923 {
 924         ASSERT(tree);
 925         ASSERT(tree->avl_numnodes == 0);
 926         ASSERT(tree->avl_root == NULL);
 927 }
 928 
 929 
 930 /*
 931  * Return the number of nodes in an AVL tree.
 932  */
 933 ulong_t
 934 avl_numnodes(avl_tree_t *tree)
 935 {
 936         ASSERT(tree);
 937         return (tree->avl_numnodes);
 938 }
 939 
 940 boolean_t
 941 avl_is_empty(avl_tree_t *tree)
 942 {
 943         ASSERT(tree);
 944         return (tree->avl_numnodes == 0);
 945 }
 946 
 947 #define CHILDBIT        (1L)
 948 
 949 /*
 950  * Post-order tree walk used to visit all tree nodes and destroy the tree
 951  * in post order. This is used for destroying a tree without paying any cost
 952  * for rebalancing it.
 953  *
 954  * example:
 955  *
 956  *      void *cookie = NULL;
 957  *      my_data_t *node;
 958  *
 959  *      while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
 960  *              free(node);
 961  *      avl_destroy(tree);
 962  *
 963  * The cookie is really an avl_node_t to the current node's parent and
 964  * an indication of which child you looked at last.
 965  *
 966  * On input, a cookie value of CHILDBIT indicates the tree is done.
 967  */
 968 void *
 969 avl_destroy_nodes(avl_tree_t *tree, void **cookie)
 970 {
 971         avl_node_t      *node;
 972         avl_node_t      *parent;
 973         int             child;
 974         void            *first;
 975         size_t          off = tree->avl_offset;
 976 
 977         /*
 978          * Initial calls go to the first node or it's right descendant.
 979          */
 980         if (*cookie == NULL) {
 981                 first = avl_first(tree);
 982 
 983                 /*
 984                  * deal with an empty tree
 985                  */
 986                 if (first == NULL) {
 987                         *cookie = (void *)CHILDBIT;
 988                         return (NULL);
 989                 }
 990 
 991                 node = AVL_DATA2NODE(first, off);
 992                 parent = AVL_XPARENT(node);
 993                 goto check_right_side;
 994         }
 995 
 996         /*
 997          * If there is no parent to return to we are done.
 998          */
 999         parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT);
1000         if (parent == NULL) {
1001                 if (tree->avl_root != NULL) {
1002                         ASSERT(tree->avl_numnodes == 1);
1003                         tree->avl_root = NULL;
1004                         tree->avl_numnodes = 0;
1005                 }
1006                 return (NULL);
1007         }
1008 
1009         /*
1010          * Remove the child pointer we just visited from the parent and tree.
1011          */
1012         child = (uintptr_t)(*cookie) & CHILDBIT;
1013         parent->avl_child[child] = NULL;
1014         ASSERT(tree->avl_numnodes > 1);
1015         --tree->avl_numnodes;
1016 
1017         /*
1018          * If we just did a right child or there isn't one, go up to parent.
1019          */
1020         if (child == 1 || parent->avl_child[1] == NULL) {
1021                 node = parent;
1022                 parent = AVL_XPARENT(parent);
1023                 goto done;
1024         }
1025 
1026         /*
1027          * Do parent's right child, then leftmost descendent.
1028          */
1029         node = parent->avl_child[1];
1030         while (node->avl_child[0] != NULL) {
1031                 parent = node;
1032                 node = node->avl_child[0];
1033         }
1034 
1035         /*
1036          * If here, we moved to a left child. It may have one
1037          * child on the right (when balance == +1).
1038          */
1039 check_right_side:
1040         if (node->avl_child[1] != NULL) {
1041                 ASSERT(AVL_XBALANCE(node) == 1);
1042                 parent = node;
1043                 node = node->avl_child[1];
1044                 ASSERT(node->avl_child[0] == NULL &&
1045                     node->avl_child[1] == NULL);
1046         } else {
1047                 ASSERT(AVL_XBALANCE(node) <= 0);
1048         }
1049 
1050 done:
1051         if (parent == NULL) {
1052                 *cookie = (void *)CHILDBIT;
1053                 ASSERT(node == tree->avl_root);
1054         } else {
1055                 *cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node));
1056         }
1057 
1058         return (AVL_NODE2DATA(node, off));
1059 }