1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 #ifndef _VM_HTABLE_H
  27 #define _VM_HTABLE_H
  28 
  29 #ifdef  __cplusplus
  30 extern "C" {
  31 #endif
  32 
  33 #if defined(__GNUC__) && defined(_ASM_INLINES) && defined(_KERNEL)
  34 #include <asm/htable.h>
  35 #endif
  36 
  37 extern void atomic_andb(uint8_t *addr, uint8_t value);
  38 extern void atomic_orb(uint8_t *addr, uint8_t value);
  39 extern void atomic_inc16(uint16_t *addr);
  40 extern void atomic_dec16(uint16_t *addr);
  41 extern void mmu_tlbflush_entry(caddr_t addr);
  42 
  43 /*
  44  * Each hardware page table has an htable_t describing it.
  45  *
  46  * We use a reference counter mechanism to detect when we can free an htable.
  47  * In the implmentation the reference count is split into 2 separate counters:
  48  *
  49  *      ht_busy is a traditional reference count of uses of the htable pointer
  50  *
  51  *      ht_valid_cnt is a count of how references are implied by valid PTE/PTP
  52  *               entries in the pagetable
  53  *
  54  * ht_busy is only incremented by htable_lookup() or htable_create()
  55  * while holding the appropriate hash_table mutex. While installing a new
  56  * valid PTE or PTP, in order to increment ht_valid_cnt a thread must have
  57  * done an htable_lookup() or htable_create() but not the htable_release yet.
  58  *
  59  * htable_release(), while holding the mutex, can know that if
  60  * busy == 1 and valid_cnt == 0, the htable can be free'd.
  61  *
  62  * The fields have been ordered to make htable_lookup() fast. Hence,
  63  * ht_hat, ht_vaddr, ht_level and ht_next need to be clustered together.
  64  */
  65 struct htable {
  66         struct htable   *ht_next;       /* forward link for hash table */
  67         struct hat      *ht_hat;        /* hat this mapping comes from */
  68         uintptr_t       ht_vaddr;       /* virt addr at start of this table */
  69         int8_t          ht_level;       /* page table level: 0=4K, 1=2M, ... */
  70         uint8_t         ht_flags;       /* see below */
  71         int16_t         ht_busy;        /* implements locking protocol */
  72         int16_t         ht_valid_cnt;   /* # of valid entries in this table */
  73         uint32_t        ht_lock_cnt;    /* # of locked entries in this table */
  74                                         /* never used for kernel hat */
  75         pfn_t           ht_pfn;         /* pfn of page of the pagetable */
  76         struct htable   *ht_prev;       /* backward link for hash table */
  77         struct htable   *ht_parent;     /* htable that points to this htable */
  78         struct htable   *ht_shares;     /* for HTABLE_SHARED_PFN only */
  79 };
  80 typedef struct htable htable_t;
  81 
  82 /*
  83  * Flags values for htable ht_flags field:
  84  *
  85  * HTABLE_VLP - this is the top level htable of a VLP HAT.
  86  *
  87  * HTABLE_SHARED_PFN - this htable had its PFN assigned from sharing another
  88  *      htable. Used by hat_share() for ISM.
  89  */
  90 #define HTABLE_VLP              (0x01)
  91 #define HTABLE_SHARED_PFN       (0x02)
  92 
  93 /*
  94  * The htable hash table hashing function.  The 28 is so that high
  95  * order bits are include in the hash index to skew the wrap
  96  * around of addresses. Even though the hash buckets are stored per
  97  * hat we include the value of hat pointer in the hash function so
  98  * that the secondary hash for the htable mutex winds up begin different in
  99  * every address space.
 100  */
 101 #define HTABLE_HASH(hat, va, lvl)                                       \
 102         ((((va) >> LEVEL_SHIFT(1)) + ((va) >> 28) + (lvl) +         \
 103         ((uintptr_t)(hat) >> 4)) & ((hat)->hat_num_hash - 1))
 104 
 105 /*
 106  * Each CPU gets a unique hat_cpu_info structure in cpu_hat_info.
 107  */
 108 struct hat_cpu_info {
 109         kmutex_t hci_mutex;             /* mutex to ensure sequential usage */
 110 #if defined(__amd64)
 111         pfn_t   hci_vlp_pfn;            /* pfn of hci_vlp_l3ptes */
 112         x86pte_t *hci_vlp_l3ptes;       /* VLP Level==3 pagetable (top) */
 113         x86pte_t *hci_vlp_l2ptes;       /* VLP Level==2 pagetable */
 114 #endif  /* __amd64 */
 115 };
 116 
 117 
 118 /*
 119  * Compute the last page aligned VA mapped by an htable.
 120  *
 121  * Given a va and a level, compute the virtual address of the start of the
 122  * next page at that level.
 123  *
 124  * XX64 - The check for the VA hole needs to be better generalized.
 125  */
 126 #if defined(__amd64)
 127 #define HTABLE_NUM_PTES(ht)     (((ht)->ht_flags & HTABLE_VLP) ? 4 : 512)
 128 
 129 #define HTABLE_LAST_PAGE(ht)                                            \
 130         ((ht)->ht_level == mmu.max_level ? ((uintptr_t)0UL - MMU_PAGESIZE) :\
 131         ((ht)->ht_vaddr - MMU_PAGESIZE +                             \
 132         ((uintptr_t)HTABLE_NUM_PTES(ht) << LEVEL_SHIFT((ht)->ht_level))))
 133 
 134 #define NEXT_ENTRY_VA(va, l)    \
 135         ((va & LEVEL_MASK(l)) + LEVEL_SIZE(l) == mmu.hole_start ?   \
 136         mmu.hole_end : (va & LEVEL_MASK(l)) + LEVEL_SIZE(l))
 137 
 138 #elif defined(__i386)
 139 
 140 #define HTABLE_NUM_PTES(ht)     \
 141         (!mmu.pae_hat ? 1024 : ((ht)->ht_level == 2 ? 4 : 512))
 142 
 143 #define HTABLE_LAST_PAGE(ht)    ((ht)->ht_vaddr - MMU_PAGESIZE + \
 144         ((uintptr_t)HTABLE_NUM_PTES(ht) << LEVEL_SHIFT((ht)->ht_level)))
 145 
 146 #define NEXT_ENTRY_VA(va, l) ((va & LEVEL_MASK(l)) + LEVEL_SIZE(l))
 147 
 148 #endif
 149 
 150 #if defined(_KERNEL)
 151 
 152 /*
 153  * initialization function called from hat_init()
 154  */
 155 extern void htable_init(void);
 156 
 157 /*
 158  * Functions to lookup, or "lookup and create", the htable corresponding
 159  * to the virtual address "vaddr"  in the "hat" at the given "level" of
 160  * page tables. htable_lookup() may return NULL if no such entry exists.
 161  *
 162  * On return the given htable is marked busy (a shared lock) - this prevents
 163  * the htable from being stolen or freed) until htable_release() is called.
 164  *
 165  * If kalloc_flag is set on an htable_create() we can't call kmem allocation
 166  * routines for this htable, since it's for the kernel hat itself.
 167  *
 168  * htable_acquire() is used when an htable pointer has been extracted from
 169  * an hment and we need to get a reference to the htable.
 170  */
 171 extern htable_t *htable_lookup(struct hat *hat, uintptr_t vaddr, level_t level);
 172 extern htable_t *htable_create(struct hat *hat, uintptr_t vaddr, level_t level,
 173         htable_t *shared);
 174 extern void htable_acquire(htable_t *);
 175 
 176 extern void htable_release(htable_t *ht);
 177 extern void htable_destroy(htable_t *ht);
 178 
 179 /*
 180  * Code to free all remaining htables for a hat. Called after the hat is no
 181  * longer in use by any thread.
 182  */
 183 extern void htable_purge_hat(struct hat *hat);
 184 
 185 /*
 186  * Find the htable, page table entry index, and PTE of the given virtual
 187  * address.  If not found returns NULL. When found, returns the htable_t *,
 188  * sets entry, and has a hold on the htable.
 189  */
 190 extern htable_t *htable_getpte(struct hat *, uintptr_t, uint_t *, x86pte_t *,
 191         level_t);
 192 
 193 /*
 194  * Similar to hat_getpte(), except that this only succeeds if a valid
 195  * page mapping is present.
 196  */
 197 extern htable_t *htable_getpage(struct hat *hat, uintptr_t va, uint_t *entry);
 198 
 199 /*
 200  * Called to allocate initial/additional htables for reserve.
 201  */
 202 extern void htable_initial_reserve(uint_t);
 203 extern void htable_reserve(uint_t);
 204 
 205 /*
 206  * Used to readjust the htable reserve after the reserve list has been used.
 207  * Also called after boot to release left over boot reserves.
 208  */
 209 extern void htable_adjust_reserve(void);
 210 
 211 /*
 212  * return number of bytes mapped by all the htables in a given hat
 213  */
 214 extern size_t htable_mapped(struct hat *);
 215 
 216 
 217 /*
 218  * Attach initial pagetables as htables
 219  */
 220 extern void htable_attach(struct hat *, uintptr_t, level_t, struct htable *,
 221     pfn_t);
 222 
 223 /*
 224  * Routine to find the next populated htable at or above a given virtual
 225  * address. Can specify an upper limit, or HTABLE_WALK_TO_END to indicate
 226  * that it should search the entire address space.  Similar to
 227  * hat_getpte(), but used for walking through address ranges. It can be
 228  * used like this:
 229  *
 230  *      va = ...
 231  *      ht = NULL;
 232  *      while (va < end_va) {
 233  *              pte = htable_walk(hat, &ht, &va, end_va);
 234  *              if (!pte)
 235  *                      break;
 236  *
 237  *              ... code to operate on page at va ...
 238  *
 239  *              va += LEVEL_SIZE(ht->ht_level);
 240  *      }
 241  *      if (ht)
 242  *              htable_release(ht);
 243  *
 244  */
 245 extern x86pte_t htable_walk(struct hat *hat, htable_t **ht, uintptr_t *va,
 246         uintptr_t eaddr);
 247 
 248 #define HTABLE_WALK_TO_END ((uintptr_t)-1)
 249 
 250 /*
 251  * Utilities convert between virtual addresses and page table entry indeces.
 252  */
 253 extern uint_t htable_va2entry(uintptr_t va, htable_t *ht);
 254 extern uintptr_t htable_e2va(htable_t *ht, uint_t entry);
 255 
 256 /*
 257  * Interfaces that provide access to page table entries via the htable.
 258  *
 259  * Note that all accesses except x86pte_copy() and x86pte_zero() are atomic.
 260  */
 261 extern void     x86pte_cpu_init(cpu_t *);
 262 extern void     x86pte_cpu_fini(cpu_t *);
 263 
 264 extern x86pte_t x86pte_get(htable_t *, uint_t entry);
 265 
 266 /*
 267  * x86pte_set returns LPAGE_ERROR if it's asked to overwrite a page table
 268  * link with a large page mapping.
 269  */
 270 #define LPAGE_ERROR (-(x86pte_t)1)
 271 extern x86pte_t x86pte_set(htable_t *, uint_t entry, x86pte_t new, void *);
 272 
 273 extern x86pte_t x86pte_inval(htable_t *ht, uint_t entry,
 274         x86pte_t old, x86pte_t *ptr);
 275 
 276 extern x86pte_t x86pte_update(htable_t *ht, uint_t entry,
 277         x86pte_t old, x86pte_t new);
 278 
 279 extern void     x86pte_copy(htable_t *src, htable_t *dest, uint_t entry,
 280         uint_t cnt);
 281 
 282 /*
 283  * access to a pagetable knowing only the pfn
 284  */
 285 extern x86pte_t *x86pte_mapin(pfn_t, uint_t, htable_t *);
 286 extern void x86pte_mapout(void);
 287 
 288 /*
 289  * these are actually inlines for "lock; incw", "lock; decw", etc. instructions.
 290  */
 291 #define HTABLE_INC(x)   atomic_inc16((uint16_t *)&x)
 292 #define HTABLE_DEC(x)   atomic_dec16((uint16_t *)&x)
 293 #define HTABLE_LOCK_INC(ht)     atomic_inc_32(&(ht)->ht_lock_cnt)
 294 #define HTABLE_LOCK_DEC(ht)     atomic_dec_32(&(ht)->ht_lock_cnt)
 295 
 296 #ifdef __xpv
 297 extern void xen_flush_va(caddr_t va);
 298 extern void xen_gflush_va(caddr_t va, cpuset_t);
 299 extern void xen_flush_tlb(void);
 300 extern void xen_gflush_tlb(cpuset_t);
 301 extern void xen_pin(pfn_t, level_t);
 302 extern void xen_unpin(pfn_t);
 303 extern int xen_kpm_page(pfn_t, uint_t);
 304 
 305 /*
 306  * The hypervisor maps all page tables into our address space read-only.
 307  * Under normal circumstances, the hypervisor then handles all updates to
 308  * the page tables underneath the covers for us.  However, when we are
 309  * trying to dump core after a hypervisor panic, the hypervisor is no
 310  * longer available to do these updates.  To work around the protection
 311  * problem, we simply disable write-protect checking for the duration of a
 312  * pagetable update operation.
 313  */
 314 #define XPV_ALLOW_PAGETABLE_UPDATES()                                   \
 315         {                                                               \
 316                 if (IN_XPV_PANIC())                                     \
 317                         setcr0((getcr0() & ~CR0_WP) & 0xffffffff);      \
 318         }
 319 #define XPV_DISALLOW_PAGETABLE_UPDATES()                                \
 320         {                                                               \
 321                 if (IN_XPV_PANIC() > 0)                                      \
 322                         setcr0((getcr0() | CR0_WP) & 0xffffffff);   \
 323         }
 324 
 325 #else /* __xpv */
 326 
 327 #define XPV_ALLOW_PAGETABLE_UPDATES()
 328 #define XPV_DISALLOW_PAGETABLE_UPDATES()
 329 
 330 #endif
 331 
 332 #endif  /* _KERNEL */
 333 
 334 
 335 #ifdef  __cplusplus
 336 }
 337 #endif
 338 
 339 #endif  /* _VM_HTABLE_H */